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Abstract: In the paper we propose a formal model for class of authentication systems termed, “Infinite Alphabet Pass-
word Systems” (IAPs). We define such systems as those that use acharacterset for the construction of the
authentication token that is theoretically infinite, only bound by practical implementation restrictions. We find
that the IAP architecture can feasibly be adapted for use in many real world situations, and may be imple-
mented using a number of system architectures and cryptographic protocols. A security analysis is conducted
on an implementation of the model that utilizes images for its underlying alphabet. As a result of the analysis
we find that IAPs can offer security benefits over traditional alphanumeric password schemes. In particular
some of the significant problems concerning phishing, pharming, replay, dictionary and offline brute force
attacks are mitigated.

1 INTRODUCTION

It has been said that the user is often the weakest
link in security (Sasse et al., 2001), and as a result
when designing systems that we want to be effective
in practice, we must consider the needs and tenden-
cies of users.

A well documented example is the traditional
password, which is a sequence of characters. The
Universal Character Set defined by ISO/IEC stan-
dard 10646 (ISO, 2003) is used as the basis for
many character encoding systems. For example, Uni-
code (The Unicode Consortium, 2009) corresponds
with ISO/IEC 10646:2003 plus amendments 1-6.
This contains “codepoints” comprising unique names
and integer references for nearly 100,000 characters.
When choosing passwords, individuals tend to select
from a substantially smaller subset of this: those di-
rectly accessible via their input device. For instance, a
standard United Kingdom keyboard can generate 103
printable characters by pressing a key or common key
combinations.

In addition, users will often find recalling lengthy
strings of high entropy (Shannon, 1948) difficult (Yan
et al., 2004). When faced with the predicament of
being unable to authenticate, they will often attempt
to reduce the effort involved. Well known methods
for this include, creating passwords based upon pre-
existing semantic associations such as, pet’s name or

writing passwords down (Klein, 1990), sharing one or
a handful of passwords between numerous accounts
(Gaw and Felten, 2006), or selecting passwords
that are shorter and less sporadically placed within
the overall password space (Morris and Thompson,
1979).

Actions such as these increase ease of use, but
also negate some of the intrinsic security benefits that
may otherwise be offered. In the security research
community there has been a concerted effort to de-
velop novel authentication schemes that directly ad-
dress this problem. One such category of schemes
concerns the recognition or cued-recall of password
symbols from a presented visual (Dhamija and Perrig,
2000), auditory (Gibson et al., 2009), or haptic (Kuber
and Yu, 2006) alphabet. In systems that support soft-
ware alphabets, the potential alphabet size is larger
than those which are feasibly available when gener-
ated using hardware peripherals. In particular, the use
of optimally designed image and sound based alpha-
bets, have been found to aid memorability when com-
pared to a traditional text-based counterpart (Dhamija
and Perrig, 2000; Gibson et al., 2009). In theory, en-
hanced memorability should alleviate the need to de-
vise workarounds that undermine security. In this pa-
per we devise a formal model for an authentication
system architecture termed, “Infinite alphabet pass-
words” (IAP), which utilizes software based alpha-
bets to enhance security. We envisage an IAP system
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as a system where there is no limitation in the num-
ber of available symbols that can be combined to form
password sequences.

An example of a true infinite alphabet is the set of
all images containing a bluen-gon (triangle, square,
pentagon, ...). It should be clarified, that although the
alphabet can be modeled as being infinite, in practice
the alphabets are in factvirtually infinite due to the
limitations of time and space. A feasible bound on
alphabet size, is thedata width(number of bits that
can be used to represent a distinct symbol), as well
as the capability of the system upon which the alpha-
bet is generated to handle strings of a particular bit
length. Hence a more realistic example of a virtually
infinite alphabet might be the set of images indexed in
the Google search engine, or the set of all top selling
music singles, in a given location and time-frame. Al-
though only virtually infinite, such an alphabet would
be large enough for any practical purpose.

2 MODELING AN IAP

An infinite alphabet password system is a model
where we allow the set of symbols that can be com-
bined to fomulate passwordsA= {a1,a2, . . .} ∼= N to
be infinite.

In the following we assume that a user authenti-
cates him or herself to a serverS via a client node
over an open network with the password data itself
stored as a database entry on the server. However we
note that in a more general setting depending on en-
visaged architecture the authentication may take place
on a grid, client node, removable media device or as
part of a cloud architecture.

As a consequence of the infinity ofA, we let dif-
ferent servers carry different alphabets. That means if
Σ denotes a system of servers withS∈ Σ andAS⊆ A
denotes an alphabet used for authentication forS∈ Σ
then AS∩AT = /0 for any T ∈ Σ with S 6= T. Note
that because ofN×N ∼= N this is possible also if we
modelΣ ∼= N to be an infinite set of servers.

The enrolment process is accomplished by the
user supplying to the system a unique identifieru. Ex-
ample identifier formats include biometric data, hard-
ware token, PIN or username.u is then stored via a
one-way hash function as a record onS∈ Σ.

The serverSon receipt of the the user idu gener-
ates (randomly) a finite subsetAS,u ⊆ AS, which be-
comes that user’s password alphabet. This is sent to
the client device for presentation, where the user se-
lects fromAS,u a predefined number of elements to
form a password. This sequence is transmitted toS
where it is also associated withu concluding the en-

rollment process.
At authentication toS, the user presents their

unique identifieru. The server returns the finite set of
symbols from the infinite alphabet namelyAS,u. This
is presented to the user. No explicit confirmation is
given as to whether the identifer data was correct. If
an incorrect identifierv 6= u is entered, a decoy setAS,v
with AS,v∩AS,u = /0 is presented.

During key replacement, a new finite subset that
does not contain any of the users previous password
symbols is created and associated with the account
(not problematic due to the infinity ofA). From this,
the user may select a new password sequence as de-
scribed in enrollment.

In the remainder, we assume that theAS,u is pre-
sented to the user in authentication stagesAS,u(1),
AS,u(2), ... with

⋃
i AS,u(i) = AS,u. In the stagem

the user is presented with the setAS,u(m) and subse-
quently selects a number of elements from this before
being presented withAS,u(m+ 1). We also assume
that the placement of symbolsAS,u(m) is randomized
at each presentation.

2.1 Optional Enhancement: Injective
Password Sequence

We want the user to be able to authenticate via recog-
nition of their password symbols. If a symbol appears
in more than one finite presentation setAS,u(i) the
user also has to memorize the sequence in which they
must select their password symbols. This needlessly
increases cognitive load (as well as the probability
that insecure coping strategies will be adopted). For
this reason, we can optionally require thatAS,u(i)∩
AS,u( j) = /0 for any i 6= j. In a conventional finite al-
phabet this would reduce security, because the aver-
age search space for a successful brute force attack is
considerably decreased. In an IAP system, the search
space is infinite, so there is no loss of security.

2.2 Optional Enhancement: Error
Feedback and Recovery

In traditional password systems, users are given min-
imal help in recovering from input errors. This is be-
cause in this case, an error is not simply an error, but
may be an indication of an attempt to break into the
system. In an IAP system, we have the option of pro-
viding feedback to the authentic user without inadver-
tently providing clues to an attacker.

We illustrate this with the following example. As-
sume that the client’s password is(aι(1), . . . ,aι(n))
with n even andaι(2m−1),aι(2m) ∈ AS,u(m) for 1 ≤
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m≤ n/2, i.e in every authentication stage the user se-
lects two password letters. When the selection(b,c)
in stagem is correct, i.e. (b,c) = (aι(2m−1),aι(2m))
the client is exposed to the setAS,u(m+ 1) unless
2m= n and access is granted. When the selection is
incorrect, the user is exposed to a different, unrelated
setBS,u(m,b,c) ⊆ A. In the model we may assume
that all setsBS,u(m,b,c) andAS,u(m) are disjunct to
prevent an intersection attack. On presentation of
BS,u(m,b,c), the authentic user may notice that the
presented setBS,u(m,b,c) differs from the expected
setAS,u(m). At this point, they may signal to the sys-
tem that they cannot find their password element, for
instance via a “reset” option. This action will return
them to the first stageAS,u(1) hence allowing them to
retry their authentication attempt from the beginning.
The user who does not recognize the disjunctive na-
ture ofAS,u(m) andBS,u(m,b,c) may be identified as
a potential intruder and be implicitly excluded from
the system.

2.3 Optional Enhancement: Time
Localization

We may also design the alphabetA such that it con-
sists of an infinite number of pairwise disjunct equiv-
alence classesA(1), A(2), A(3), ... of infinite size
such thata∼A(k) a′ whena anda′ have a same, or ob-
viously related semantical meaning. The user when
requested to enter the password, must be able to iden-
tify elements of the same equivalence class and distin-
guish elements of different equivalence classes. Ex-
amples of such an equivalence class may be images
where the colors have been distorted, for example in a
similar way to the images described in (Hayashi et al.,
2008), or those that relate to clear concepts such as
“tree” or “house”.

The alphabet is then the set of equivalence classes
and in the authentication process the client is exposed
to a member of each equivalence class. The mem-
ber chosen from each equivalence class changes from
session to session.

An illustrative example for such a mechanism us-
ing equivalence classes might be dogs shown in dif-
ferent positions (sitting, standing, jumping). Large
numbers of different images of a particular dog can
be generated easily by making a movie of a dog and
using the stills. The password alphabetA(S,u) would
then be a set of different equivalence classes, each of
which would feature a different dog. A possible in-
truder who wants to guess the password must then, for
successful intrusion, know that the key is given in the
dog itself, independent of the behavior that is shown
for each dog. In addition, a nonce can be added, for

example in the form of a watermark in order to en-
hance security further.

3 SECURITY ANALYSIS

In this section we envisage a feasibly implementable
adaptation of the IAP model, where the alphabetA
is no longerinfinite, but instead onlyvery large. A
and all related subsets are hence alsofinite, as are the
number ofSelements contained withinΣ.

In order to keep things as simple as possible, we
use a conservative example and imagine thatA is
composed of bitmaps (i.e. no compression). Each
image is 150×150 pixels with 24 bit color (RGB 0-
255). The total number of unique images is hence:
1502 × 2563 = 377,487,360,000. Not all of these
would be suitable for use as alphabet elements, as
many would not be perceivably different for users.
For this example, we will specify that 0.0001% of
the elements are easy to distinguish, and hence suit-
able for inclusion inA. Therefore,A consists of
37,748,736 images.

We distributeA equally over 10,000 Web servers,
providing on average around 3,770 images to each.
Each user is given a personal finite subset of 50 im-
ages. In this conservative example, we therefore sup-
port around 75 users per server. Given the dimen-
sions and bit depth, each image would require approx-
imately 66 KB of storage space, and for each one we
also use 4 additional semantic equivalence class im-
ages. This would require a total of around 18,850
unique images to be stored and 1.1 GB of storage
space per server.

We assume that each user account is protected by
a username, coupled with a sequence of 5 IAP pass-
word elements chosen from a distracter set of 50 and
that presentation takes place over 5 screens. Finally,
although we wish our model to be independent of any
particular cryptographic scheme, this directly affects
security against some attacks. For this reason we con-
sider that passwords undergo a one-way hash function
before being stored on the server, and that the setA is
stored in unencrypted form, but that encrypted point-
ers are used to specify a mapping between a user ac-
count and a corresponding finite subset.

We consider the following typical scenarios of at-
tacks upon this adapted IAP system, where all three
optional enhancements namely, injective password
sequences, error feedback and recovery, and time lo-
calization have been incorporated. Here, Attacker
Mallory attempts to gain access to user Alice’s IAP
protected account.
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3.1 Tricking the User into Verbally
Communicating the Key

Mallory knows Alice’s username and fools her into
revealing her password sequence. The chance that
this attack would be successful is a property of the
communicability of Alice’s individual alphabet el-
ements. If we imagine that they are images with
concrete semantic associations, such as, “child” or,
“dog”, then the system is neither stronger nor weaker
than a traditional password in this sense.

3.2 Finding a Written Record of the
Password

Attacker Mallory gains access to Alice’s workstation
where the username and a description of the password
symbols has been sketched or written down.

Again, the chance that this will happen is directly
related to the intrinsic memorability and communica-
bility of the password elements. In our example, the
user may be less likely to write their password down.
If they do however, then the system is again neither
stronger or weaker than a text-based counterpart.

3.3 Password Prediction

Attacker Mallory comes to know Alices interests and
preferences along with her username. He proceeds
to enter the username at the interface and the system
responds with the first 10 clips from her password al-
phabet. Mallory then attempts to predict Alices cho-
sen clips given his knowledge of her taste, in an at-
tempt to gain access.

A system offering an alphabet with pre-existing
semantic associations, or with some images being
more visually appealing than others would be prone
to entry using this method.

This is confirmed in (Davis et al., 2004), where a
visual authentication system utilizing photographs of
faces as the alphabet was implemented. Here, users
tended to select attractive faces over less attractive
ones, or faces of people belonging to the same racial
group as themselves. As way of countermeasure, it
might be possible to learn from the user at enrolment
their preferences and interests, in order to minimize
the predictability of choices. This should not be prob-
lematic given the large corpus of images available.
However some may see this as an infringement of pri-
vacy.

3.4 Phishing and Pharming

Here Alice is either redirected to, or receives an email
enticing her to view an intruder Web site masquerad-
ing as the genuine log in page for the IAP system.
On loading the imposter site, Alice is prompted for
her username and on entry is presented with a set of
challenge images. Here, the challenge set presented
would be incorrect, and Alice would be unable to pro-
ceed with authentication, thereby securing her pass-
word information.

3.5 Hard or Software Keylogger

In this attack Alice’s inputs to the access device are
recorded and sent to Mallory. Since Alice will se-
lect her password symbols using a pointing device,
Mallory would receive information that Alice has
clicked, and possibly the co-ordinates of where she
has clicked, but not information about what she has
clicked. Element placements are shuffled between log
in sessions, therefore her password information is se-
cured.

3.6 Malicious Screen Capture

In this attack a sequence of images detailing Alice’s
interactions with the IAP interface is viewed remotely
by Mallory who later attempts to reenact the process.
Image based alphabets are particularly vulnerable to
this type of attack. It would therefore be necessary
to incorporate a mechanism to delineate or disguise
interactions with password elements during selection.
An example of such a scheme is the random cursor
matrix system described in, (Boit et al., 2009).

3.7 Timing Attack

In this attack, Mallory gains physical access to Alice’s
access device where he enters Alice’s username and
is presented with the first presentation screen of her
challenge set. Mallory proceeds to guess at random
the first element and measures the length of time it
takes for the images in the subsequent challenge set
to load in full. Mallory then uses the recovery option
to return to the first screen where he selects a new
symbol and repeats the process. On happening upon
a second screen that loads the symbols more quickly
than others, Mallory assumes that the symbol set has
been accessed by Alice before because it is cached
locally in her browser. The symbol that was clicked in
order to load the screen was hence a correct password
symbol.

INFINITE ALPHABET PASSWORDS - A Unified Model for a Class of Authentication Systems

97



There are two options available as countermeasure.
Firstly, at enrolment the system may download every
image in the user’s finite set, to the client machine,
whereby it is cached. Or secondly, to ensure that no
symbol is cached locally. The second option seems
most sensible, as caching all symbols on the local ma-
chine would be ineffective for those users who happen
to clear their browser cache regularly, and may create
new vulnerabilities to attack via the client.

3.8 Brute Force Attack (Online)

Mallory knows Alice’s username and enters it at the
interface. The system responds by returning the first
subset of her individual alphabet. From here Mallory
selects symbols at random until the correct password
sequence is obtained.

Permutations in Alice’s alphabet isqr , whereq is
the number of symbols contained in the alphabet and
r is the password length.

In our example,q= 10 andr = 5 as users choose
symbols over five screens, each offering a choice of
10 clips. Giving a total of 100,000 permutations and
means the average brute force attack would elicit the
correct sequence in 100,000/2 attempts. For practi-
cal purposes we can mitigate this risk by blocking au-
thentication after a given number of attempts is ex-
ceeded.

This approach does not rule out a “low and slow”
attack, where Mallory circumvents the lock out policy
by distributing his guesses over a number of user ac-
counts. We must for this reason, ensure that the num-
ber of accounts the system supports, and upon which
Mallory can make a password guess, is substantially
lower than the average number of guesses required.
In the example system, we support 75 accounts. We
imagine that each account allows up to 3 authentica-
tion attempts before detection and that Mallory does
not wish to reach this limit. In this scenario, he is
able to make 150 guesses – far lower than the average
5,000 required.

3.9 Brute Force Attack (Offline)

Attacker Mallory gains access to Alice’s password
hash and the symbols stored inA (which are in the
clear). Let us assume that in this instance, the key
that is required to reveal the pointers to Alice’s finite
subset symbols is derived from the password symbols
themselves (which Mallory does not yet know). As
a result, in order to find the password, Mallory must
compute all permutations ofA and pass these to the
same hash function used to encrypt the password.

A itself contains 18,850 unique images, although
they each belong to an equivalence class. We hence
compute permutations based upon the number of
equivalence classes, of which we have 3,770. We pre-
vent the user from selecting the same clips more than
once, therefore the maximum possible number of per-
mutations Mallory can create based upon the num-
ber of sounds in the list isq!/(q− r)! ≃ 7.595×1017

whereq = 3,770 andr = 5. This is roughly equiv-
alent to the number ofcombinationspossible from a
9 character traditional password over an alphabet of
103 letters (i.e≃ 1.304×1018).

3.10 Dictionary Attack

Mallory uses a list of historically common pass-
word sequences and submits these to the system in
an attempt to elicit access to Alice’s account. The
principal requisite for Mallory’s success is that non-
standard frequencies must exist in the passwords se-
lected (i.e. there needs to exist common passwords).
The strength of an IAP against an attack of this type
is a result of the relative popularity of the images used
as alphabet elements.

The risk may be mitigated by splitting up the chal-
lenge set into subsets. During sequential presentation
the user must be shown at least one popular image
in each presentation set in order to create a password
made up of completely popular elements. In a tradi-
tional scheme, all of the popular passwords are avail-
able to the user for selection all of the time. Further-
more, an important aspect of our model is that each
server can be populated with an individual symbol al-
phabetA. The result is that we could do away with
the practice of attackers employing standard password
cracking dictionaries to gain access, as any dictionary
created would only be of use against the system upon
which it was originally generated, because the letters
used to create a password sequence therein, would not
be available as password elements elsewhere.

3.11 Replay Attack

In this attack, Mallory eavesdrops the connection be-
tween Alice’s access device and the server and gath-
ers message digests containing the identity of Alice’s
password symbols. Here, a nonce value is used as a
wrapper to the time-localized password, which is en-
coded using a one-way hash. If Mallory attempts to
replay the session back to the server at a later time, the
nonce is incorrect and the request denied. If Mallory
learns to predict the nonce and then creates a counter-
feit, he would still be unable to replay the data until
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the server expects a message using the same equiva-
lence class image.

4 DISADVANTAGES OF IAPS

The drawbacks are the storage and bandwidth require-
ment. As a solution, we could populate a system with
compressed images or sounds in order to reduce stor-
age consumption. Another option in the case of im-
ages might be to use vectors or fractals. This would
allow for better upwards scalability in systems that
support a large number of accounts.

A third option is that we could weaken the condi-
tion that the user’s personalized alphabets are disjunct
for any two users. It should be possible to implement
the IAP architecture and only require a low probabil-
ity that two users share a given symbol in their mutual
alphabets – This might have ramifications elsewhere,
and hence requires further research.

5 CONCLUSIONS

We modeled passwords as utilizing an infinite alpha-
bet, allowing us to devise an optimized architecture
upon which image and sound based authentication
schemes can be based. We give an example of a fea-
sible implementation of the IAP model, using images
as a password alphabet, as a result we find that al-
though modeled on infinity, the architecture can be
feasibly adapted for use in many real world scenar-
ios. The envisaged system underwent a security anal-
ysis, wherein it was found that depending upon the
nature of the alphabet used, the system is at least
as strong as a traditional alphanumeric counterpart
against social engineering and online brute force at-
tacks and more secure against replay, keylogging,
phishing, pharming, offline brute force and dictio-
nary attacks. However, when image based alphabets
are implemented, the model is weaker than traditional
passwords against the threat of remote screen capture.
It is thereforeessentialthat any image based IAP sys-
tem also incorporate countermeasures to mitigate this
risk.

The IAP model was developed with flexibility in
mind. For this reason, it should be implementable
over a number of preferred architectures and cryp-
tographic protocols. It is hoped that the model may
prove useful to those considering future implementa-
tions of alternative authentication schemes.
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