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Abstract: In this paper, we propose a multivariate quadratic (MQ) equation system based on ergodic matrix (EM) over 
a finite field with q elements (denoted as ॲ௤). The system actually implicates a problem which is equivalent 
to the famous Graph Coloring problem, and therefore is NP complete for attackers. The complexity of 
bisectional multivariate quadratic equation (BMQE) system is determined by the number of the variables, of 
the equations and of the elements of ॲ௤, which is denoted as n, m, and q, respectively. The paper shows that, 
if the number of the equations is larger or equal to twice the number of the variables, and qn is large enough, 
the system is complicated enough to prevent attacks from most of the existing attacking schemes. 

1 INTRODUCTION 

Public key cryptography has prevailed ever since 
Diffie and Hellman published their paper “New 
Directions in Cryptography” (Diffie and Hellman, 
1976). Thereafter, algorithms based on public key 
cryptography were developed in the following years, 
e.g., RSA and ECC. The first is based on the 
problem of factoring large numbers (1024 bits and 
more), the latter on discrete logarithm. Both are 
computationally difficult problems even modern 
algorithms and computers are facing. Unfortunately, 
these kinds of algorithms are either based on 
factoring or discrete logarithms, which means the 
“crypto-eggs” are in one basket – too dangerous. 
Furthermore, particular techniques for factorization 
and solving discrete logarithm improve constantly. 
For example, polynomial time quantum algorithms 
(Shore, 1997) can be used to solve these problems. 
Therefore, they are facing the threats of quantum 
computers (if they exist). Thus new cryptographic 
schemes are in need to take the place of the 
traditional ones. 

At present, the most promising substitutable 
scheme is based on the problem of solving 
Multivariate Quadratic equations (MQ-problem) 
over finite fields (Wolf, 2005). A multivariate 

quadratic equations in n variables defined over a 
finite field ॲ௤ is a polynomial P(x) of degree 2 of the 
form P(x)= ∑ ௝ݔ௜ݔ௜௝ߙ ൅ ∑ ௜ݔ௜ߚ ൅ ଵஸ௜ஸ௡ଵஸ௜ஸ௝ஸ௡ߛ  with 
coefficients αij, βi and γ in ॲ௤ (Arditti et al., 2007). 
This is also a research hotspot of the new generation 
of public key cryptography. This kind of research 
can be traced back to 1980s and some efforts have 
been made to test its security since then. Thus there 
are a few famous schemes, which can be classified 
into Unbalanced Oil and Vinegar scheme (UOV) 
(Baena et al., 2008), Stepwise Triangular Systems 
(STS) (Wolf et al., 2006), Matsumoto-Imai Scheme 
(MIC) (Patarin, 1998), Hidden Field Equations 
(HFE) (Hamdi et al., 2006) and ℓ- Invertible Cycles 
(ℓIC) (Ding & Wagner, 2008). 

The advantages of the MQ-based public key 
cryptography schemes (MPKCs) are mainly 
reflected in their fast speed of encryption (or 
signature verification) and resistance of quantum 
attacks. Nonetheless, apart from UOV schemes with 
proper parameter values, the basic types of these 
schemes are considered to be insecure. HFE was 
broken by Aviad Kipnis and Adi Shamir (Kipnis & 
Shamir, 1999), STS was broken by Christopher Wolf 
et al. (Wolf et al, 2004). As a result, revised MQ-
based schemes have been proposed, including 
HFEv-, MIAi+, UOV/, STS (UOV), (ICi+), etc 
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(Patarin et al., 1998; Ding & Schmidt, 2006; Ding et 
al., 2005). 

Therefore, in this paper, based on ergodic matrix 
(Zhao et al., 2004), we propose a new MQ equations 
system over finite fields, which will yield a NP 
complete problem.  

The rest of this paper is organized as follows. In 
Section 2, a definition of EM and related theorems 
are given. In Section 3, BMQE system is introduced 
and we shall prove that such a system is NP-hard for 
the attackers. The complexity analysis is presented 
Section 4. Finally, some conclusions are drawn in 
Section 5.  

2 ERGODIC MATRIX AND 
RELATED THEOREMS 

The concept of EM and some related theorems were 
described as (Zhao et al., 2004): 

Definition 2.1: Given Qॲ௡ൈ௡
௤ , if for any non-zero 

column vector vॲ௡
௤  \{0}, {Qv, Q2v,  , ܳ௤೙ିଵ v} 

exhausts ॲ௡
௤  \{0}, then Q is what we call Ergodic 

Matrix over finite field ॲ௤ . (Where 0=[0 0  0]T 

and ॲ௡
௤  is a set of 1×n vectors over ॲ௤). 

Definition 2.2: Given m ॲ௡ൈ௡
௤ , if C(m)={x|x 

ॲ௡ൈ௡
௤   xm = mx}, then C(m) is the centralizer of m 

over ॲ௡ൈ௡
௤ . 

Definition 2.3: Given Q1,Q2,m  ॲ௡ൈ௡
௤ , if for any 

q1Q1\{I} and q2Q2\{I}, 
2nRank(C(q1)mC(q2))< n2, then m is called as a 
robust matrix, denoted as Mr(Q1,Q2) = {m|m 
ॲ௡ൈ௡
௤  m is robust for Q1 and Q2}. 

Theorem 2.1: Given Q ॲ௡ൈ௡
௤   is an EM, there will 

be (qn-1) EMs in Q={Qx| x=1,2,3, },  and the 
EMs have the same generating set(Only that the 
generators appear in different orders). 

Theorem 2.2: Qॲ௡ൈ௡
௤  is an EM, then ॲ௤ [Q] = 

{0}∪Q = {0, Q, Q2,…, ܳ௤೙ିଵ  = I }, and ॲ௤ [Q] 

forms an extended finite field ॲ௤
೙

after the matrix  
Q’s multiplication. 

Theorem 2.3: Let Qॲ௡ൈ௡
௤  be an EM, [Q 0=I, Q, 

Q2,…, Qn-1] is a basis of ॲ௤ [Q] over finite field ॲ௡
௤ , 

where ॲ௤ [Q] stands for a set of polynomials Q over 
ॲ௤. 

For any Qॲ௡ൈ௡
௤ , it’s obvious that Q1Q linearly 

transforms each row of Q and QQ2 linearly 
transforms each column of Q, respectively. Thus 
Q1QQ2 distributes each element of Q, This 

process can be repeated several times, e.g. 
Q1

sQQ2
t (1s|Q1|, 1t|Q2|), so that Q’s 

transformation is much more complex. In order to 
improve the quality of encryption (or 
transformation), the generating set Q1 and Q2 
must be as large as possible. Furthermore, the result 
of Q1 multiplying a column vector on the left side 
and Q2 multiplying a row vector on the right side 
should be divergent. As a result, EM can be used to 
construct a system based on MQ equations. 

3 BMQE PROBLEM 

In what follows, we shall propose a new scheme 
called BMQE problem based on EM, which is 
actually NP-hard and different from all of the 
existing MQ problems. 

3.1 Definition 

From Definition 2.1, let Q1,Q2ॲ௡ൈ௡
௤ , we take any 

non-zero matrix in the spanning set of Q1,Q2 as an 
n2-verctor, and randomly choose two basis B1=(Qଵ

௔భ, 

Qଵ
௔మ….,Qଵ

௔೙), B2=(Qଶ
௕భ, Qଶ

௕మ….,Qଶ
௕೙) for Q1, Q2 over 

finite field ॲ௤ , respectively. Then there exist 
exclusive tuples (x1, x2, …, xn) and (y1, y2, …, yn) 
ॲ௡

௤ \{0} such that: 
 

ܳଵ
௫ ൌ෍ݔ௜ܳଵ

௔೔

௡

௜ୀଵ

, ܳଶ
௬ ൌ෍ݕ௝ܳଶ

௕ೕ
௡

௝ୀଵ

 (1)

 

Then we have: 

ܶ ൌ ܳଵ
௫݉ܳଶ

௬ ൌ෍

௡

௜ୀଵ

෍ሺݔ௜ݕ௝ሻܳଵ
௔೔݉ܳଶ

௕ೕ
௡

௝ୀଵ

 (2)

Linearize the n×n matrix T and ܳଵ
௔೔݉ܳଶ

௕ೕ into n2-
vectors. (e.g. ti,jTุ ሺ௜ିଵሻൈ௡ା௝,ଵݐ

ᇱ ܶ′) Hence there 
is a system of m equations in 2n variables over a 
finite field ॲ௤. The variables in these equations are 2 
degrees, each consists of x and y. We call a system 
with this format BMQE system, based on which we 
propose our BMQE problem as below: 

BMQE Problem: Let an equation system ES over 
any finite field ॲ௤ has m equations in 2n variables. 
Furthermore, each equation has the format as 
follows: 

 

෍

௡

௜ୀଵ

෍ܽ௜௝
ሺ௞ሻݔ௜ݕ௝ ൌ ܾ௞

௡

௝ୀଵ

, (3)
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where ܽ௜௝
ሺ௞ሻ , ܾ௞ॲ௤  are known values, k = 1, 

2, …, m.  
Now, how to deduce ES’s solution such that x, 

yॲ௡
௤? 

It is obvious that the BMQE problem is a special 
case of multivariate quadric problems. The 
differences are that: 

(1) ES is composed of xi and yj, where i=1, 2, …, 
n and j=1, 2, …, n; 

(2) Each equation of ES only has terms with 2 
degrees; 

(3) Each term in each equation of ES is chosen 
from x and y, where x={xi | i=1, 2, …n} and 
y={yj | j=1, 2, …n}. 

Therefore, the BMQE system in 2n variables has 
n2 terms of 2 degrees, whilst MQ equations in n 
variables has 2n2 + n terms of 2 degrees and 2n 
terms of 1 degree. 

Moreover, MQ equations over ॲ௤  may have 
exclusive solution if q ≤ 2. This is because when q>2, 

if (x1,x2,…xn), (y1, y2, …, yn) ∈ ॲ௡
௤  is one solution to 

ES, then for ∀c ∈ ॲ௤ \{0}, c(x1,x2,…xn), c
-1(y1, y2, …, 

yn) must also be a solution to ES.  

3.2 NP-hard Proof of BMQE 

MQ problem over ॲ௡
௤  has been proven to be NP-hard, 

here we will prove that the BMQE problem is also 
NP-hard over ॲ௡

௤ . 

Theorem 3.1: BMQE problem is an NP-hard 
problem over ॲ௡

௤ . 
Proof. Given Graph 3-coloring (i.e. Given an 

undirected graph G = (V; E), the vertices of the 
graph can be colored using 3colors so that vertices 
connected by an edge do not get the same color) is 
an NP-complete problem in [36], if it can be reduced 
to BMQE problem over ॲ௡

௤ , then Theorem 3.1 is 
proven. In fact, this can be done in terms of the 
following steps: 

(1) Let ES denote an equation systems which 
is initialised as empty, and denote each vertex vi of 
graph G by (xi, yi) over ॲଶ; 

(2) Set  vertex vi’s colour in the graph as a, b 
or c iff (xi, yi) = (0, 1), (1, 0) or (1, 1), respectively; 

(3) If vi and vj are adjacent, then add an 
equation xiyj +  xjyi = 1 into ES. 

Then the equation system formed up by means of 
the above steps, i.e., ES, is actually a special BMQE 
system over  ॲଶ. By step (3), for any pair of adjacent 
vertices vi and vj, we have xiyj +  xjyi = 1, which 
implies that (xi, yi) ≠ (0, 0)ٿ (xj, yj) ≠ (0, 0) ٿ (xi, yi) 
≠ (xj, yj). Therefore, vi and vj can only be differently 

coloured by a, b or c. Thus graph 3-colouring can be 
reduced to the BMQE problem over ॲଶ, and hence 
the BMQE problem over ॲଶ is NP-hard. 

Likewise, BMQE problem over ॲ௤(q>2) can be 
proved NP-hard. 

4 COMPLEXITY ANALYSIS  

Even though the BMQE problem is NP-hard, it does 
not guarantee all bisectional multivariate quadratic 
equations are difficult enough to be unsolvable by 
polynomial-time algorithms. By analysis, the 
complexity of the BMQE is actually determined by 
q, n and m, where q is the number of a given finite 
field ॲ௤ , n and m are the number of variables and 
equations, respectively. 

To find out the relation between q, m and n, we 
proposed an approach called fixing variables.  This 
approach is based on the idea of how to eliminate 
variables in equation systems, which is also the key 
idea of those existing attacks such as Linearization 
(Herlihy & Wing, 1987), Relinearization, Gröbner 
bases (Lenstra &Verheul, 2001), XL (Kipnis & 
Shamir, 1999) and DR (Tang & Feng, 2005). 
However, on one hand, as pointed out by Kipnis and 
Shamir, the method of Linearization only succeed 
when m = n(n+1)/2. On the other hand, 
Relinearization, Gröbner bases, XL and DR are 
designed to attack systems with polynomials 
containing just one tuple of n variables, rather than a 
pair of such tuples. 

Lots of the experiment results show that with the 
increase of (m-n), the complexity of solving MQ 
problem. The growth trend varies from exponential, 
sub-exponential to polynomial. If m≈n, it is barely 
possible to solve MQ equation. But if q is small, 
then we can fix r variables such that m>(n-r). If a 
MQ-problem with m equations and (n-r) variables 
can be solved, then it takes at most qr times to work 
out the solution. The following of this section shows 
how fixing variables attack BMQE system and a 
conclusion will be drawn at the end. 

According to BMQE problem, let an equation (4) 
be as follows: 

ە
ۖۖ
۔

ۖۖ
ۓ ,ݔଵሺ݌ ሻݕ ൌ෍

௡

௜ୀଵ

෍ܽ௜௝
ሺଵሻݔ௜ݕ௝ ൌ ܾଵ

௡

௝ୀଵ

ڭ

,ݔ௠ሺ݌ ሻݕ ൌ෍

௡

௜ୀଵ

෍ܽ௜௝
ሺ௠ሻݔ௜ݕ௝ ൌ ܾ௠

௡

௝ୀଵ

      (4)

and denote the value space of (p1, p2, …, pm) as 
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Spc = { p1(x, y), …, pm(x, y) | x, y∈ ॲ௡
௤}. 

For any x, y∈ ॲ௡
௤ , let xy = (x1y1, …, xiyi, …, xnyn) 

∈ ॲ௡మ
௤ , then (p1, p2, …, pm) is exclusively decided by 

xy. It is obvious that (x, y) generates q2n values, 
thus the results of xy include a zero and (qn-1)2/(q-
1) non-zeros. Hence, we have: | Spc| ≤ Min(qm, (qn-
1)2/(q-1) + 1). 

And if n>1, q2n-1 < (qn-1)2/(q-1) + 1 < q2n ,  
consequently we have: 

|ܿ݌ܵ| ൑ ቐ
ሺݍ௡ െ 1ሻଶ

ݍ െ 1
൅ 1  ሺ݉ ൒ 2݊ሻ

            ௠ݍ       ሺ݉ ൏ 2݊ሻ
 (5)

When { p1(x, y), …, pm(x, y)} is determined,  
there are several cases of solutions to Spc: 

(1)  if (b1, b2, …, bm) = 0, then Spc at least has 
(2qn-1) solutions with the form (x=0, y=0)∨(x≠0, 
y=0)∨ (x=0, y≠0). 

(2) if (b1, b2, …, bm) ≠ 0∧(b1, b2, …, bm) Spc, 
equation (4) has no solutions. 

(3) if (b1, b2, …, bm) ∈Spc \{0}, then equation (4) 

has at least (q-1) equivalent solutions (x, y) ∈ (ॲ௡
௤  

\{0})2. 

If (b1, b2, …, bm) ∈Spc \{0}, higher order 

correlation attack can be used in solving equation (4). 
For there is a mutual relation between x and y, fixing 
either of them is enough. And there are two methods, 
fixing whole or fixing part. The former means to fix 
all the elements in x, while the latter means to fix a 
part elements ݔ௜భ, ,௜మݔ …  .௜೟(1≤t<n) of xݔ

Let us take an example of fixing the whole 
elements of x. The steps are as follows: 

(1) Randomly fix x = (α1, α2, …, αn)≠0 
(2) Replace x in equation (4) with  (α1, α2, …, αn) 

and we get a linear equation (6) with n unknowns y 
= (y1, y2, …, yn): 

൝
,ߙଵሺ݌ ሻݕ ൌ ܾଵ

ڭ
,ߙ௠ሺ݌ ሻݕ ൌ ܾ௠

 (6)

(3) Equation (6) has a solution y = β = (β1, β2, …, 
βn), otherwise go to step (1). 

(4) (x, y) = (α, β) is a solution to equation (4). 
Obviously, the success of fixing variables attack 

is proportional to the solutions of equation (4). In 
addition, the solutions increase with the number of 
equations diminishing.  In particular, when m = n, 
the number of the solutions to equation (4) 
approximates (qn-1), which means the probability 
that one guesses the solution is nearly 100 percent. 

Therefore, if n is fixed and m is too small, it is quite 
easy to solve the equation (4). 

Similarly, for any (b1, b2, …, bm) ∈Spc \{0}, if 

equation (4) has (q-1) solutions and m≥2n, the  
probability falls down to (q-1)/( qn-1) ≈ q-(n-1)(Refer 
to equation (5). Consequently, we have a theorem: 

Theorem 4.1: Randomly create a bisectional 
multivariate quadratic equation system ES of m 
equations in 2n variables over ॲ௡

௤ , if ES satisfies 
m≥2n∧|Spc\{0}|=(qn-1)2/ (q-1) and qn is large 
enough, the approach of fixing variables cannot 
solve ES. 

5 CONCLUSIONS 

In this paper, we firstly summarized that all MQ 
equations schemes based on asymmetric 
cryptography known so far fit into an taxonomy of 
five basic classes, namely UOV schemes, stepwise 
triangular systems, MI schemes, HFE, and invertible 
cycles. As pointed in the introduction, at present, 
these schemes have been proven to be insecure 
except UOV with proper parameters. Moreover, the 
existent MQ-equation-based schemes have some 
shortages. Thus, combined with ergodic matrix, we 
propose a multivariate equation system over a finite 
field ॲ௤ . The complexity analysis shows that the 
proposed system is NP hard for MQ problem 
attackers. Also, under the condition of Theorem 4.1, 
such a system with proper parameters is resistant 
against the most efficient attacks for MQ problems.  
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