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Abstract: Since their introduction use cases are one of the most widespread used techniques to specify functional 
requirements. Because low quality use cases often cause serious problems in later phases of the develop-
ment process the simulation of use cases may be an important technique to assure the quality of use case de-
scriptions. In this paper we present a model based use case simulation environment for narrative use cases. 
At first we motivate core requirements of a simulation environment and an underlying execution model. 
Moreover we describe our model based simulation approach and present some first experiences. 

1 INTRODUCTION 

Defects in requirements specifications often lead to 
severe problems. They cause projects to exceed the 
planned budget or even lead to a complete failure 
(The Standish Group, 2003). As a consequence qual-
ity assurance of the requirements is an essential and 
crucial task.  
Empirical studies (Weidmann, Hoffmann & Lichter 
2009) show that since their introduction by Ivar 
Jacobson in 1986 (Jacobson 1987 & 2004) use cases 
are one of the most important requirements tech-
niques to specify the functional behavior of a sys-
tem. Many publications (Cockburn 2000, Armour & 
Miller 2001, Kulak & Guiney 2003, Bittner & 
Spence 2003) address use case modeling which is 
nowadays an integral part of modern development 
processes like the Unified Process (Jacobson, Booch 
& Rumbaugh 1999). 
Despite of its frequent usage in practice, use case 
modeling has two principal weaknesses:  
1. Each use case describes multiple scenarios at 

once. Stakeholders, especially domain experts, 
report problems to evaluate the correctness of 
use case descriptions because the scenarios de-
scribed by the use cases are often scattered over 
one basic and several alternative behavioral 
fragments.   

2. Since each use case only specifies one specific 
system function or even a part of it, it is difficult 
to evaluate the global system behavior resulting 

from the interactions of the use cases. Hence, 
traditional inspection techniques are not well 
suited to identify inconsistencies between use 
cases or missing behavior (Drenger & Peach 
2004). 

Simulation is a proven technique and an intuitive 
means to assess the behavior of a system. Therefore 
simulation of use cases may help to overcome those 
problems. By means of simulation stakeholders can 
experience the behavior by entering simple stimuli 
and thus evaluate the modeled functionality by step-
ping through the specified scenarios. Moreover, 
simulation may be used proactively during the speci-
fication process to support step-wise refinement. The 
results of different use case simulation runs may be 
analyzed to deduce information about the structure 
of the described behavior. 
In this paper we present 
• the requirements of an integrated use case simu-

lation environment supporting use case quality 
assurance, 

• and a simulation approach for so called narra-
tive use cases based on petri-net semantics. 

The remainder of this paper is organized as follows: 
In sections 2 and 3 we introduce central terms used 
in this paper and give an overview to related re-
search. Section 4 contains a brief introduction to 
narrative use cases. In section 5 we present the core 
requirements for a use case simulation environment. 
We describe an execution model for the simulation 
of narrative use cases and a model based transforma-
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tion approach in section 6. Section 7 presents an 
example of our simulation approach and section 8 
introduces the developed simulation environment. 
Finally we evaluate our approach in section 9 and 
give some remarks as well an outlook to future re-
search in section 10. 

2 DEFINITIONS 

According to Jacobson a use case is a set of se-
quences of actions (including variants) that a system 
performs to yield an observable result of value to an 
actor. A use case defines of set of coherent scenarios 
which resemble the same goal. A scenario is a sin-
gle behavioral path determined by set of consecutive 
events that lead to a defined result. A scenario in-
stance is a concrete instantiation of a scenario con-
taining all decisions and runtime information needed 
to specify a run through a scenario from its start to 
its end.  
Simulation of behavior is typically based on formal 
execution models. An execution model is 
represented by a graph defining the simulation se-
mantics. In this paper we distinguish two concepts of 
execution models. The topology of an execution 
model is its graph structure. It consists of the nodes 
of the graph and their connections. The dynamics 
addresses the runtime information of an execution 
model needed to control an execution sequence on a 
given topology.  

3 RELATED WORK 

Many publications (Sutcliffe et.al. 1998, Lee, Cha & 
Kwon 1998, William et. al. 2005, Glinz, Seybold & 
Meier 2007) have discussed the importance of simu-
lation as a means to support modeling and analyzing 
behavioral requirements descriptions. Furthermore 
several approaches defining execution semantics for 
use cases have been published. These approaches 
can be distinguished into two classes:   
(1) Approaches using a formal executable specifi-

cation language (Whittle & Jayaraman 2006, 
Jorgenson & Bossen 2004). 

(2) Approaches relying on a “structured” textual 
notation which is transformed “semi”-
automatically to a notation with defined execu-
tion semantics (Somé 2006, Zhao & Duan 
2009).  

We consider the latter more suitable and promising 
because in industry text-based use case notations are 

highly accepted (Weidmann, Hoffmann & Lichter 
2009). 
Our approach is strongly related to the work of 
Somé (2006) who has proposed a state-machine 
based formalization of structured textual use cases 
and a tool support for the simulation of those state 
machines. Nevertheless our approach has two main 
differences compared to Somé’s work. First our 
approach does not suffer from the problem that the 
simulation allows unspecified scenarios and second 
the topology of our execution model is more robust 
against changes. Because changes have to be made 
very often during the specification process, this is an 
important advantage. Kwon et. al. (1998) describe a 
simulation approach based on a special extension to 
petri-nets. Their work relates on a manual transfor-
mation and focuses on the analysis of parallel beha-
vior, whereas our approach uses an automated trans-
formation algorithm.  

4 NARRATIVE USE CASES 

A narrative use case is a structured textual descrip-
tion of a use case. We have proposed a narrative use 
case meta model (Hoffmann, Lichter & Nyssen 
2009) that allows to describe use case behavior in a 
flow oriented textual manner. In a narrative use 
case model each single use case step is described in 
unconstrained natural language.  
To model the control flow inside a use case a couple 
of control flow elements are used. Figure 1 shows 
two narrative use cases (taken from the well known 
ATM example).  
In a narrative use case model every use case is 
represented by a narrative description. Each narra-
tive description consists of a set of flows describing 
the use case’s behavior by means of a set of actions 
and anchors. 

Actions are behavioral atoms written in natural 
language and each action represents a single step 
performed by an actor or the system itself.  

 
Anchors mark spots within a flow where beha-

vior from another flow may be inserted. Different 
kinds of anchors exist to represent the different 
kinds of relationships between flows - i.e. inclusion 
and extension of flows.  
Finally, flows are equipped with contexts specifying 
situations and conditions in which the behavior 
described in a flow is applied. Narrative use case 
models support inclusion and extension between 
flows as well as exceptional relationships. Each of 
those relationships is represented by an individual 
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context. Moreover special interaction contexts 
represent associations between a primary actor and a 
use case. They are used to identify those flows being 
the interaction starting points of a scenario. 
 

Narrative Description Withdraw Cash 
Flow:  Main Flow 
Associated Actors: Customer 
Contexts:  

Interaction Context triggered by Customer 
Flow of Events:   

1. Enter Card  The Customer enters the 
card 

2. Include  Authenticate::Log in 
3. Enter Amount The Customer enters the 

amount to withdraw 
4. Dispense Money The System dispenses the 

selected amount of money 
5. Return Card The System returns the card 

 
Narrative Description Authenticate 
Flow:  Log in 
Associated Actors: Customer 
Contexts:  

Inclusion Context Incl. by Flow: Withdraw 
Cash 

Flow of Events:   
1. Alternative Anchor {Waiting for PIN} 
2. Enter PIN The Customer enters the 

PIN. 
3. Alternative Anchor {PIN Evaluation} 

Flow:  Check PIN 
Contexts:   

Extension Context Extending {PIN Evaluation} 
if invalid PIN entered. 
Return to {PIN Evaluation} 
if PIN valid 
Return to {Waiting for PIN} 
if PIN invalid 

Flow of Events:  
1. Check PIN The System checks the PIN  

Figure 1: ATM narrative use cases. 

5 SIMULATION ENVIRONMENT 
REQUIREMENTS 

Simulation is a well-known prototyping technique 
and an intuitive means to assess the behavior of a 
system. The effectiveness of simulation to support 
modeling and quality assurance of use case based 
requirements specifications highly depends on the 
tool support (the use case simulator) and on the 
execution model that is the basis of the simulation.  

In the following we briefly describe the core re- 

quirements on a use case simulator as well as on its 
underlying execution model.  

5.1 Simulator Requirements 

A use case simulator should be usable for multiple 
purposes. It should enable all stakeholders to per-
form step-wise inspections of the use cases and offer 
automatic analyses of the simulation information. 
Moreover the simulator should support regression 
based validity analyses of scenario instances after 
the use case model has been changed (as proposed 
by Glinz et. al. (2007)). We have identified the fol-
lowing major requirements: 
 
• Stakeholder-specific Visualization 

The simulator should be usable by different 
stakeholders, especially domain experts and cus-
tomers who are typically unaware of a formal 
simulation model. Therefore the simulation envi-
ronment should provide a customizable visuali-
zation of the simulation runs. Moreover it should 
include perspectives for different kinds of stake-
holders. 
 

• Flexible Integration with other Tools 
During requirements engineering use cases and 
various other requirements artifacts are devel-
oped in parallel. Furthermore use cases are 
needed in later phases of the development 
process, like testing or GUI-design. Consequent-
ly the simulator should allow the integration of 
other requirements engineering tools and models 
and it should provide extension points to support 
specific development tasks in all phases of the 
development process.  
 

• Precise Execution of the Modeled Behavior 
The simulator should execute the behavior speci-
fied in the use cases as precise as possible. It 
should be able to perform all legal scenarios and 
prohibit the simulation of scenarios that are not 
specified in the use case model. 
 

• Simulation of Incomplete Models 
As use case specifications vary in their degree of 
completeness and formality the simulator should 
provide appropriate mechanisms to handle miss-
ing or informally specified information.  
 

• Simulation of Global System Behavior 
Defects in the functional behavior are often 
caused by the interaction of use cases. Thus, the 
simulator should support the execution of mul-
tiple consecutive use cases to enable the analysis 
of the system’s global behavior. 
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• Reuse of Simulation Data 
Scenario instances resulting from simulation runs 
should be used for static analyses, documentation 
of scenarios or as input to other development 
tasks like testing. Thus, whenever a simulation 
run is performed the simulator should be able to 
store all runtime information of the simulated 
scenario instances.  
 

• Analysis of the Simulation Runs 
The simulator should support static analyses of 
simulations runs. This includes quantitative ana-
lyses like coverage measures as well as analyses 
of the structure of the execution model e.g. the 
identification of inconsistencies in behavior de-
scriptions or the determination of change im-
pacts. Additionally the simulator should support 
the revalidation of scenarios instances after the 
simulated use cases have been incrementally re-
fined. 

5.2 Execution Model Requirements 

As denoted before, we prefer a structured textual use 
case notation because of the acceptance in industry. 
Although narrative use case descriptions have a 
defined structure, the resulting behavior specifica-
tions have no formal execution semantics. Therefore 
a formal execution model must be developed that 
matches the narrative use case concepts best. We see 
the following important requirements regarding the 
execution model: 
 

• Finite, Scalable Model 
Because the simulator should be usable in real 
world projects the transformation of a narrative 
use case model to an execution model should al-
ways result in a finite model even if the specified 
behavior contains iterations or recursive defini-
tions. Besides, the size of an execution model 
and the space and time complexity of the trans-
formation algorithm should scale for big real 
world projects. 

 

• Robust Model Topology  
The simulator should be usable from the early 
phases of use case development onwards. There-
fore the topology of the execution model should 
be robust against changes. When additional in-
formation like a new condition or a new step is 
added or a sequence of steps is changed, the 
change should only have local effects to the ex-
ecution model’s topology. This is a prerequisite 
to perform impact analyses of a change to infor-
mation derived from the execution model e.g. 
test cases or GUI prototypes. 

 
• Composition of Execution Models 

The execution model should offer mechanisms to 
compose different partial models to one inte-
grated model and to decompose a model into 
fragments. Ideally composition is done without 
copying the partial models to the integrated one.  

6 SIMULATION CONCEPTS 

In this section we describe our approach to simulate 
narrative use case descriptions based on the re-
quirements described in section 5. The core of our 
simulation approach is a formal petri-net based ex-
ecution model. To simulate a narrative use case 
model it is transformed to a respective execution 
model by a recursive transformation algorithm. Dur-
ing a simulation run all information about the simu-
lated scenario instances is stored in a dedicated trace 
model. Thus different kinds of static analyses on the 
use case model, the corresponding execution model 
and the trace model as required in section 5 are poss-
ible. 

6.1 Execution Model Concepts 

The proposed execution model is based on colored 
petri-nets. First we briefly introduce colored petri-
nets then we describe the topological and dynamic 
elements offered by the execution model. 

6.1.1 Colored Petri-Nets 

Petri-nets are a well known formalism to specify 
step-wise processes that include choice, iteration, 
and concurrent execution. They are bipartite directed 
graphs consisting of places, transitions, and directed 
arcs. Arcs run from a place to a transition or vice 
versa. The execution semantics of petri-nets is based 
on tokens, which are passed along the arcs of the 
net. Petri-nets, unlike other popular execution for-
malisms, have exact mathematical execution seman-
tics, together with a well-developed mathematical 
theory for process analysis. 
Colored petri-nets are an extension to standard petri-
nets proposed by Jensen (1997, 2003). In colored 
petri-nets the tokens are distinguishable and the 
decision whether a transition can fire depends on the 
nature of the tokens. To be more explicit the tokens 
contain attributes and the values of those attributes 
are considered to decide whether a transition may 
fire or not. Although the expressiveness of colored 
petri-nets is identical to standard ones the topology 
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needed to express a certain behavior is noticeably 
smaller than the one of an equivalent standard petri-
net.  

6.1.2 Modeling the Topology 

As a consequence to use colored petri-nets, our ex-
ecution model consists of transitions and places. 
Both elements may have a reference to an element of 
the respective narrative use case model. Additionally 
we have introduced a concept to simplify the struc-
ture of the petri-nets. All transitions have an incom-
ing- and an outgoing-mode describing their execu-
tion semantics. Both modes may either be “AND” or 
“XOR”. Incoming-mode means that a transition can 
fire in “XOR”-mode if one incoming place has a 
token, or if all incoming places have tokens in 
“AND”-mode.  
 

 
Figure 2: Execution model: Part Topology. 

The outgoing-mode specifies how many token are 
created after the execution of a transition. A transi-
tion creates one token in exactly one of the outgoing 
places “XOR” in XOR-mode or a token in every 
outgoing place in “AND”-mode. Although colored 
petri-nets don’t comprise incoming and outgoing 
mode, those modes don’t contradict the theoretical 
concepts of colored petri-nets. Moreover the execu-
tion model contains two specific kinds of transitions 
called push context transition and pop context 
transition. The semantics of these elements will be 
explained in the next section. Figure 2 depicts the 
central topological elements of our execution model 
and their relationships. 

6.1.3 Modeling Dynamic Behavior 

The core elements of the dynamics are tokens. To-
kens may have an arbitrary number of attributes. 
Each attribute has a name, a type, and a value. Addi-
tionally each token has a context stack. The context 
stack contains references to contexts from the narra-

tive use case model (see section 4) that have been 
traversed before the creation of the token. The stack 
is used to determine where to continue the simula-
tion after the end of a flow has been reached. 
This concept (usage of runtime information) is 
needed because the decision where to continue can’t 
be made only based on attribute values. For exam-
ple, if we introduce an additional use case with an 
include-relationship to the existing use case “Au-
thentication” in the ATM example, the simulator has 
to decide where to continue after the “Authentica-
tion” use case was completed successfully.  
The context stack of a token may only be modified 
by the aforementioned Push- and PopContext-
Transitions. A push context transitions adds a con-
text to the stack, if a new context is reached during 
the simulation. A pop context transition removes the 
context from the stack after the end of the behavior 
in a certain context has been reached. Figure 3 de-
picts the elements of the execution model’s dynamic 
view. 
 

 
Figure 3: Execution model: Part Dynamics. 

6.2 Generating the Execution Model 

The transformation of a narrative use case model to 
a corresponding execution model is done recursive-
ly. The core idea of the transformation is that only 
actions are behavioral atoms. All other elements 
(e.g. flows) of narrative use case models are consi-
dered behavioral frames enclosing at least one 
behavioral fragment. Each behavioral fragment 
consists of a set of narrative use case model ele-
ments. This means: flows enclose their contained 
events, contexts enclose the flows whose usage they 
describe, and anchors enclose the contexts they are 
connected to. 
The transformation algorithm itself is based on a set 
of generic transformation strategies. For each 
narrative model element type the respective trans-
formation strategy defines the execution model ele-
ments that are created. That way, every narrative use 
case model element is transformed separately ac-
cording to the respective transformation strategy into 
one or more transitions connected by places.  

The transformation of a narrative use case model 
starts at the interaction starting points of its scena-
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rios. Then it moves along the scenarios to their ends. 
At first the transformation algorithm connects all 
interaction contexts of the narrative use case model 
to an initial execution model frame. Then it trans-
forms the behavior described in the flows of the 
narrative use cases in a depth first manner. The 
flows that are directly connected to an interaction 
context are transformed first. Other flows are 
processed when respective anchors to the flows are 
reached.  

During the transformation every behavioral 
frame is transformed into an initial and a final transi-
tion. The initial transition is the predecessor of the 
enclosed behavioral fragments and the final transi-
tion is the successor. Thus the execution model 
evolves from outside-in, since in each transforma-
tion step elements are added to the beginning as well 
as to the end of the execution model. 

During the transformation every element of the 
narrative use case model is transformed exactly 
once. Whenever an element is reached for a second 
time it is not transformed again. Instead, a reference 
to its execution model representation is generated. 

Thus the transformation of a behavioral fragment 
terminates when the last event of a flow is trans-
formed or when an element is reached that already 
has an execution model representation. Since a be-
havioral frame may contain several behavioral frag-
ments, its transformation terminates when all beha-
vioral frames are transformed. Then the transforma-
tion algorithm moves on to the next element of the 
narrative use case model.  

Thus the transformation algorithm terminates af-
ter each flow reachable from any scenario of the 
narrative use case model was processed once. After 
completion of the transformation all elements are 
transformed and all connections between the ele-
ments are established. Therefore all scenarios de-
scribed in a narrative use case model can be per-
formed based on the respective execution model. 
In the following we briefly explain the transforma-
tion strategies for the narrative use case element 
types. Figure 4 shows the caption used in the figures 
of this section. 
 

 
Figure 4: Caption of the transformation strategies. 

White colored elements are created during the trans-
formation of a behavioral frame. Stroked elements 
depict sections that are transformed in a succeeding 
transformation step. Finally the gray boxes in the left 

and right corners of a transformation fragment 
represent the frame into which the elements are 
inserted.  

6.2.1 Initial Execution Model 

The initial execution model contains all scenarios of 
the narrative use case model. Thus it represents the 
global behavioral frame. Its initial transition is called 
start delimiter and its final transition is called end 
delimiter of an execution model (see Figure 5). The 
start delimiter is connected to the initial place, which 
holds the first token when a simulation run is started. 
The end delimiter is connected to the final place that 
holds the last token at the end of a simulation run. 
Moreover the start and the end delimiter are con-
nected by a place to support the execution of mul-
tiple use cases consecutively.  
 

 
Figure 5: Initial execution model. 

6.2.2 Flows  

A flow encloses all its contained events. Since it 
may be executed in several different contexts the 
initial transition of a flow has an XOR-incoming 
mode. The final transition has an XOR-outgoing 
mode because the execution may only continue in 
the context which the flow was called from in the 
first place.  
 

 
Figure 6: Flow transformation fragment. 

6.2.3 Contexts 

The execution model representation of all kinds of 
contexts is identical. Its initial transition is a push 
context transition and has an XOR-incoming mode, 
since a context may be connected to several incom-
ing anchors. The final transition is a pop context 
transition with an XOR-outgoing mode, since the 
execution may continue at only one outgoing anc-
hor.  
 

 
Figure 7: Context transformation fragment. 
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6.2.4 Events  

Actions are behavioral atoms and can be represented 
by single transitions, because they don’t contain a 
behavioral fragment.  

Inclusion- and extension anchors are on the con-
trary behavioral frames. 

 

 
Figure 8: Event transformation fragments. 

An inclusion anchor is connected to only one flow 
which always must be executed when the inclusion 
is reached. An extension anchor on the contrary may 
be connected to several flows which may or may not 
be executed depending on the conditions that are 
specified in the extension contexts of the connected 
flows. As a consequence the initial and the final 
transition of extension anchors are connected direct-
ly and they have an XOR-outgoing mode to decide 
which extension to select (Figure 8). 

6.2.5 Additional Transformation Concepts 

As denoted before each element is transformed only 
once. This approach guarantees that the transforma-
tion creates a finite model which scales with the size 
of the narrative use case model. The reference to an 
already transformed element is established by creat-
ing two petri places to connect the behavioral frame 
to the existing element (Figure 9).  
Finally, so called null-symbols are inserted whenev-
er the end of a recursion is reached. This is the case 
if the end of a flow is reached or in any situation 
where information is missing (e.g. a missing inclu-
sion context at an inclusion is replaced by a null-
symbol).  
 

 
Figure 9: Additional concepts. 

 

6.3 Use Case Simulation 

The simulation of a narrative use case model is per-
formed using its execution model. A simulation run 
is started by initializing the execution model with a 
single token at the start delimiter. During the simula-
tion run the token is passed along the petri-net. At 
points where multiple paths could be traveled, the 
decision is made based on the values of the attributes 
in the current token. The simulator can check wheth-
er a decision can be made automatically based on 
formalized information available at the decision 
point. If this is not possible the user has to decide 
where to continue the simulation. A simulation run 
is finished after all tokens are passed to the end 
delimiter of the execution model. During a simula-
tion run all runtime information is stored in a trace 
model which we present briefly in the following.  

6.3.1 Trace Model 

Figure 10 depicts the elements of the trace model. A 
trace model instance usually contains information 
about several simulation runs of different scenario 
instances that have been performed together – e.g. a 
set of scenarios that have been inspected during a 
use case review. This enables analyses of the corre-
lation of simulation runs like coverage measure-
ments. In the trace model the simulation information 
of each scenario instance is stored in a separate 
trace.  All traces consist of a set of trace steps con-
taining the details of a simulation run. Every trace 
step holds a reference to an element of the topology 
of the execution model and a reference to a token. 
Thus a simulation run is fully qualified by a trace 
and can be executed again based on the trace infor-
mation. Moreover all trace elements may hold refer-
ences to simulation information elements. Simula-
tion information elements are used to add special 
purpose information to a trace – e.g. review findings. 
 

 
Figure 10: Elements of the trace model. 
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7 EXAMPLE   

In this section we point up our simulation approach 
alongside the ATM example introduced in section 4. 
Figure 11 shows the execution model for the two 
narrative use cases. The transitions are labeled ac-
cording to their referenced narrative use case model 
elements. The dotted arrows visualize a simulation 
run on the execution model. Additionally the context 
stack of the simulation run is denoted at the Push- 
and pop context transitions of the execution model. 
Figure 12 depicts the trace recorded during the simu-
lation run.  
 

 
Figure 11: ATM execution model & simulation run. 

8 TOOL SUPPORT  

We have integrated a simulation environment for 
narrative use case models called USE (Use case 
Simulation Environment) into NaUTIluS, the use 
case editor of the Eclipse based development plat-
form ViPER (ViPER, n.d.). USE is based on an 
EMF-implementation (EMF, n.d.) of the execution 
and the trace model. USE consists of a simulator and 
a set of views to visualize simulation information.  

After a narrative use case model is transformed 
to a corresponding execution model the simulator 
can run simulations.  

 

 
Figure 12: Trace of a scenario instance. 

Whenever a simulation reaches a decision point 
(different scenarios are possible) the simulator de-
cides automatically based on the information stored 
in the tokens or asks the user to decide which scena-
rio should be pursued. During a simulation run the 
simulator stores trace information and provides 
feedback to the user about the current simulation via 
standard Eclipse notification mechanisms. Moreover 
USE defines several extension points to customize 
the simulator for specific tasks.  

Figure 13 shows a screenshot of USE with some 
visualization views.  
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9 EVALUATION 

The herein proposed simulation approach complete-
ly meets the requirements motivated in section 5. 
The execution model has a precisely defined execu-
tion semantic, its topology is robust against changes 
and supports incremental refinement of the use cas-
es, because changes only have local effects.  

The explained recursive transformation algo-
rithm scales for real world narrative use case models 
and is able to handle missing information or incom-
plete behavior by inserting so called null-symbol 
placeholders.  

The simulations can be performed using the si-
mulation environment USE which stores all runtime 
information in a dedicated trace model for later 
analyses.  

 

 
Figure 13: USE screenshot. 

Finally, USE is easily connectable with other re-
quirements models as it relates on Eclipse frame-

work standards and provides highly flexible me-
chanisms to configure custom visualization. 

Our simulation approach has three outstanding 
advantages compared to state machine centered 
techniques.   
1. The concept of petri-nets and its token semantic 

strongly reflects the step-by-step idea of use cas-
es. While state machines rely on states that are 
not explicitly modeled in use cases, our approach 
maps the steps of a narrative use case directly to 
transitions of a petri-net. Thus the transformation 
algorithm is straightforward and a comprehensi-
ble visualization of the behavior is possible.  
 

2. Our execution model is context aware since the 
execution contexts are stored in the tokens dur-
ing the simulation. Therefore our approach can 
handle situations where the control flow is not 
directly derivable form the system state. State 
machines would have to introduce implicit states 
to cover context aware behavior. Those implicit 
states are difficult to derive and increase the 
complexity of the respective state machine. 

 

3. The topology of colored petri-nets is robust 
against changes in the referenced narrative use 
case model because changes only have local ef-
fects.  

 
We have evaluated the presented use case simulation 
approach alongside with USE in some academic 
projects performed in student’s master thesis. The 
simulation has been well accepted and first expe-
rience shows that behavior simulation is an intuitive 
way to analyze narrative use case models. The simu-
lation-based approach has especially proven useful 
in projects with very detailed use case descriptions 
containing many (complex) alternatives to the nor-
mal use case behavior.  

10 CONCLUSIONS AND OUT-
LOOK  

In this paper we have introduced a model-based 
simulation approach for narrative use cases. We 
have pointed out the most important requirements of 
a useful and efficient use case simulation environ-
ment. Furthermore we have presented a petri-net 
based execution model, a model-based transforma-
tion algorithm and a narrative use case simulation 
strategy. Finally we have sketched the simulation 
environment that we have developed based on the 
presented concepts. First experiences of our simula-
tion approach in student projects are promising. 
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Currently we are evaluating the usefulness and ac-
ceptance of the presented approach in different small 
and medium size projects we perform at the faculty 
and with different industrial cooperation partners. 
Until now we are using the simulation environment 
only to support the inspection of use cases. In the 
future we plan to enlarge our approach to an inte-
grated requirements specification technique. Besides 
we are currently doing first experiments to generate 
GUI prototypes based on the simulation information 
and to generate test specifications based on instance 
scenarios created with the simulation environment. 

Finally we are currently developing tool support 
for static analyses on the narrative use case model as 
well as on the corresponding execution model. 
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