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Abstract. This paper aims to present all the study done on the SPIDAR tracking
and haptic device, in order to improve accuracy on the given position. Firstly we
proposed a new semi-automatic initialization technique for this device using an
optical tracking system. We also propose an innovative way to perfom calibration
of 3D tracking device using virtual reality. Then, we used a two-layered feed-
forward neural network to reduce the location errors. We obtained very good
results with this calibration, since we reduced the mean error by more than 50%.

1 Introduction

Virtual reality is a domain which is highly dependent on tracking systems. Users in-
teract in 3 dimensions, with virtual entities in digital environments. In order to provide
the best user experience, it’s very important that 3D interaction has to be without any
interruption. This interaction relies on the transformation of a real movement into an
action in the virtual world. This work is done by a tracking solution. This tracking sys-
tem has to be reliable and the most available as possible. This point is crucial in order to
preserve data continuity and, so, data processing continuity and finally, 3D interaction
continuity. The main device used in our system is an optical tracking solution, it’s a
very accurate device. On the other hand, it suffers from a huge defect: tracking-loss.
That’s a particular true defect when only one marker is used. So, it’s essential to be
able to switch to another device in these situations in order to compensate this defect.
In our virtual reality system, we’ve got a SPIDAR [1] and we chose it to stand in for the
optical tracking system.

SPIDAR [1], for SPace Interaction Device for Augmented Reality, is an electrome-
chanical device, which has 8 couples of motor/encoder distributed on each vertex of a
cubic structure. A string is attached to each motor via a pulley. These 8 strings converges
to an effector. By winding their respective strings, each motor produces a tension. The
vectorial sum of these tensions produce the force feedback vector to be applied on the
effector, allowing the user to feel on what he is stumbling or to feel the weight of an ob-
ject. By observing the encoders values, the system can compute the 3D position of the
effector. The SPIDAR tracking is always available, but it suffers from a weak accuracy
and repeatability. So it’s impossible, when we want to 3D interact with accuracy, to use
raw position given by the SPIDAR without performing a calibration.

In our case, it’s a huge problem, since we used a 3D interaction technique, called
Fly Over [2], which needs a continuous position vector. This technique is based on
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Fig. 1. Detailled view of a SPIDAR’s motor and its winding guide.
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Fig. 2. On the left - A user using our virtual calibration grid in order to retrieve data for the neural
network learning. On the right - Detailed representation of the virtual calibration grid.

We use what we called: a virtual calibration grid (see fig.2), which consists in the rep-
resentation of a virtual scene, composed of many small cubes. Each cube corresponds
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Fig. 3. Absolute error 3D distribution in the SPIDAR’s workspace (Dark green is the best).

Figure 3 represents errors’ space distribution. As we can see this is a onion skin dis-
tribution, meaning different spherical layers, the absolute error growing as the effector
is going in outside layers. This identification of the SPIDAR leads us to these observa-
tions:
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Fig. 4. Initialization areas and experimental framework.

4.3 Multimodal Parameters

In order to guide the user in the initialization step, we firstly need to convert these
information into multimodal parameters. So we define a h function, returning an index,
expressing the distance from the initialization point d. More h(d) tends to 1, more the
effector is near from the initialization point. In the opposite way, more h(d) tends to 0
and more the effector moves away from the initialization point.

h(d) = {h(d) = 0 ifd > dpin, (1)
With:

d, the distance in millimeter between the effector and the initialization point.
dmin, the minimal distance in millimeter from which h(d) begins fluctuating, else
h(zx) is equal to 0.

In the following part, we define multimodal parameters that help the user to perform a
good initialization.

— Sound Modality. Beep frequency f depends on the distance d.

f(d) = d-1000 if d < 1000 @
fld) =1 if d > 1000

— Haptic Feedback Modality. The direction vector is transformed into a force feed-
back vector to be applied on the effector by this equation.

F =A-s(d/dy) - Frras 3)
With:
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Fiyrqq, the maximum force to be applied on the effector.

4.4 Initialization Algorithm
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Fig. 5. SPIDAR initialization process algorithm.

Initialization process is done in two steps. A first initialization allows the user to
place the effector in a area near from the initialization point with a 1 or 2 ¢m accu-
racy. We can’t decrease below this distance using directly the SPIDAR’s force feedback
capabilities because it is not enough sensitive for moving the effector on small dis-
tances. In order to get a more accurate initialization, we need to add another step to the
initialization process. Using the different modalities previously cited, the user’s hand,
holding the effector, will be guided to converge to the initialization point with a 1.2 mm

accuracy.
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Fig. 7. Mean absolute error versus number of neurons in the hidden layer.

The optimal number of neurons in the hidden layers has been defined in an empirical
way, by testing the result of learning with different number of neurons and by observ-
ing the mean absolute learning error. The more this error is high, the less the neural
network is effective. The figure 7 shows the mean absolute error on the SPIDAR posi-
tion according to the number of neurons in the hidden layer. By observing this result, we
could determine that the best configuration among the 3 to 21 neurons configurations,
is 5.



96
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Fig. 8. Absolute error 3D distribution in the SPIDAR’s workspace after calibration by the neural
network (Dark green is the best).

Table 1. Characteristic values of absolute errors on SPIDAR location for neural network learning.

[Absolute error] Raw NN PF1 |
mean (mm) |72.86 7.44 15.31
std (mm) 47.05 6.24 40.75
max (mm) 211.29 86.90 198.32

5.3 Neural Network Performances

In order to study the neural networks performances, we represent the same absolute
error 3D spatial distribution as previously but after using our neural network. As we
can see, figure 8, shows that the neural network is quite effective and greatly improve
the SPIDAR accuracy in comparison with the figure 3. The neural network performs a
good calibration in the whole workspace except in its corners.

We also traced errors bar graphs before and after using our neural network (see
Fig.9) and we put representative data in arrays comparing them with raw location
(Raw), neural network calibrated location (NN) and for information purpose only, linear
interpolation calibrated location (PF1). Each bar graph is coupled with an array resum-
ing characteristic values of the error distribution, where mean is the empirical mean
error, std is the standard deviation of the data set and max is the maximum error.
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Fig. 9. Absolute errors distribution bar graph before and after calibration by the neural network.
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Fig. 10. Absolute errors distribution bar graph before and after calibration by the neural network
on the 1°* data set.

5.4 Generalization

In order to evaluate neural network performances, we need to observe this response
output with unknown data sets. This step is called generalization. Figures 10 show
results obtained with two generalization data sets. These data sets have been recorded
during two time-split measure campaigns and using our semi-automatic initialization
procedure.

The neural network has been nicely set up and is robust at any data as soon as
the data belongs to the SPIDAR’s workspace. Such results aren’t surprising since the
learning protocol was extremely rigorous and covered all the SPIDAR’s workspace
guaranteeing the neural network to perform a good interpolation. Moreover tables 1
and 2 shows us that the standard deviation with neural networks is smaller than the raw
or the other method ones, which indicates a smoother and a more accurate interpolation.

Table 1 and figure 10 shows us that the used neural network has a good response to
the generalization. Thus, the absolute mean error on the position has been reduced by
2.5 times, going from 13.3 mm to 5.31 mm.
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[Dataset I [Raw NN PFI
mean (mm)|13.23 5.31 7.91
std (mm) |841 5.14 7.68
max (mm) [37.60 29.42 32.51

6 Conclusions

In this paper we propose a method to calibrate SPIDAR using a feedforward neural
network coupled with a semi-automatic initialization. The semi-automatic initialization
allows us to place the SPIDAR referential at the same 3D position at each startup with an
accuracy of 1.2 mm. This way, we can use a method for calibrating the SPIDAR which,
don’t need to be updated at each startup. We choose a feedforward neural network
in order to compensate non linear errors on location and their abilities to estimate a
targeted output from a source without any knowledge on the mathematical model. We
obtain good results and our whole calibration procedure is efficient. Testing our neural
network in generalization shows us that our calibration is quite robust, even if we reset
the SPIDAR. We plan to make the initialization procedure fully automatic.
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