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Abstract: Many software development projects maintain repositories managing work items such as bug reports or 
tasks. In open-source projects, these repositories are accessible for end-users or clients, allowing them to 
enter new work items. These artifacts have to be further triaged. The most important step is the initial 
assignment of a work item to a responsible developer. As a consequence, a number of approaches exist to 
semi-automatically assign bug reports, e.g. using methods from machine learning. We compare different 
approaches to assign new work items to developers mining textual content as well as structural information. 
Furthermore we propose a novel model-based approach, which also considers relations from work items to 
the system specification for the assignment.  The approaches are applied to different types of work items, 
including bug reports and tasks. To evaluate our approaches we mine the model repository of three different 
projects. We also included history data to determine how well they work in different states. 

1 INTRODUCTION 

Many software development projects make use of 
repositories, managing different types of work items. 
This includes bug tracker systems like Bugzilla , 
task repositories like Jira  and integrated solutions 
such as Jazz  or the Team Foundation Server . A 
commonality of all these repositories is the 
possibility to assign a certain work item to a 
responsible person or team (Anvik 2006). 

It is a trend in current software development to open 
these repositories to other groups beside the project 
management allowing them to enter new work 
items. These groups could be end-users of the 
system, clients or the developers themselves. This 
possibility of feedback helps to identity relevant 
features and improves the quality by allowing more 
bugs to be identified (Raymond 1999). But this 
advantage comes with significant cost (Anvik et al. 
2006), because every new work item has to be 
triaged. That means it has to be decided whether the 
work item is important or maybe a duplicate and 
further, whom it should be assigned to. As a part of 
the triage process it would be beneficial to support 
the assignment of work items and automatically 
select those developers with experience in the area 
of this work item. This developer is probably a good 
candidate to work on the work item, or, if the 
developer will not complete the work item himself, 

he probably has the experience to further triage the 
work item and reassign it. There are several 
approaches, which semi-automatically assign work 
items (mostly bug reports) to developers. They are 
based on mining existing work items of a repository. 
We will present an overview of existing approaches 
in section 2.1.  

In this paper we compare different existing 
techniques of machine learning and propose a new 
model-based approach to semi-automatically assign 
work items. All approaches are applied to a unified 
model, implemented in a tool called UNICASE 
(Bruegge et al. 2008). The unified model is a 
repository for all different types of work items. 
Existing approaches usually focus on one type of 
work item, for example bug reports. The use of a 
unified model enables us to apply and evaluate our 
approach with different types of work items, 
including bug reports, feature requests, issues and 
tasks. We will describe UNICASE more in detail in 
section 3. 

UNICASE does not only contain different types of 
work items, but also artifacts from the system 
specification, i.e. the system model (Helming et al. 
2009). Work items can be linked to these artifacts 
from the system specification as illustrated in Figure 
1. For example a task or a bug report can be linked 
to a related functional requirement. These links 
provide additional information about the context of a 
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work item, which can be mined for semi-automatic 
assignment, as we will show in section 4. Our new 
approach for semi-automatic task assignment, called 
model-based approach, processes this information. 
The results of this approach can be transferred to 
other systems such as bug trackers where bug 
reports can be linked to affected components. 

We found that existing approaches are usually 
evaluated in a certain project state (state-based), 
which means that a snap shot of the project is taken 
at a certain time and all work items have a fixed 
state. Then the assigned work items are classified by 
the approach to be evaluated and the results are 
compared with the actual assignee at that project 
state. We use this type of evaluation in a first step. 
However, state-based evaluation has two 
shortcomings: (1) The approach usually gets more 
information than it would have had at the time a 
certain work item was triaged. For example, 
additional information could have been attached to a 
work-item, which was not available for initial triage. 
(2) No conclusion can be made, how different 
approaches work in different states of a project, for 
example depending on the number of work items or 
on personal fluctuations. Therefore we evaluated our 
method also “history-based” which means that we 
mine all states of the project history and make 
automatic assignment proposals in the exact instance 
when a new work item was created. We claim that 
this type of evaluation is more realistic than just 
using one later state where possible more 
information is available. We evaluate our approach 
by mining data from three different projects, which 
use UNICASE as a repository for their work items 
and system model. To evaluate which approach 
works best in our context as well as for a 
comparison of the proposed model-based approach 
we apply different machine learning techniques to 
assign work items automatically. These include very 
simple methods such as nearest neighbor, but also 
more advanced methods such as support vector 
machines or naive Bayes. 

The paper is organized as follows: Section 2 
summarizes related work in the field of automated 
task assignment as well as in the field of 
classification of software engineering artifacts. 
Section 3 introduces the prerequisites, i.e. the 
underlying model of work items and UNICASE, the 
tool this model is implemented in. Section 4 and 5 
describe the model-based and the different machine 
learning approaches we applied in our evaluation. 
Section 6 presents the results of our evaluation on 
the three projects, in both a state-based and a 

history-based mode. In section 7 we conclude and 
discuss our results. 

2 RELATED WORK 

In this section we give an overview over relevant 
existing approaches. In section 2.1 we describe 
approaches, which semi-automatically assign 
different types of work items. In section 2.2 we 
describe approaches, which classify software 
engineering artifacts using methods from machine 
learning and which are therefore also relevant for 
our approach. 

2.1 Task Assignment 

In our approach we refer to task assignment as the 
problem of classifying work items to the right 
developer. Determining developer expertise is the 
basis for the first part of our approach. In our case 
this is done by mining structured project history data 
saved within the UNICASE repository. 

Most of the approaches for determining expertise 
rely on analyzing the code base of a software project 
mostly with the help of version control systems. 
(Mockus & Herbsleb 2002) treat every change from 
a source code repository as an experience atom and 
try to determine expertise of developers by counting 
related changes made in particular parts of source 
code. (Schuler & Zimmermann 2008) introduce the 
concept of usage expertise, which describes 
expertise in the sense of using source code, e.g. a 
specific API. Based on an empirical study, (Fritz et 
al. 2007) showed that these expertise measures 
acquired from source code analysis effectively 
represent parts of the code base, which the 
programmer has knowledge for. (Sindhgatta 2008) 
uses linguistic information found in source code 
elements such as identifiers and comments to 
determine the domain expertise of developers.  

Other task classification approaches use information 
retrieval techniques such as text categorization to 
find similar tasks. Canfora et al. (Canfora & Cerulo 
o 2005) demonstrate how information retrieval on 
software repositories can be used to create an index 
of developers for the assignment of change requests. 
(J. Anvik 2006) investigate applying different 
machine learning algorithms to an open bug 
repository and compare precision of resulting task 
assignments. (Anvik et al. 2006) apply SVM text 
categorization on an open bug repository for 
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classifying new bug reports. They achieve high 
precision on the Eclipse and Firefox development 
projects and found their approach promising for 
further research. (Čubranić 2004) employ text 
categorization using a naive Bayes classifier to 
automatically assign bug reports to developers. They 
correctly predict 30% of the assignments on a 
collection of 15,859 bug reports from a large open-
source project. Yingbo et al. (Yingbo et al. 2007) 
apply a machine learning algorithm to workflow 
event log of a workflow system to learn the different 
activities of each actor and to suggest an appropriate 
actor to assign new tasks to.  

2.2 Artifact Classification 

Machine learning provides a number of 
classification methods, which can be used to 
categorize different items and which can also be 
applied to software artifacts. Each item is 
characterized by a number of attributes, such as 
name, description or due date, which have to be 
converted into numerical values to be useable for 
machine learning algorithms. These algorithms 
require a set of labeled training data, i.e. items for 
which the desired class is known (in our case the 
developer who an item has been assigned to). The 
labeled examples are used to train a classifier, which 
is why this method is called “supervised learning”. 
After the training phase, new items can be classified 
automatically, which can serve as a recommendation 
for task assignment. A similar method has been 
employed by (Čubranić 2004) who used a naive 
Bayes classifier to assign bug reports to developers. 
In contrast to their work, our approach is not limited 
to bug reports, but can rather handle different types 
of work items. Moreover, we evaluate and compare 
different classifiers. Also (Bruegge et al. 2009) have 
taken a unified approach and used a modular 
recurrent neural network to classify status and 
activity of work items. 

3 PREREQUISITES 

We implemented and evaluated our approach for 
semi-automated task assignment in a unified model 
provided by the tool UNICASE . In this section we 
will describe the artifact types we consider for our 
approach. Furthermore we describe the features of 
these artifacts, which will form the input for the 
different approaches. UNICASE provides a 
repository, which can handle arbitrary types of 
software engineering artifacts. These artifacts can 

either be part of the system model, i.e. the 
requirements model and the system specification, or 
the project model, i.e. artifacts from project 
management such as work items or developers 
(Helming et al. 2009) 
 

 
Figure 1: Excerpt from the unified model of UNICASE 
(UML class diagram).  

Figure 1 shows the relevant artifacts for our 
approach. The most important part is the association 
between work item and developer. This association 
expresses, that a work item is assigned to a certain 
developer and is therefore the association we semi-
automatically want to set. Work items in UNICASE 
can be issues, tasks or bug reports. As we apply our 
approach to the generalization work item it is not 
limited to one of the subtypes as in existing 
approaches. As we proposed in previous work (J. 
Helming et al. 2009), work items in UNICASE can 
be linked to the related Functional Requirements 
modeled by the association isObjectOf. This 
expresses that the represented work of the work item 
is necessary to fulfill the requirement. This 
association, if already existent adds additional 
context information to a work item. Modeled by the 
Refines association, Functional requirements are 
structured in a hierarchy. We navigate this hierarchy 
in our model-based approach to find the most 
experienced developer, described in section 4. As a 
first step in this approach, we have to determine all 
related functional requirements of the currently 
inspected work item. As a consequence this 
approach only works for work items, which are 
linked to functional requirements.  

While the model-based approach of semi-automated 
task assignment only relies on model links in 
UNICASE, the machine learning approaches mainly 
rely on the content of the artifacts. All content is 
stored in attributes. The following table provides an 
overview of the relevant features we used to 
evaluate the different approaches:  
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Feature Meaning 

Name 
A short and unique name for the 

represented work item. 

Description A detailed description of the work item.

ObjectOf The object of the work item, usually a 
Functional Requirement.

 
We will show in the evaluation section, which 
features had a significant impact on the accuracy of 
the approach.  
UNICASE provides an operation-based versioning 
for all artifacts (Koegel 2008). This means all past 
project-states can be restored. Further we can 
retrieve a list of operations for each state, for 
example when a project manager assigned a work 
item to a certain developer. We will use this 
versioning system in the second part of our 
evaluation to exactly recreate a project state where a 
work item was created. The goal is to evaluate 
whether our approach would have chosen the same 
developer for an assignment as the project manager 
did. This evaluation method provides a more 
realistic result than evaluating the approaches only 
on the latest project state. With this method both 
approaches, machine learning and model-based, can 
only mine the information, which was present at the 
time of the required assignment recommendation.  

4 MODEL-BASED APPROACH 

For the model-based assignment of work items we 
use the structural information available in the unified 
model of UNICASE. In UNICASE every functional 
requirement can have a set of linked work items. 
These are work items that need to be completed in 
order to fulfil this requirement.  
The main idea of our model-based approach is to 
find the relevant part of the system for the input 
work item. In a second set we extract a set of 
existing work items, which are dealing with this part 
of the system. For a given input work item and based 
on this set we select a potential assignee. We will 
describe how this set is created using an example in 
Figure 2.  
The input work item W is linked to the functional 
requirement B. To create the relevant set of work 
items (RelevantWorkItems(W)) we first add all 
work items, which are linked to functional 
requirement B (none in this example). Furthermore 
we add all work items linked to the refined 
functional requirement (A) and all work items linked 
to the refining requirements (C). In the example the 
set would consist of the work items 1 and 2. 

Futhermore, we recursively collect all work items 
from the refiningRequirements of A, which are 
neighbors of functional requirement B in the 
hierarchy (not shown in the example).  
Using the set RelevantWorkItems(W) we determine 
expertise of each developer D regarding W 
(Expertisew(D)).  We defined Expertisew(D) as the 
number of relevant work items this developer  has 
already completed. After determining Expertisew(D) 
for all developers, the one with highest expertise 
value is suggested as the appropriate assignee of the 
work item W.  
 

 
Figure 2: Example for the model-based approach (UML 
object diagram). 

5 MACHINE LEARNING 
APPROACHES 

We have used the Universal Java Matrix Library 
(UJMP) (Arndt et al. 2009) to convert data from 
UNICASE into a format suitable for machine 
learning algorithms. This matrix library can process 
numerical as well as textual data and can be easily 
integrated into other projects. All work items are 
aggregated into a two-dimensional matrix, where 
each row represents a single work item and the 
columns contain the attributes (name, description, 
ObjectOf association). Punctuation and stop words 
are removed and all strings are converted to 
lowercase characters. After that, the data is 
converted into a document-term matrix, where each 
row still represents a work item, while the columns 
contain information about the occurrence of terms in 
this work item. There are as many columns as 
different words in the whole text corpus of all work 
items. For every term, the number of occurrences in 
this work item is counted. This matrix is normalized 
using tf-idf (term frequency / inverse document 
frequency)  
 
 
 tfi, j =

ni, j

nk, jk∑
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,where ni,j is the number of occurrences of the term ti 
in document dj, and the denominator is the sum of 
occurrences of all terms in document dj. 

 
 
 
 

The inverse document frequency is a measure of the 
general importance of the term: logarithm of total 
number of documents in the corpus divided by 
number of documents where the term ti appears. A 
deeper introduction to text categorization can be 
found in (Sebastiani 2002).  
We have not used further preprocessing such as 
stemming or latent semantic indexing (LSI) as our 
initial experiments suggested, that it had only a 
minor effect on performance compared to the 
selection of algorithm or features. We have used the 
tf-idf matrix as input data to the Java Data Mining 
Package (JDMP) (Arndt 2009), which provides an 
common interface to numerous machine learning 
algorithms from various libraries. Therefore we were 
able to give a comparison between different 
methods: 

Constant Classifier 
The work items are not assigned to all developers on 
an equal basis. One developer may have worked on 
much more work items than another one. By just 
predicting the developer with the most work items it 
is possible to make many correct assignments. 
Therefore we use this classifier as a baseline, as it 
does not consider the input features.  

Nearest Neighbor Classifier 
This classifier is one of the simplest classifiers in 
machine learning. It uses normalized Euclidean 
distance to locate the item within the training set 
which is closest to the given work item, and predicts 
the same class as the labeled example. We use the 
implementation IB1 from Weka (Witten & Frank 
2002). We did not use k-nearest neighbors, which 
usually performs much better, because we found the 
runtime of this algorithm to be too long for practical 
application in our scenario.  

Decision Trees 
Decision trees are also very simple classifiers, which 
break down the classification problem into a set of 
simple if-then decisions which lead to the final 
prediction. Since one decision tree alone is not a 
very good predictor, it is a common practice to 
combine a number of decision trees with ensemble 
methods such as boosting (Freund & Schapire 
1997).        We        use        the        implementation  

RandomCommittee from Weka. 

Support Vector Machine (SVM) 
The support vector machine (SVM) calculates a 
separating hyperplane between data points from 
different classes and tries to maximize the margin 
between them. We use the implementation from 
LIBLINEAR (Fan et al. 2008), which works 
extremely fast on large sparse data sets and is 
therefore well suited for our task. 

Naïve Bayes 
This classifier is based on Bayes' theorem in 
probability theory. It assumes that all features are 
independent which is not necessarily the case for a 
document-term matrix. However, it scales very well 
to large data sets and usually yields good results 
even if the independence assumption is violated. We 
use the implementation NaiveBayesMultinomial 
from Weka (Witten & Frank 2002) but also 
considered the implementation in MALLET , which 
showed lower classification accuracy (therefore we 
only report results from Weka).  

Neural Networks 
Neural networks can learn non-linear mappings 
between input and output data, which can be used to 
classify items into different classes (for an 
introduction to neural networks see e.g. (Haykin 
2008)). We have tried different implementations but 
found that the time for training took an order of 
magnitudes longer than for the other approaches 
considered here. Therefore we were unable to 
include neural networks into our evaluation. 

For the state-bases evaluation, we trained these 
classifiers using a cross validation scheme: The data 
has been split randomly into ten subsets. Nine of 
these sets were selected to train the classifier and 
one to assess its performance. After that, another set 
was selected for prediction, and the training has been 
performed using the remaining nine sets. This 
procedure has been performed ten times for all sets 
and has been repeated ten times (10 times 10-fold 
cross validation). For the history-based evaluation, 
the classifiers were trained on the data available at a 
certain project state to predict the assignee for a 
newly created work item. After the actual 
assignment through the project leader, the classifiers 
were re-trained and the next prediction could be 
made.  

Depending on the approach, runtime for the 
evaluation of one classifier on one project ranged 
from a couple of minutes for LIBLINEAR SVM to 
almost two days for the nearest neighbor classifier. 
Although a thorough comparison of all machine 

idfi = log
D

d : ti ∈ d{ }
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learning methods would certainly have been 
interesting, we did not include a full evaluation on 
all projects and performed feature selection using 
LIBLINEAR, which was the fastest method of all. 
We argue that an algorithm for automatic task 
assigment would have to deliver a good accuracy but 
at the same time the necessary performance in terms 
of computing time to be useable in a productive 
environment. Therefore we could also discarded the 
classifiers nearest neighbour and random committee 
for the complete evaluation and report results only 
for UNICASE. 

6 EVALUATION 

In this section we evaluate and compare the different 
approaches of semi-automated task assignment. We 
evaluated the approaches using three different 
projects. All projects have used UNICASE to 
manage their work items as well as their system 
documentation. In section 6.1 we introduce the three 
projects and their specific characteristics. In section 
6.2 we evaluate the approaches „state-based“. This 
means we took the last available project state and 
tried to classify all assignments post-mortem. This 
evaluation technique was also used in approaches 
such as (Canfora , 2005). Based on the results of the 
state-based evaluation we selected the best-working 
configurations and approaches and evaluated them 
history-based. We stepped through the operation-
based history of the evaluation projects to the instant 
before an assignment was done. This state is not 
necessarily a revision from the history but can be a 
state in between two revisions. This is why we had 
to rely on the operation-based versioning of 
UNICASE for this purpose. On the given state we 
tried to predict this specific assignment post-mortem 
and compared the result with the assignment, which 
was actually done by the user. We claim this 
evaluation to be more realistic than the state-based 
as it measures the accuracy of the approach as if it 
had been used in practice during the project. 
Furthermore it shows how the approaches perform in 
different states of the project depending on the 
different size of existing data. As a general measure 
to assess performance we used the accuracy, i.e. the 
number of correctly classified developers divided by 
the total number of classified work items. This 
measure has the advantage of being very intuitive 
and easily comparable between different approaches 
and data sets. Other common measures such as 
precision or sensitivity are strongly dependent on the 

number of classes (number of developers) and their 
distribution and therefore would make it more 
difficult to interpret the results for our three projects. 

6.1 Evaluation Projects 

We have used three different projects as datasets for 
our evaluation. As a first dataset we used the 
repository of the UNICASE project itself, which has 
been hosted on UNICASE for nearly one year.  The 
second project, DOLLI 2, was a large student project 
with an industrial partner and 26 participants over 6 
month. The goal of DOLLI was the development of 
innovative solutions for facility management. The 
third application is an industrial application of 
UNICASE for the development of the browser game 
"Kings Tale" by Beople GmbH, where UNICASE 
has been used for over 6 months now. The following 
table shows the number of participants and relevant 
work items per project. 

Table 1: Developer and work items per project. 

UNICASE DOLLI Kings Tale
Developers 39 26 6
Assigned
work items 1191 411 256 

Linked
work items 290 203 97 

6.2 State-based Evaluation 

For the state-based evaluation we used the last 
existing project state. Based on this state we try to 
classify all existing work items and compare the 
result with the actually assigned person. In a first 
step (section 6.2.1) we evaluate the machine learning 
approaches. In a second step we evaluate the model-
based approach. 

6.2.1 Machine Learning Approaches 

We have chosen different combinations of features 
as input of the application and applied the machine 
learning approaches described in section 4 as well as 
the model-based approach described in section 5. 
Our goal was to determine the approaches, 
configurations and feature-sets, which lead to the 
best results and re-evaluate those in the history-
based evaluation (section 6.3). We started to 
compare different feature sets. As we expected the 
name of a work item to contain the most relevant 
information, we started the evaluation with this 
feature only. In a second and third run, we added the 
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attribute description and the association ObjectOf. 
The size of the tf-idf matrix varied depending on the 
project and the number of selected features, e.g. for 
the UNICASE project, from 1,408 columns with 
only name considered to 4,950 columns with all 
possible features. 

Table 2 shows the results of different feature sets 
for the support vector machine. In all evaluation 
projects, the addition of the features description and 
ObjectOf increased accuracy. The combination of all 
three attributes leads to the best results. As a 
conclusion we will use the complete feature set for 
further evaluation and comparison with other 
approaches. 

Table 2: Different sets of features as input data. 

Name 
 UNICASE DOLLI Kings Tale

SVM 36.5% 
(±0.7%) 

26.5% 
(±0.7) 

38.9
(±1.4)

Name and description 
 UNICASE DOLLI Kings Tale

SVM 37.1% 
(±1.0) 

26.9% 
(±1.0) 

40.7%
(±0.9)

Name, description and ObjectOf
 UNICASE DOLLI Kings Tale

SVM 38.0% 
(±0.5) 

28.9% 
(±0.7) 

43.4% 
(±1.7)

In the next step we applied the described machine-
learning approaches using the best working feature 
set as input (Name, description and ObjectOf). As a 
base line we started with a constant classifier. This 
classifier always suggests the developer for 
assignment who has the most work items assigned. 
As you can see in table 3, we can confirm the 
findings of (Anvik et al. 2006), that SVM yields 
very good results. Random Committee performed 
quite badly in terms of accuracy and performance so 
we did not further evaluate them on all projects. The 
only competitive algorithm in terms of accuracy was 
Naïve Bayes, which was however worse on the 
Kings Tale project. As there was no significant 
difference between SVM and Naïve Bayes we chose 
SVM for further history-based evaluation due to the 
much better performance. 

6.2.2 Model-based Approach 

In the second step of the state-based evaluation we 
applied the model-based approach on the same data, 
which yields in surprisingly good results (see Table 
4). The first row shows the accuracy of 

recommendations, when the model-based approach 
could be applied. The approach is only applicable to 
work items, which were linked to functional 
requirements. The number of work items the 
approach could be applied to is listed in Table 1. It is 
worth mentioning that once we also considered the 
second guess of the model-based approach and only 
linked work items, we achieved accuracies of 96.2% 
for the UNICASE, 78.7% for DOLLI and 94.7% for 
the Kings Tale project. For a fair overall comparison 
with the machine learning approaches, which are 
able to classify every work item we calculate the 
accuracy for all work items, including those without 
links, which could consequently not be predicted. 
Table 4 shows that the accuracy classifying all work 
items is even worse than the constant classifier. 
Therefore the model-based approach is only 
applicable for linked work items or in combination 
with other classifiers. 

Table 3: Different machine learning approaches state-
based. 

UNICASE DOLLI Kings Tale
Constant 19,7% 9,0% 37,4%
SVM 
(LibLinear)

38.0% 
(±0.5)

28.9%  
(±0.7) 

43.4% 
(±1.7)

Naïve 
Bayes

39.1% 
(±0.7)

29.7%  
(±0.9) 

37.8% 
(±1.7)

Random 
Committee

23.2% 
(±0.2)   

Nearest 
Neighbor

6.9% 
(±0.1)   

Table 4: Model-based approach. 

UNICASE DOLLI Kings Tale
Linked 
work items 82,6% 58,1% 78,4% 

All 
work items 19,9% 20,7% 29,3% 

We have shown that the model-based approach can 
classify linked work items based on the ObjectOf 
reference. Therefore the approach basically mines, 
which developer has worked on which related parts 
of the system in the past (see section 5). One could 
claim that the machine learning approaches could 
also classify based on this information. Therefore we 
applied the SVM only on linked work items with all 
features and also only using the ObjectOf feature. 
The results (see Table 5) show that linked work 
items are better classified than non-linked. But even 
a restriction to only the feature ObjectOf did not lead 
to results as good as the model-based approach. 
Therefore we conclude to use the model-based 
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approach whenever it is applicable and classify all 
other elements with SVM. 

Table 5: Classification of linked work items. 

 UNICASE DOLLI Kings Tale
Constant 29,3% 18,3% 40,3%
SVM 
all 
features 

53,9% 33,4% 50,2% 

SVM 
only 
ObjectOf 

49,7% 23,8% 49,2% 

6.3 History-based Evaluation 

In the second part of our evaluation we wanted to 
simulate the actual use case of assignment. The 
problem with the state-based evaluation is, that the 
system has actually more information at hand, as it 
would have had at the time, a work item was 
assigned. Consequently we simulated the actual 
assignment situation. Therefore we used the 
operation-based versioning of UNICASE in 
combination with an analyzer framework provided 
by UNICASE. This enables us to iterate over project 
states through time and exactly recreate the state 
before a single assignment was done. Note that this 
state must not necessarily and usually also does not 
conform to a certain revision from versioning but is 
rather an intermediate version between to revisions. 
By using the operation-based versioning of 
UNICASE we are able to recover these intermediate 
states and to apply our approaches on exactly that 
state. For the machine learning approach (SVM) we 
trained the specific approach based on that state. For 
the model-based approach we used the state to 
calculate the assignment recommendation. Then, we 
compared the result of the recommendation with the 
assignment, which was actually chosen by the user. 
For the history-based evaluation we selected the two 
best working approaches from the state-based 
evaluation, SVM and the model-based approach. We 
applied the model-based approach only on linked 
work items.  

We applied SVM and the model-based approach 
on the UNICASE and the DOLLI project. The 
Kingsthale project did not capture operation-based 
history data and was therefore not part of the 
history-based evaluation. As expected the results for 
all approaches are worse than in the state-based 
evaluation (see Table 6). Still all applied approaches 
are better than the base line, the constant classifier. 
An exception is the model-based approach applied 
on the DOLLI project, which shows slightly better 
results in the history-based evaluation. We believe 

the reason for this is that the requirements model, 
i.e. the functional requirements, and the related work 
items were added continuously over the project 
runtime. Therefore at the states when the actual 
assignment was done, the model-based approach 
could calculate its recommendation based on a 
smaller, but more precise set of artifacts. 
Furthermore we can observe, that the results for the 
UNICASE project differ largely from the state-based 
evaluation compared to the DOLLI project. A 
possible explanation for this is the higher personal 
fluctuation in the UNICASE project. This 
fluctuation requires the approaches to predict 
assignments for developers with a sparse history in 
the project and is therefore much more difficult. In 
the state-based evaluation the fluctuation is hidden, 
because the approaches can use all work items of the 
specific developer no matter when he joined the 
project. 

Table 6: History-based (aggregated accuracy) UC= 
UNICASE. 

UC
history

UC
state

DOLLI 
history 

DOLLI
state

Const. 22% 19,7% 7% 9,0%
SVM 29% 38.0% 27% 28.9%
Model-
based

75% 82,6% 61% 58,1%

 
Figure 3 and 4 show the accuracy over time for the 
UNICASE project and SVM and model-based 
approach, respectively. All presented charts show 
two lines. The first line (black) shows the aggregated 
accuracy over time. The second line (dotted black) 
shows the aggregated accuracy for last 50 (DOLLI) 
and 100 (UNICASE) revisions and therefore reveals 
short  time trends. In the  selected time frame,  both 
 

 
Figure 3: SVM – UNICASE. 
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approaches do not fluctuate significantly. This 
shows, that both approaches could be applied to a 
continuous project, were developers join and leave 
the project. 

In contrast to the continuous UNICASE, we 
investigated the DOLLI project from the beginning 
to the end (Figure 5 and 6) including project start-up 
and shutdown activities. We observe that SVM lacks 
in accuracy at the beginning, where new developers 
start to work on the project. For an efficient 
classification the SVM approach has to process a 
reasonable set of work items per developer. 
Therefore a high accuracy is only reached to the end 
of the project. A closer look at the accuracy of the 
model-based approach shows that it decreases at the 
end of the project. Starting from around revision 430 
there has been a process change in the project as 
well as a reorganization of the functional 
requirements. This clearly affects the results of the 
model-based approach as it relies on functional 
requirements and their hierarchy. In contrast to the 
model-based approach, SVM seems to be quite 
stable against this type of change.  
 

 
Figure 4: Model-based – UNICASE. 

 
Figure 5: SVM – DOLLI. 

 
Figure 6: Model-based – DOLLI. 

7 CONCLUSIONS 

We applied machine learning techniques as well as a 
novel model-based approach to semi-automatically 
assign different types of work items. We evaluated 
the different approaches on three existing projects. 
We could confirm the results from previous authors 
that the support vector machine (SVM) is an 
efficient solution to this classification task. The 
naïve Bayes classifier can lead to similar results, but 
the implementation we have used showed a worse 
performance in terms of computing time. The 
model-based approach is not applicable to all work 
items as it relies on structural information, which is 
not always available. However it showed the best 
results of all approaches whenever it was applicable. 

The model-based approach relies on links from 
work items to functional requirements and is 
therefore not directly applicable in other scenarios 
than UNICASE, where these links do not exist. 
Although we believe that it can be transferred to 
other systems where similar information is provided. 
Bug trackers often allow to link bug reports to 
related components. Components on the other hand 
have relations to each other, just like the functional 
requirements in our context. An obvious 
shortcoming of the model-based approach is that it 
requires a triage by the affected part of the system 
no matter which model is used. On the one hand we 
believe, that it is easier for users to triage a work 
item by the affected part of the system rather than 
assign it, especially if they do not know the internal 
structure of a project. On the other hand if a project 
decides to use both, links to related system parts and 
links to assignees, the model-based approach can 
help with the creation of the latter. 
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In the second part of our evaluation, we tried to 
simulate the use case in a realistic assignment 
scenario. Therefore we applied the two best working 
approaches over the project history and predicted 
every assignment at exactly the state, when it was 
originally done. As a consequence all approaches 
can process less information than in the first part of 
the evaluation, which was based on the last project 
state. As expected the history-based evaluation leads 
to lower accuracies for all approaches. The model-
based approach is less affected by this scenario than 
the SVM. A possible reason for that is that the 
model-based approach is not so much depending on 
the size of the existing data but more on its quality. 
This assumption is underlined by the behavior of the 
model-based approach during massive changes in 
the model, leading to lower results. In contrast to 
that, the SVM was not so sensible to changes in 
model, but more to fluctuations in the project 
staffing. 

We conclude that the best solution would be a 
hybrid approach, i.e. a combination of the model-
based approach and SVM. This would lead to high 
results for linked work items, but would also be able 
to deal with unlinked items.  
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