
A MODEL-BASED NARRATIVE USE CASE
SIMULATION ENVIRONMENT

Veit Hoffmann and Horst Lichter
Research Group Software Construction, RWTH Aachen University, Ahornstr. 55, Aachen, Germany

Keywords: Requirements, Use Cases, Scenarios, Simulation, Quality Assurance, Model-based Development.

Abstract: Since their introduction use cases are one of the most widespread used techniques to specify functional
requirements. Because low quality use cases often cause serious problems in later phases of the develop-
ment process the simulation of use cases may be an important technique to assure the quality of use case de-
scriptions. In this paper we present a model based use case simulation environment for narrative use cases.
At first we motivate core requirements of a simulation environment and an underlying execution model.
Moreover we describe our model based simulation approach and present some first experiences.

1 INTRODUCTION

Defects in requirements specifications often lead to
severe problems. They cause projects to exceed the
planned budget or even lead to a complete failure
(The Standish Group, 2003). As a consequence qual-
ity assurance of the requirements is an essential and
crucial task.
Empirical studies (Weidmann, Hoffmann & Lichter
2009) show that since their introduction by Ivar
Jacobson in 1986 (Jacobson 1987 & 2004) use cases
are one of the most important requirements tech-
niques to specify the functional behavior of a sys-
tem. Many publications (Cockburn 2000, Armour &
Miller 2001, Kulak & Guiney 2003, Bittner &
Spence 2003) address use case modeling which is
nowadays an integral part of modern development
processes like the Unified Process (Jacobson, Booch
& Rumbaugh 1999).
Despite of its frequent usage in practice, use case
modeling has two principal weaknesses:
1. Each use case describes multiple scenarios at

once. Stakeholders, especially domain experts,
report problems to evaluate the correctness of
use case descriptions because the scenarios de-
scribed by the use cases are often scattered over
one basic and several alternative behavioral
fragments.

2. Since each use case only specifies one specific
system function or even a part of it, it is difficult
to evaluate the global system behavior resulting

from the interactions of the use cases. Hence,
traditional inspection techniques are not well
suited to identify inconsistencies between use
cases or missing behavior (Drenger & Peach
2004).

Simulation is a proven technique and an intuitive
means to assess the behavior of a system. Therefore
simulation of use cases may help to overcome those
problems. By means of simulation stakeholders can
experience the behavior by entering simple stimuli
and thus evaluate the modeled functionality by step-
ping through the specified scenarios. Moreover,
simulation may be used proactively during the speci-
fication process to support step-wise refinement. The
results of different use case simulation runs may be
analyzed to deduce information about the structure
of the described behavior.
In this paper we present
• the requirements of an integrated use case simu-

lation environment supporting use case quality
assurance,

• and a simulation approach for so called narra-
tive use cases based on petri-net semantics.

The remainder of this paper is organized as follows:
In sections 2 and 3 we introduce central terms used
in this paper and give an overview to related re-
search. Section 4 contains a brief introduction to
narrative use cases. In section 5 we present the core
requirements for a use case simulation environment.
We describe an execution model for the simulation
of narrative use cases and a model based transforma-

63
Hoffmann V. and Lichter H. (2010).
A MODEL-BASED NARRATIVE USE CASE SIMULATION ENVIRONMENT.
In Proceedings of the 5th International Conference on Software and Data Technologies, pages 63-72
DOI: 10.5220/0003006900630072
Copyright c© SciTePress

tion approach in section 6. Section 7 presents an
example of our simulation approach and section 8
introduces the developed simulation environment.
Finally we evaluate our approach in section 9 and
give some remarks as well an outlook to future re-
search in section 10.

2 DEFINITIONS

According to Jacobson a use case is a set of se-
quences of actions (including variants) that a system
performs to yield an observable result of value to an
actor. A use case defines of set of coherent scenarios
which resemble the same goal. A scenario is a sin-
gle behavioral path determined by set of consecutive
events that lead to a defined result. A scenario in-
stance is a concrete instantiation of a scenario con-
taining all decisions and runtime information needed
to specify a run through a scenario from its start to
its end.
Simulation of behavior is typically based on formal
execution models. An execution model is
represented by a graph defining the simulation se-
mantics. In this paper we distinguish two concepts of
execution models. The topology of an execution
model is its graph structure. It consists of the nodes
of the graph and their connections. The dynamics
addresses the runtime information of an execution
model needed to control an execution sequence on a
given topology.

3 RELATED WORK

Many publications (Sutcliffe et.al. 1998, Lee, Cha &
Kwon 1998, William et. al. 2005, Glinz, Seybold &
Meier 2007) have discussed the importance of simu-
lation as a means to support modeling and analyzing
behavioral requirements descriptions. Furthermore
several approaches defining execution semantics for
use cases have been published. These approaches
can be distinguished into two classes:
(1) Approaches using a formal executable specifi-

cation language (Whittle & Jayaraman 2006,
Jorgenson & Bossen 2004).

(2) Approaches relying on a “structured” textual
notation which is transformed “semi”-
automatically to a notation with defined execu-
tion semantics (Somé 2006, Zhao & Duan
2009).

We consider the latter more suitable and promising
because in industry text-based use case notations are

highly accepted (Weidmann, Hoffmann & Lichter
2009).
Our approach is strongly related to the work of
Somé (2006) who has proposed a state-machine
based formalization of structured textual use cases
and a tool support for the simulation of those state
machines. Nevertheless our approach has two main
differences compared to Somé’s work. First our
approach does not suffer from the problem that the
simulation allows unspecified scenarios and second
the topology of our execution model is more robust
against changes. Because changes have to be made
very often during the specification process, this is an
important advantage. Kwon et. al. (1998) describe a
simulation approach based on a special extension to
petri-nets. Their work relates on a manual transfor-
mation and focuses on the analysis of parallel beha-
vior, whereas our approach uses an automated trans-
formation algorithm.

4 NARRATIVE USE CASES

A narrative use case is a structured textual descrip-
tion of a use case. We have proposed a narrative use
case meta model (Hoffmann, Lichter & Nyssen
2009) that allows to describe use case behavior in a
flow oriented textual manner. In a narrative use
case model each single use case step is described in
unconstrained natural language.
To model the control flow inside a use case a couple
of control flow elements are used. Figure 1 shows
two narrative use cases (taken from the well known
ATM example).
In a narrative use case model every use case is
represented by a narrative description. Each narra-
tive description consists of a set of flows describing
the use case’s behavior by means of a set of actions
and anchors.

Actions are behavioral atoms written in natural
language and each action represents a single step
performed by an actor or the system itself.

Anchors mark spots within a flow where beha-

vior from another flow may be inserted. Different
kinds of anchors exist to represent the different
kinds of relationships between flows - i.e. inclusion
and extension of flows.
Finally, flows are equipped with contexts specifying
situations and conditions in which the behavior
described in a flow is applied. Narrative use case
models support inclusion and extension between
flows as well as exceptional relationships. Each of
those relationships is represented by an individual

ICSOFT 2010 - 5th International Conference on Software and Data Technologies

64

context. Moreover special interaction contexts
represent associations between a primary actor and a
use case. They are used to identify those flows being
the interaction starting points of a scenario.

Narrative Description Withdraw Cash
Flow: Main Flow
Associated Actors: Customer
Contexts:

Interaction Context triggered by Customer
Flow of Events:

1. Enter Card The Customer enters the
card

2. Include Authenticate::Log in
3. Enter Amount The Customer enters the

amount to withdraw
4. Dispense Money The System dispenses the

selected amount of money
5. Return Card The System returns the card

Narrative Description Authenticate
Flow: Log in
Associated Actors: Customer
Contexts:

Inclusion Context Incl. by Flow: Withdraw
Cash

Flow of Events:
1. Alternative Anchor {Waiting for PIN}
2. Enter PIN The Customer enters the

PIN.
3. Alternative Anchor {PIN Evaluation}

Flow: Check PIN
Contexts:

Extension Context Extending {PIN Evaluation}
if invalid PIN entered.
Return to {PIN Evaluation}
if PIN valid
Return to {Waiting for PIN}
if PIN invalid

Flow of Events:
1. Check PIN The System checks the PIN

Figure 1: ATM narrative use cases.

5 SIMULATION ENVIRONMENT
REQUIREMENTS

Simulation is a well-known prototyping technique
and an intuitive means to assess the behavior of a
system. The effectiveness of simulation to support
modeling and quality assurance of use case based
requirements specifications highly depends on the
tool support (the use case simulator) and on the
execution model that is the basis of the simulation.

In the following we briefly describe the core re-

quirements on a use case simulator as well as on its
underlying execution model.

5.1 Simulator Requirements

A use case simulator should be usable for multiple
purposes. It should enable all stakeholders to per-
form step-wise inspections of the use cases and offer
automatic analyses of the simulation information.
Moreover the simulator should support regression
based validity analyses of scenario instances after
the use case model has been changed (as proposed
by Glinz et. al. (2007)). We have identified the fol-
lowing major requirements:

• Stakeholder-specific Visualization

The simulator should be usable by different
stakeholders, especially domain experts and cus-
tomers who are typically unaware of a formal
simulation model. Therefore the simulation envi-
ronment should provide a customizable visuali-
zation of the simulation runs. Moreover it should
include perspectives for different kinds of stake-
holders.

• Flexible Integration with other Tools
During requirements engineering use cases and
various other requirements artifacts are devel-
oped in parallel. Furthermore use cases are
needed in later phases of the development
process, like testing or GUI-design. Consequent-
ly the simulator should allow the integration of
other requirements engineering tools and models
and it should provide extension points to support
specific development tasks in all phases of the
development process.

• Precise Execution of the Modeled Behavior
The simulator should execute the behavior speci-
fied in the use cases as precise as possible. It
should be able to perform all legal scenarios and
prohibit the simulation of scenarios that are not
specified in the use case model.

• Simulation of Incomplete Models
As use case specifications vary in their degree of
completeness and formality the simulator should
provide appropriate mechanisms to handle miss-
ing or informally specified information.

• Simulation of Global System Behavior
Defects in the functional behavior are often
caused by the interaction of use cases. Thus, the
simulator should support the execution of mul-
tiple consecutive use cases to enable the analysis
of the system’s global behavior.

A MODEL-BASED NARRATIVE USE CASE SIMULATION ENVIRONMENT

65

• Reuse of Simulation Data
Scenario instances resulting from simulation runs
should be used for static analyses, documentation
of scenarios or as input to other development
tasks like testing. Thus, whenever a simulation
run is performed the simulator should be able to
store all runtime information of the simulated
scenario instances.

• Analysis of the Simulation Runs
The simulator should support static analyses of
simulations runs. This includes quantitative ana-
lyses like coverage measures as well as analyses
of the structure of the execution model e.g. the
identification of inconsistencies in behavior de-
scriptions or the determination of change im-
pacts. Additionally the simulator should support
the revalidation of scenarios instances after the
simulated use cases have been incrementally re-
fined.

5.2 Execution Model Requirements

As denoted before, we prefer a structured textual use
case notation because of the acceptance in industry.
Although narrative use case descriptions have a
defined structure, the resulting behavior specifica-
tions have no formal execution semantics. Therefore
a formal execution model must be developed that
matches the narrative use case concepts best. We see
the following important requirements regarding the
execution model:

• Finite, Scalable Model
Because the simulator should be usable in real
world projects the transformation of a narrative
use case model to an execution model should al-
ways result in a finite model even if the specified
behavior contains iterations or recursive defini-
tions. Besides, the size of an execution model
and the space and time complexity of the trans-
formation algorithm should scale for big real
world projects.

• Robust Model Topology
The simulator should be usable from the early
phases of use case development onwards. There-
fore the topology of the execution model should
be robust against changes. When additional in-
formation like a new condition or a new step is
added or a sequence of steps is changed, the
change should only have local effects to the ex-
ecution model’s topology. This is a prerequisite
to perform impact analyses of a change to infor-
mation derived from the execution model e.g.
test cases or GUI prototypes.

• Composition of Execution Models

The execution model should offer mechanisms to
compose different partial models to one inte-
grated model and to decompose a model into
fragments. Ideally composition is done without
copying the partial models to the integrated one.

6 SIMULATION CONCEPTS

In this section we describe our approach to simulate
narrative use case descriptions based on the re-
quirements described in section 5. The core of our
simulation approach is a formal petri-net based ex-
ecution model. To simulate a narrative use case
model it is transformed to a respective execution
model by a recursive transformation algorithm. Dur-
ing a simulation run all information about the simu-
lated scenario instances is stored in a dedicated trace
model. Thus different kinds of static analyses on the
use case model, the corresponding execution model
and the trace model as required in section 5 are poss-
ible.

6.1 Execution Model Concepts

The proposed execution model is based on colored
petri-nets. First we briefly introduce colored petri-
nets then we describe the topological and dynamic
elements offered by the execution model.

6.1.1 Colored Petri-Nets

Petri-nets are a well known formalism to specify
step-wise processes that include choice, iteration,
and concurrent execution. They are bipartite directed
graphs consisting of places, transitions, and directed
arcs. Arcs run from a place to a transition or vice
versa. The execution semantics of petri-nets is based
on tokens, which are passed along the arcs of the
net. Petri-nets, unlike other popular execution for-
malisms, have exact mathematical execution seman-
tics, together with a well-developed mathematical
theory for process analysis.
Colored petri-nets are an extension to standard petri-
nets proposed by Jensen (1997, 2003). In colored
petri-nets the tokens are distinguishable and the
decision whether a transition can fire depends on the
nature of the tokens. To be more explicit the tokens
contain attributes and the values of those attributes
are considered to decide whether a transition may
fire or not. Although the expressiveness of colored
petri-nets is identical to standard ones the topology

ICSOFT 2010 - 5th International Conference on Software and Data Technologies

66

needed to express a certain behavior is noticeably
smaller than the one of an equivalent standard petri-
net.

6.1.2 Modeling the Topology

As a consequence to use colored petri-nets, our ex-
ecution model consists of transitions and places.
Both elements may have a reference to an element of
the respective narrative use case model. Additionally
we have introduced a concept to simplify the struc-
ture of the petri-nets. All transitions have an incom-
ing- and an outgoing-mode describing their execu-
tion semantics. Both modes may either be “AND” or
“XOR”. Incoming-mode means that a transition can
fire in “XOR”-mode if one incoming place has a
token, or if all incoming places have tokens in
“AND”-mode.

Figure 2: Execution model: Part Topology.

The outgoing-mode specifies how many token are
created after the execution of a transition. A transi-
tion creates one token in exactly one of the outgoing
places “XOR” in XOR-mode or a token in every
outgoing place in “AND”-mode. Although colored
petri-nets don’t comprise incoming and outgoing
mode, those modes don’t contradict the theoretical
concepts of colored petri-nets. Moreover the execu-
tion model contains two specific kinds of transitions
called push context transition and pop context
transition. The semantics of these elements will be
explained in the next section. Figure 2 depicts the
central topological elements of our execution model
and their relationships.

6.1.3 Modeling Dynamic Behavior

The core elements of the dynamics are tokens. To-
kens may have an arbitrary number of attributes.
Each attribute has a name, a type, and a value. Addi-
tionally each token has a context stack. The context
stack contains references to contexts from the narra-

tive use case model (see section 4) that have been
traversed before the creation of the token. The stack
is used to determine where to continue the simula-
tion after the end of a flow has been reached.
This concept (usage of runtime information) is
needed because the decision where to continue can’t
be made only based on attribute values. For exam-
ple, if we introduce an additional use case with an
include-relationship to the existing use case “Au-
thentication” in the ATM example, the simulator has
to decide where to continue after the “Authentica-
tion” use case was completed successfully.
The context stack of a token may only be modified
by the aforementioned Push- and PopContext-
Transitions. A push context transitions adds a con-
text to the stack, if a new context is reached during
the simulation. A pop context transition removes the
context from the stack after the end of the behavior
in a certain context has been reached. Figure 3 de-
picts the elements of the execution model’s dynamic
view.

Figure 3: Execution model: Part Dynamics.

6.2 Generating the Execution Model

The transformation of a narrative use case model to
a corresponding execution model is done recursive-
ly. The core idea of the transformation is that only
actions are behavioral atoms. All other elements
(e.g. flows) of narrative use case models are consi-
dered behavioral frames enclosing at least one
behavioral fragment. Each behavioral fragment
consists of a set of narrative use case model ele-
ments. This means: flows enclose their contained
events, contexts enclose the flows whose usage they
describe, and anchors enclose the contexts they are
connected to.
The transformation algorithm itself is based on a set
of generic transformation strategies. For each
narrative model element type the respective trans-
formation strategy defines the execution model ele-
ments that are created. That way, every narrative use
case model element is transformed separately ac-
cording to the respective transformation strategy into
one or more transitions connected by places.

The transformation of a narrative use case model
starts at the interaction starting points of its scena-

A MODEL-BASED NARRATIVE USE CASE SIMULATION ENVIRONMENT

67

rios. Then it moves along the scenarios to their ends.
At first the transformation algorithm connects all
interaction contexts of the narrative use case model
to an initial execution model frame. Then it trans-
forms the behavior described in the flows of the
narrative use cases in a depth first manner. The
flows that are directly connected to an interaction
context are transformed first. Other flows are
processed when respective anchors to the flows are
reached.

During the transformation every behavioral
frame is transformed into an initial and a final transi-
tion. The initial transition is the predecessor of the
enclosed behavioral fragments and the final transi-
tion is the successor. Thus the execution model
evolves from outside-in, since in each transforma-
tion step elements are added to the beginning as well
as to the end of the execution model.

During the transformation every element of the
narrative use case model is transformed exactly
once. Whenever an element is reached for a second
time it is not transformed again. Instead, a reference
to its execution model representation is generated.

Thus the transformation of a behavioral fragment
terminates when the last event of a flow is trans-
formed or when an element is reached that already
has an execution model representation. Since a be-
havioral frame may contain several behavioral frag-
ments, its transformation terminates when all beha-
vioral frames are transformed. Then the transforma-
tion algorithm moves on to the next element of the
narrative use case model.

Thus the transformation algorithm terminates af-
ter each flow reachable from any scenario of the
narrative use case model was processed once. After
completion of the transformation all elements are
transformed and all connections between the ele-
ments are established. Therefore all scenarios de-
scribed in a narrative use case model can be per-
formed based on the respective execution model.
In the following we briefly explain the transforma-
tion strategies for the narrative use case element
types. Figure 4 shows the caption used in the figures
of this section.

Figure 4: Caption of the transformation strategies.

White colored elements are created during the trans-
formation of a behavioral frame. Stroked elements
depict sections that are transformed in a succeeding
transformation step. Finally the gray boxes in the left

and right corners of a transformation fragment
represent the frame into which the elements are
inserted.

6.2.1 Initial Execution Model

The initial execution model contains all scenarios of
the narrative use case model. Thus it represents the
global behavioral frame. Its initial transition is called
start delimiter and its final transition is called end
delimiter of an execution model (see Figure 5). The
start delimiter is connected to the initial place, which
holds the first token when a simulation run is started.
The end delimiter is connected to the final place that
holds the last token at the end of a simulation run.
Moreover the start and the end delimiter are con-
nected by a place to support the execution of mul-
tiple use cases consecutively.

Figure 5: Initial execution model.

6.2.2 Flows

A flow encloses all its contained events. Since it
may be executed in several different contexts the
initial transition of a flow has an XOR-incoming
mode. The final transition has an XOR-outgoing
mode because the execution may only continue in
the context which the flow was called from in the
first place.

Figure 6: Flow transformation fragment.

6.2.3 Contexts

The execution model representation of all kinds of
contexts is identical. Its initial transition is a push
context transition and has an XOR-incoming mode,
since a context may be connected to several incom-
ing anchors. The final transition is a pop context
transition with an XOR-outgoing mode, since the
execution may continue at only one outgoing anc-
hor.

Figure 7: Context transformation fragment.

ICSOFT 2010 - 5th International Conference on Software and Data Technologies

68

6.2.4 Events

Actions are behavioral atoms and can be represented
by single transitions, because they don’t contain a
behavioral fragment.

Inclusion- and extension anchors are on the con-
trary behavioral frames.

Figure 8: Event transformation fragments.

An inclusion anchor is connected to only one flow
which always must be executed when the inclusion
is reached. An extension anchor on the contrary may
be connected to several flows which may or may not
be executed depending on the conditions that are
specified in the extension contexts of the connected
flows. As a consequence the initial and the final
transition of extension anchors are connected direct-
ly and they have an XOR-outgoing mode to decide
which extension to select (Figure 8).

6.2.5 Additional Transformation Concepts

As denoted before each element is transformed only
once. This approach guarantees that the transforma-
tion creates a finite model which scales with the size
of the narrative use case model. The reference to an
already transformed element is established by creat-
ing two petri places to connect the behavioral frame
to the existing element (Figure 9).
Finally, so called null-symbols are inserted whenev-
er the end of a recursion is reached. This is the case
if the end of a flow is reached or in any situation
where information is missing (e.g. a missing inclu-
sion context at an inclusion is replaced by a null-
symbol).

Figure 9: Additional concepts.

6.3 Use Case Simulation

The simulation of a narrative use case model is per-
formed using its execution model. A simulation run
is started by initializing the execution model with a
single token at the start delimiter. During the simula-
tion run the token is passed along the petri-net. At
points where multiple paths could be traveled, the
decision is made based on the values of the attributes
in the current token. The simulator can check wheth-
er a decision can be made automatically based on
formalized information available at the decision
point. If this is not possible the user has to decide
where to continue the simulation. A simulation run
is finished after all tokens are passed to the end
delimiter of the execution model. During a simula-
tion run all runtime information is stored in a trace
model which we present briefly in the following.

6.3.1 Trace Model

Figure 10 depicts the elements of the trace model. A
trace model instance usually contains information
about several simulation runs of different scenario
instances that have been performed together – e.g. a
set of scenarios that have been inspected during a
use case review. This enables analyses of the corre-
lation of simulation runs like coverage measure-
ments. In the trace model the simulation information
of each scenario instance is stored in a separate
trace. All traces consist of a set of trace steps con-
taining the details of a simulation run. Every trace
step holds a reference to an element of the topology
of the execution model and a reference to a token.
Thus a simulation run is fully qualified by a trace
and can be executed again based on the trace infor-
mation. Moreover all trace elements may hold refer-
ences to simulation information elements. Simula-
tion information elements are used to add special
purpose information to a trace – e.g. review findings.

Figure 10: Elements of the trace model.

A MODEL-BASED NARRATIVE USE CASE SIMULATION ENVIRONMENT

69

7 EXAMPLE

In this section we point up our simulation approach
alongside the ATM example introduced in section 4.
Figure 11 shows the execution model for the two
narrative use cases. The transitions are labeled ac-
cording to their referenced narrative use case model
elements. The dotted arrows visualize a simulation
run on the execution model. Additionally the context
stack of the simulation run is denoted at the Push-
and pop context transitions of the execution model.
Figure 12 depicts the trace recorded during the simu-
lation run.

Figure 11: ATM execution model & simulation run.

8 TOOL SUPPORT

We have integrated a simulation environment for
narrative use case models called USE (Use case
Simulation Environment) into NaUTIluS, the use
case editor of the Eclipse based development plat-
form ViPER (ViPER, n.d.). USE is based on an
EMF-implementation (EMF, n.d.) of the execution
and the trace model. USE consists of a simulator and
a set of views to visualize simulation information.

After a narrative use case model is transformed
to a corresponding execution model the simulator
can run simulations.

Figure 12: Trace of a scenario instance.

Whenever a simulation reaches a decision point
(different scenarios are possible) the simulator de-
cides automatically based on the information stored
in the tokens or asks the user to decide which scena-
rio should be pursued. During a simulation run the
simulator stores trace information and provides
feedback to the user about the current simulation via
standard Eclipse notification mechanisms. Moreover
USE defines several extension points to customize
the simulator for specific tasks.

Figure 13 shows a screenshot of USE with some
visualization views.

ICSOFT 2010 - 5th International Conference on Software and Data Technologies

70

9 EVALUATION

The herein proposed simulation approach complete-
ly meets the requirements motivated in section 5.
The execution model has a precisely defined execu-
tion semantic, its topology is robust against changes
and supports incremental refinement of the use cas-
es, because changes only have local effects.

The explained recursive transformation algo-
rithm scales for real world narrative use case models
and is able to handle missing information or incom-
plete behavior by inserting so called null-symbol
placeholders.

The simulations can be performed using the si-
mulation environment USE which stores all runtime
information in a dedicated trace model for later
analyses.

Figure 13: USE screenshot.

Finally, USE is easily connectable with other re-
quirements models as it relates on Eclipse frame-

work standards and provides highly flexible me-
chanisms to configure custom visualization.

Our simulation approach has three outstanding
advantages compared to state machine centered
techniques.
1. The concept of petri-nets and its token semantic

strongly reflects the step-by-step idea of use cas-
es. While state machines rely on states that are
not explicitly modeled in use cases, our approach
maps the steps of a narrative use case directly to
transitions of a petri-net. Thus the transformation
algorithm is straightforward and a comprehensi-
ble visualization of the behavior is possible.

2. Our execution model is context aware since the
execution contexts are stored in the tokens dur-
ing the simulation. Therefore our approach can
handle situations where the control flow is not
directly derivable form the system state. State
machines would have to introduce implicit states
to cover context aware behavior. Those implicit
states are difficult to derive and increase the
complexity of the respective state machine.

3. The topology of colored petri-nets is robust
against changes in the referenced narrative use
case model because changes only have local ef-
fects.

We have evaluated the presented use case simulation
approach alongside with USE in some academic
projects performed in student’s master thesis. The
simulation has been well accepted and first expe-
rience shows that behavior simulation is an intuitive
way to analyze narrative use case models. The simu-
lation-based approach has especially proven useful
in projects with very detailed use case descriptions
containing many (complex) alternatives to the nor-
mal use case behavior.

10 CONCLUSIONS AND OUT-
LOOK

In this paper we have introduced a model-based
simulation approach for narrative use cases. We
have pointed out the most important requirements of
a useful and efficient use case simulation environ-
ment. Furthermore we have presented a petri-net
based execution model, a model-based transforma-
tion algorithm and a narrative use case simulation
strategy. Finally we have sketched the simulation
environment that we have developed based on the
presented concepts. First experiences of our simula-
tion approach in student projects are promising.

A MODEL-BASED NARRATIVE USE CASE SIMULATION ENVIRONMENT

71

Currently we are evaluating the usefulness and ac-
ceptance of the presented approach in different small
and medium size projects we perform at the faculty
and with different industrial cooperation partners.
Until now we are using the simulation environment
only to support the inspection of use cases. In the
future we plan to enlarge our approach to an inte-
grated requirements specification technique. Besides
we are currently doing first experiments to generate
GUI prototypes based on the simulation information
and to generate test specifications based on instance
scenarios created with the simulation environment.

Finally we are currently developing tool support
for static analyses on the narrative use case model as
well as on the corresponding execution model.

REFERENCES

The Standish Group, 2003. Chaos chronicles v3.0 Tech-
nical report.

Weidmann, C., Hoffmann, V. & Lichter, H., 2009. Einsatz
und Nutzen von Use Cases - Ergebnisse einer
empirischen Untersuchung. In Softwaretechnik-
Trends, Band 29, Heft 2, pp. 62 -67.

Jacobson, I., 1987. Object-oriented development in an
industrial environment. OOPSLA '87: Conference
proceedings on Object-oriented programming systems,
languages and applications, ACM Press, New York,
pp. 183-191.

Jacobson, I., 2004. Use Cases - Yesterday, today, and
tomorrow. Software and System Modeling, vol 3, pp.
210-220.

Cockburn, A., 2000. Writing Effective use cases, Addison-
Wesley.

Armour, F. & Miller, G., 2001. Advanced use case Model-
ing Volume One, Software Systems. Addison-Wesley
Longman Publishing Co., Inc., Boston.

Kulak, D. & Guiney, E, 2003. Use Cases: Requirements in
Context. Addison-Wesley Longman Publishing Co.,
Inc., Boston.

Bittner, K., & Spence, I., 2003. Use Case Modeling. Addi-
son-Wesley Longman Publishing Co., Inc., Boston.

Jacobson, I., Booch, G. & Rumbaugh, J., 1999. The Uni-
fied Software Development Process, Addison-Wesley
Longman Publishing Co., Inc., Boston.

Denger, C. & Paech, B., 2004. An Integrated Quality
Assurance Approach for Use Case Based Require-
ments, Proceedings Modellierung 2004, Marburg, pp.
307–308.

Sutcliffe, A.G., Maiden, N.A.M., Minocha, S. & Manuel,
D., 1998. Supporting Scenario-Based Requirements
Engineering, IEEE Transactions on Software Engi-
neering, vol. 24, no. 12, pp. 1072-1088.

Lee, W.J., Cha, S.D. & Kwon, Y.R., 1998. Integration and
Analysis of Use Cases Using Modular Petri Nets in
Requirements Engineering, IEEE Transactions on
Software Engineering, vol. 24, no. 12, pp 1115-1130.

Williams, C., Kaplan, M., Klinger, T. & Paradkar A.,
2005. Toward Engineered, useful use cases. Journal of
Object Technology, Special Issue: Use Case Modeling
at UML-2004, vol 4, pp. 45-57.

Glinz, M., Seybold, C. & Meier, S., 2007. Simulation-
Driven Creation, Validation and Evolution of Beha-
vioral Requirements Models. Dagstuhl-Workshop
Modellbasierte Entwicklung eingebetteter Systeme
(MBEES 2007). Informatik-Bericht 2007-01, TU
Braunschweig, pp. 103-112.

Whittle, J. & Jayaraman, P.K., 2006. Generating Hierar-
chical State Machines from use case Charts, RE '06:
Proceedings of the 14th IEEE International Require-
ments Engineering Conference (RE'06), IEEE Com-
puter Society, Washington, DC, pp. 16-25.

Jorgensen, J.B. & Bossen, C., 2004. Executable Use Cas-
es: Requirements for a Pervasive Health Care System.
IEEE Software, 21(2), pp. 34-41.

Somé, S., 2006. Supporting use case based requirements
engineering. Information and Software Technology
48, pp. 43-58.

Zhao J. & Duan Z.: Verification of Use Case with Petri
Nets in Requirement Analysis, ICCSA (2), pp. 29-42.

Hoffmann, V., Lichter, H. & Nyßen, A., 2009. Towards
the Integration of UML-and textual Use Case Model-
ing, Journal of Object Technology, vol. 8, no. 3, pp.
85-100.

Jensen, K., 2003. Coloured Petri Nets: Basic Concepts,
Analysis Methods and Practical Use, vol.1 (Mono-
graphs in Theoretical Computer Science. An EATCS
Series). Springer.

Jensen, K. 1997. A Brief Introduction to Coloured Petri
Nets, Tools and Algorithms for the Construction and
Analysis of Systems, pp. 203-208.

ViPER project site, http://www.viper.sc.
Eclipse Modeling Framework project site,

http://www.eclipse.org/modeling/emf/

ICSOFT 2010 - 5th International Conference on Software and Data Technologies

72

