
AUDITING THE DEFENSE AGAINST CROSS SITE SCRIPTING
IN WEB APPLICATIONS

Lwin Khin Shar and Hee Beng Kuan Tan
School of Electrical and Electronic Engineering, Block S2, Nanyang Technological University

Nanyang Avenue 639798, Singapore, Republic of Singapore

Keywords: Cross Site Scripting, Static Analysis, Code Auditing, Input Validation and Filtering.

Abstract: Majority attacks to web applications today are mainly carried out through input manipulation in order to
cause unintended actions of these applications. These attacks exploit the weaknesses of web applications in
preventing the manipulation of inputs. Among these attacks, cross site scripting attack -- malicious input is
submitted to perform unintended actions on a HTML response page -- is a common type of attacks. This
paper proposes an approach for thorough auditing of code to defend against cross site scripting attack.
Based on the possible methods of implementing defenses against cross site scripting attack, the approach
extracts all such defenses implemented in code so that developers, testers or auditors could check the
extracted output to examine its adequacy. We have also evaluated the feasibility and effectiveness of the
proposed approach by applying it to audit a set of real-world applications.

1 INTRODUCTION

Recent reports on security attacks to web
applications consistently showed that many
successful attacks are carried out by illegal input
manipulation. Cross-site scripting (XSS) attack is
one such common attack as the attackers inject
carefully crafted malicious scripts through the input
parameters of client-side web pages in order to cause
unintended actions of the web applications and
achieve the attackers’ purpose. Injected scripts can
be all kinds of client-side scripts such as JavaScript,
ActionScript, and VBScript.

XSS attacks can cause web applications to
perform unintended actions such as exposing clients’
confidential information to the attacker. The
underlying problem is because those applications
accept inputs from user and use those inputs in
output operations such as display and database
updates, without proper sanitization. XSS attacks
may come from non-persistent input sources such as
form-fields and URLs. This form of attack is known
as reflected XSS. Or they may come from persistent
input sources such as database records and persistent
beans. This form of attack is known as stored XSS.
Therefore, to avoid security violations, it is
important to guard against all kinds of inputs which

can be manipulated by the attackers. XSS attacks
could be conducted in numerous ways by injecting a
wide variety of HTML tags (e.g., <script>
hack(); </script>) and attributes (e.g., <b
onmouseover = alert (document.cookie)
>). In order to circumvent most sanitization schemes
used by web applications, more sophisticated XSS
attacks could also be conducted by using various
character encoding schemes. For example, using
Base64 encoding scheme, <script>hack();
</script> can be replaced with
PHNjcmlwdD5oYWNrKCk7PC9zY3JpcHQ+Cg==. As
such, it is important to ensure that sanitization
schemes used by web applications cover all such
XSS attack vectors.

Basically, most web applications implement two
type of sanitization mechanisms to defend against
XSS attacks: (1) input validation; (2) input filtering.
Input validation checks the user input against the
user interface specifications whereas input filtering
removes, replaces, or escape potentially dangerous
characters such as “<”. But sanitization mechanisms
often fail in protecting the applications because
either it is hard to sanitize all complete set of
malicious scripts or the implementation is
inadequate. In some applications, users are allowed
to input HTML tags. It makes the escaping routines
irrelevant. As such, it is important to provide

505
Khin Shar L. and Beng Kuan Tan H. (2010).
AUDITING THE DEFENSE AGAINST CROSS SITE SCRIPTING IN WEB APPLICATIONS.
In Proceedings of the International Conference on Security and Cryptography, pages 505-511
DOI: 10.5220/0002963905050511
Copyright c© SciTePress

software testers or developers with comprehensive
information about the security mechanisms
implemented in code in order to be able to check
their adequacy for XSS defense.

To date, existing approaches mainly focus on
dynamically preventing potential XSS attacks or
statically identifying potential XSS vulnerabilities in
web applications. In most cases, software project
teams prefer their applications to be free from
vulnerability risks and hence, they may want to
perform software vulnerability audits from time to
time. To the best of our knowledge, no approach has
focused on providing the software testers or
developers with necessary information about XSS
defense features implemented in code to facilitate
such audits. Hence, in this paper, we propose a novel
code auditing approach that focuses on
automatically extracting all possible XSS defenses
implemented in code. The extraction is based on the
possible coding patterns for implementing XSS
defense. From the extracted output, one can examine
its adequacy and identify the potential risks.

2 THEORY FOR EXTRACTING
XSS DEFENSE FEATURES
FROM CODE

The proposed theory is built on modeling of the
possible code patterns of sanitization methods that
prevent illegal input manipulation: (1) input
validation; (2) input filtering.

In this paper, the basic definitions of
interprocedural control flow graph (CFG) are
adopted from Sinha et. al (2001). The following
gives further definitions used in this paper.

In a CFG, a node x transitively references to a
variable v defined/submitted at node y if there is a
sequence of nodes, y = x0, x1, …, xn = x, and a
sequence of variables v = v0, v1,…, vn, such that n ≥
1, for each j, 1 ≤ j ≤ n, xj defines variable vj and
references to variable vj-1, and any path from xj-1 to xj
that does not repeat any loop is a definition-clear
path with respect to {vj-1}.

In a web application, a node u at which an input
submitted by user can be referenced and u dominates
all nodes w at which the input can also be
referenced, is called input node. These inputs
include both persistent and non-persistent types of
inputs. Variables defined/submitted at an input node
u are called input variables of u. For example,
Figure 1 shows a JSP code snippet of Guestbook
SignIn page and Figure 2 shows its CFG. In this

CFG, node 1 and 6 are input nodes; guestname and
rs are input variables of node 1 and 6 respectively. A
variable o referenced in a node is called potentially
vulnerable variable (pv-variable) if o is submitted
at an input node or o is defined at a node that
transitively references to input variable/s submitted
at input node/s. In Figure 2, guestname and name are
pv-variables of the node 5 and 11 respectively.

A program path from an input node u to the exit
node is called a prime input path of u if it does not
repeat any loop and pass through u again. In a web
application program, a statement that references at
least one pv-variable and performs a HTML
response operation is called a HTML operation
statement (html-o-statement). In a CFG, the node
that represents this statement is called a HTML
operation node (html-o-node). In Figure 1,
statements at line 5 and 11 are html-o-statements,
and in Figure 2, node 5 and 11 are html-o-nodes.

2.1 Extraction of Defense through
Input Validation

Let k be a html-o-node in a CFG. Throughout this
section, we shall address k as a html-o-node. To
prevent illegal manipulation of inputs referenced at
k, it is common that predicate nodes are used to
ensure that only inputs with legitimate values are
allowed to be operated at k. Next, we shall define a
terminology to characterize such node pattern.

A predicate node d is called an input validation
node (iv-node) for k if the following properties
hold:
1) Both k and d transitively reference to a common

input variable of an input node u.
2) A prime input path m of u, that follows one

branch of d, passes through k; and no prime
input path m’ of u, that follows the other branch
of d, passes through k.

In Figure 2, both html-o-node, node 5, and predicate
node, node 2, transitively reference to the input
variable, guestname, of the input node, node 1.
Prime input paths of node 1 starting with (1, 2, 3, 4,
5, 6, …), which follow the branch (2, 3) of node 2,
pass through node 5. No prime input path that
follows the other branch (2, 6) of node 2 passes
through node 5. Hence, node 2 is an iv-node for
node 5. Likewise, the while-predicate node, node 8
is also an iv-node for the html-o-node, node 11.

Next, we shall next formalize the detection of
unprotected html-o-nodes in Property 1, which can
be proved directly from its definition.

SECRYPT 2010 - International Conference on Security and Cryptography

506

Property 1 – Unprotected Html-O-Node. If there
is no input validation node for k such that both
transitively reference to a common input variable v
of an input node u, then k is unprotected from XSS
attack through illegal manipulation of v.

A path through a CFG is called a 1-path if it
does not repeat any loop. Let Ω be the set of 1-paths
through the CFG. The partition of 1-paths in Ω, such
that paths which contain the same set of iv-nodes for
k and follow the same branch at each of these nodes
are put in the same class, is called the input
validation partition (iv-partition) for k. In the
CFG shown in Figure 2, {(entry, 1, 2, 3, 4, 5, 6, 7, 8,
9, 10, 11, 8, end), (entry, 1, 2, 3, 4, 5, 6, 7, 8, end),
(entry, 1, 2, 6, 7, 8, 9, 10, 11, 8, end), (entry, 1, 2, 6,
7, 8, end)} is the set of 1-paths. Hence, in this CFG,
{{(entry, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 8, end),
(entry, 1, 2, 3, 4, 5, 6, 7, 8, end)}, {(entry, 1, 2, 6, 7,
8, 9, 10, 11, 8, end), (entry, 1, 2, 6, 7, 8, end)}} is
the iv-partition for the html-o-node, node 5; and
{{(entry, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 8, end),
(entry, 1, 2, 6, 7, 8, 9, 10, 11, 8, end)}, {(entry, 1, 2,
3, 4, 5, 6, 7, 8, end), (entry, 1, 2, 6, 7, 8, end)}} is
the iv-partition for the html-o-node, node 11.

Next, we shall formalize the computation of
valid and invalid conditions for a html-o-node in
Property 2 and 3, which can be proved directly from
the definitions of input validation node and input
validation partition.
Property 2 – Invalid Input Condition. IVCk = {C
⏐ X is a class in the iv-partition of k such that there
is a path in X which passes through some iv-nodes
for k but does not pass through k; and C = the
conjunction of all the branch conditions of branches
at iv-nodes for k that any path in X follows} is the
set of invalid input conditions for k.
Property 3 – Valid Input Condition. VCk = {C ⏐
X is a class in the iv-partition of k such that there is
a path in X which passes through some iv-nodes for
k and also passes through k; and C = the conjunction
of all the branch conditions of branches at iv-nodes
for k that any path in X follows} is the set of valid
input conditions for k.

Note that for each class X stated in Property 2
and 3, the conjunction of all the branch conditions of
branches at iv-nodes for k that any path in X follows
is identical.

From the iv-partition computed for node 5, we
compute according to Property 2 and 3 that IVC = {(
!(guestname!=null && guestname.length()<20))}
and VC={(guestname!= null && guestname.length()
<20)} are the sets of invalid and valid input
conditions for this html-o-node. IVC and VC for the

html-o-node, node 11 can also be computed in a
similar way.

Figure 1: JSP code snippet for Guestbook SignIn.

Figure 2: The CFG of the JSP code snippet.

2.2 Extraction of Defense through
Input Filtering

For defending against XSS attack through a html-o-
statement, another alternative is to remove, replace,
or escape any dangerous characters from inputs that
may define the values of pv-variables referenced at
this html-o-statement. This filtering approach is
generally carried out by a sequence of statements
that may influence the values of all pv-variables of a
html-o-statement. We shall formalize a terminology
to characterize such coding pattern.
Potentially Vulnerable Input Filter (PV-Input
Filter) for a html-o-statement k in a program P is a
sequence F of following statements according to
their order in P:
1) All the statements at which a pv-variable of k is

defined/submitted.
2) Statements on which statements in F are data

dependent.
3) Statements on which statements in F are control

dependent such that k is not transitively control
dependent on these statements.

For example, the sequence of following statements
forms the pv-input filter for the html-o-statement at
line 5 shown in Figure 1:

AUDITING THE DEFENSE AGAINST CROSS SITE SCRIPTING IN WEB APPLICATIONS

507

1. String guestname=
request.getParameter(“guestname”);

4. guestname.replace(“<”, “<”);

Note that if a variable is not a pv-variable, it is
impossible to manipulate its value to perform an
XSS attack. This is because all possible values of
non pv-variables can only be defined by the
programmer.

3 PROPOSED AUDITING
APPROACH

Based on the theory discussed, we propose a code
auditing approach for auditing the XSS defense
features implemented in web applications through
the following two major steps:
Step 1. Extract XSS defenses through input
validation and input filtering automatically from
code.
Step 2. Examine the extracted output to determine
its adequacy.
The first step can be fully automated using
interprocedural control flow and data flow between
input nodes and html-o-nodes. The second step in
the proposed approach examines whether the input
validation and input filtering implemented for each
html-o-statement is sufficient for defending it
against XSS attack. This step is to be carried out
manually by examining the codes extracted from
Step 1 as explained in the followings.

In examining the input validation codes, the
unprotected html-o-statements from some input
variables are highly vulnerable to XSS attack
through those variables. Hence, they require special
attention in examining their input filtering codes.
Next, invalid and valid input conditions of each
remaining html-o-statement can be checked against
required input formats or specifications to examine
the adequacy for XSS defense. In examining the
input filters, one needs to first examine how the pv-
input filter for each html-o-statement is contributed
to the XSS defense, and next determine its adequacy
for XSS defense based on experience or using an up-
to-date set of coding guidelines that avoid XSS
vulnerability (e.g., XSS prevention rules from
OWASP (2010)). Program slicing can also be used
to aid the comprehension of invalid and valid input
conditions, and pv-input filter through slicing on
associated variables and statements.

Note that in addition to the statements related to
the XSS defense, the extracted output may also

include some other statements that do not serve any
security purpose. Moreover, a pv-variable may not
be vulnerable at all if it only references to input
whose value can be defined only by the programmer
(i.e., the database records or session variables read
by the program may not contain user input data).
Hence, one must study and comprehend the
extracted statements to identify the portion that
serves for XSS defense.

4 EVALUATION

4.1 Prototype Tool

Figure 3: The architecture of XSSDE.

We have prototyped a tool called XSSDE (XSS
Defense Extractor) through the use of Soot (Soot,
2008). The tool fully automates the extraction
process in Step 1. Its architecture is shown in Figure
3. It consists of two major modules: a program
analyzer, and an input validation and filtering miner
(IVF miner). Program analyzer uses Soot’s APIs to
analyze Java programs. It takes the class files of a
Java program as input and builds the CFG of the
program for control flow and data flow analysis. IVF
miner includes three sub-modules: an input
validation extractor (IV extractor), a pv-input filter
extractor (PVIF extractor), and a program slicer. For
each html-o-node in a CFG, IV extractor extracts the
set of valid and invalid input conditions of the html-
o-node and the set of ordered pairs of input variable
and input node such that the html-o-node is
unprotected from XSS attack through each input
variable. Similarly, for each html-o-statement in a

SECRYPT 2010 - International Conference on Security and Cryptography

508

program, PVIF extractor extracts the pv-input filter
for the html-o-statement. All the information
extracted is printed in a report. Program slicer is a
utility tool used for further comprehension of the
extracted information in order to determine the
adequacy of XSS defense implemented. It aids the
comprehension of variables and statements involved
in the information extracted through extracting a
program slice according to a given criterion.

4.2 Experiment

To evaluate the proposed approach, we have
compared our approach with Livshits and Lam’s
approach (Livshits and Lam, 2005). In the
experiment, two postgraduate students applied our
approach and two other students applied Livshits
and Lam’s approach on five open source systems
obtained from GotoCode web site (GotoCode, n.d.).
We have requested the two students to apply
Livshits and Lam’s approach analytically since their
prototype tool is not available to us. In applying our
proposed approach, the two students performed Step
1 through the use of the prototype tool XSSDE. As
discussed in section 3, Step 2 is to examine the
extracted output from Step 1 manually in order to
determine its adequacy for XSS defense. To
facilitate this step, we have provided the two
students with a set of coding guidelines for XSS
prevention which was obtained from the two reliable
sources (OWASP, 2009; OWASP, 2010). In this
evaluation, we aim to address the following two
research questions:

RQ1. Is the code auditing approach really
necessary despite existing static approaches?

RQ2. Is our approach effective in extracting all
the XSS defense features implemented in programs
and feasible in examining them to determine their
adequacy?

To answer the questions, we analyzed the
statistics of the experiment results shown in Table 1.

RQ1. Livshits and Lam’s approach accounted
for 27% (158/582) false positive rate (it produced
29% (12/41) false positive rate in their own
evaluation in (Livshits and Lam, 2005)). Using a set
of coding guidelines that avoid XSS vulnerability,
both students applied the proposed approach and
identified all the vulnerable cases accurately without
any false positives. It was observed that majority of
the actual vulnerable html-o-statements (424) arises
from imperfect input filters used in the experimented
systems. In this experiment, Livshits and Lam’s
approach did not produce any false negative cases as
we assumed that a complete vulnerability

specification is provided by user. In general, this is
not possible. At least in this experiment, we
observed that the compared approach produces
significant false positives and our proposed
approach really helps in identifying actual XSS
vulnerabilities. To further study the usefulness of the
proposed approach, we plan to compare it with more
recent static analysis approaches which may produce
lower false positive cases.

Table 1: Statistics of evaluation results.

RQ2. Although Livshits and Lam’s approach
extracts data flow traces associated with each
vulnerability point, clearly it missed out essential
XSS defense features implemented. In contrast, we
have confirmed that the proposed approach
completely extracted all XSS defense features
implemented. Of the total codes written, Livshits
and Lam’s approach and our proposed approach
extracted 11.6% (3590/30952) and 16%
(4940/30952) respectively. Though the proposed
approach extracted more lines of codes (LOCs)
including those that are not related to XSS defense,
we observed that manual examination process is still
very much feasible for these sizes of the applications
experimented. In future work, we plan to test the
feasibility of the proposed approach based on larger-
sized web applications.

5 RELATED WORK

Many security researches to prevent XSS attacks are
mostly dynamic approaches. There are two types of
dynamic approaches; server-side detection and
client-side detection. Server-side detection
approaches generally set up a proxy between client
and server, and check whether the input parameters
in HTML request contain any malicious scripts
(Kruegel and Vigna, 2003), or the input parameters
are used in the scripts of HTML response (Ismail et
al., 2004; Johns et al., 2008; Bisht and

AUDITING THE DEFENSE AGAINST CROSS SITE SCRIPTING IN WEB APPLICATIONS

509

Venkatakrishnan, 2008), or the scripts of HTML
responses are actually intended by the application
(Johns et al., 2008; Bisht and Venkatakrishnan,
2008).

Client-side detection approaches are proposed
mainly to be used and deployed by the clients. Beep
(Jim, Swamy and Hicks, 2007) provides the client’s
browser with security policies (e.g., a set of
legitimate scripts and HTML content where
malicious scripts may occur) and modifies the
browser such that it is capable of preventing
illegitimate scripts from being executed. Noxes
(Kirda et al., 2009) acts as a personal firewall which
detects potential XSS attacks based on filter rules
generated automatically or manually by clients.
Filter rules are basically the whitelist and blacklist of
url links. Blueprint (Louw and Venkatakrishnan,
2009) takes over the browser’s parsing decision on
untrusted HTML contents to ensure that the resulting
parse trees contain no script. Blueprint then embeds
model interpreter in corresponding web pages such
that the client’s browser could reconstruct those
parse trees. All the above approaches incur runtime
overheads due to the use of proxy and interception
of HTTP traffic. Some also introduce technical
difficulties in setting up, configuring and deploying
of their systems. Hence, they may not be useful for
novice users and some who prioritize performance.

In software testing, there are input validation
testing (IVT) approaches that could uncover some
XSS vulnerabilities in the programs (Hayes and
Offutt, 2006; Li et al, 2007; Liu and Tan, 2009).
These approaches generate test cases with valid and
invalid inputs either identified from specification
(Hayes and Offutt, 2006; Li et al, 2007) or extracted
from code (Liu and Tan, 2009). However, IVT
approaches are not suitable for checking the
adequacy of the input validation codes. Since even
imperfect or incorrect input validation codes could
detect some malicious inputs, IVT approaches may
not reveal the weaknesses of those validation codes.

Works on the identification of XSS
vulnerabilities in web applications are mainly based
on static analysis techniques. They check whether
tainted data reaches sensitive program points
without being properly sanitized, using flow-
sensitive, interprocedural and context-sensitive data
flow analysis (Livshits and Lam, 2005; Jovanovic et
al., 2006; Xie and Aiken, 2006). Pixy (Jovanovic et
al., 2006) enhances the accuracy by aliasing.
However, these approaches do not check the custom
sanitization functions (either they conservatively
assume that all those functions return unsafe data or
user explicitly states the correctness of the

functions). As a result, even Pixy produced 50%
false positive rate (Jovanovic et at., 2006).
There are static analysis approaches which check the
adequacy of sanitization functions (Balzarotti et al.,
2008; Wassermann and Su, 2008). Based on string
analysis techniques, they use blacklist comparison
approach to check whether tainted strings may still
contain the blacklisted characters at sensitive
program points after passing through sanitization
functions. However, Wassermann and Su’s current
tool cannot handle complex codes and some of
PHP’s string functions (Wassermann and Su, 2008).
Saner (Balzarotti et al., 2008) requires dynamic
analysis to identify the false positives produced by
static analysis phase.

The similarity between the above static
approaches and our approach is that the
vulnerabilities identified by them may serve as
pointers for auditing the XSS defense features
implemented in the programs. However, they do not
extract all the statements that contribute to the XSS
defenses. The results of those static approaches
show that false positives are common due to their
conservative nature. Most of the above approaches
learnt those false positive cases through manual
inspection on identified vulnerabilities. Hence, it
supports the main point of our proposed approach
that manual code auditing is necessary. However,
manual inspection on the whole system would be
labor-intensive, costly, and error-prone. Therefore,
we propose the code auditing approach that focuses
on comprehensively extracting the security
mechanisms implemented in code in order to
facilitate the manual code audits.

In fact, the proposed approach and the above
static approaches compliment each other. Because
the tools implemented by most of the above static
approaches automate the potential XSS vulnerability
identification process and our XSSDE tool
automates the XSS defenses extraction process, they
could be used together for more efficient code
auditing process.

6 CONCLUSIONS

Cross site scripting is one of the most common
security threats to web applications. Although
current dynamic analysis approaches are generally
effective, users may not want to overcome their
technical issues such as configuration, deployment
and runtime overheads. Moreover, they also do not
identify the XSS vulnerabilities in the applications.
Existing static analysis approaches also lack

SECRYPT 2010 - International Conference on Security and Cryptography

510

accuracy in identifying XSS vulnerabilities, and
therefore they cannot avoid the code auditing
requirement. Hence, we propose a novel approach
for extracting XSS defense features implemented in
code to facilitate both examination and auditing
processes.

In future work, we plan to study on effective
coding techniques for preventing XSS attack and
generalize them as guidelines so that one could use it
in examining the adequacy of extracted XSS defense
features. We also plan to evaluate our approach
against more recent or better approaches based on
the experiments on both open source and industrial
applications.

REFERENCES

Balzarotti, D., Cova, M., Felmetsger, V., Jovanovic, N.,
Kirda, E., Kruegel, C., and Vigna, G. (2008). Saner:
Composing static and dynamic analysis to validate
sanitization in web applications. In S&P ’08:
Proceedings of the IEEE Symposium on Security and
Privacy, 387-401.

Bisht, P. and Venkatakrishnan, V. N. (2008). XSS-Guard:
Precise dynamic prevention of cross-site scripting
attacks. In DIMVA ’08: Proceedings of the 5th
International Conference on Detection of Intrusions
and Malware, and Vulnerability Assessment, 23-43.

GotoCode (n.d.). Open source web applications. Retrieved
August 23, 2009, from http://www.gotocode.com

Hayes, J. H. and Offutt, J. (2006). Input validation
analysis and testing. Empirical Software Engineering,
11, 493–522.

Ismail O., Eto M., Kadobayashi Y., and Yamaguchi S.
(2004). A proposal and implementation of automatic
detection/collection system for cross-site scripting
vulnerability. In AINA ’04: Proceedings of the 8th
International Conference on Advanced Information
Networking and Applications, 145-151.

Jim, T., Swamy, N., and Hicks, M. (2007). Defeating
script injection attacks with browser-enforced
embedded policies. In WWW ’07: Proceedings of the
16th International conference on World Wide Web,
601-610.

Johns, M., Engelmann, B., and Posegga, J. (2008).
XSSDS: Server-side detection of cross-site scripting
attacks. In ACSAC ’08: 2008 Annual Computer
Security Applications Conference, 335-344.

Jovanovic, N., Kruegel, C., and Kirda, E. (2006). Pixy: a
static analysis tool for detecting web application
vulnerabilities. In S&P ’06: Proceedings of the IEEE
Symposium on Security and Privacy, 258-263.

Kirda, E., Kruegel, C., Vigna, G., Jovanovic, N. (2009).
Client-side cross-site scripting protection. Computers
& Security, 28, 592-604.

Kruegel C. and Vigna G. (2003). Anomaly detection of
web-based attacks. In CCS ’03: Proceedings of the

10th ACM Conference on Computer and
Communication Security, 251–261.

Li, N., Wu, J., Jin, M. Z., and Liu, C. (2007). Web
application model recovery for user input validation
testing. In ICSEA ’07: 2nd International Conference
on Software Engineering Advances, 85-90.

Liu, H. and Tan, H. B. K. (2009). Covering code behavior
on input validation in functional testing. Information
and Software Technology, 51, 546-553.

Livshits V. B. and Lam M. S. (2005). Finding security
errors in Java programs with static analysis. In
USENIX Security ’05: Proceedings of the 14th Usenix
Security Symposium, 271-286.

Louw, M. T., Venkatakrishnan, V. N. (2009). Blueprint:
Robust prevention of cross-site scripting attacks for
existing browsers. In S&P ’09: Proceedings of the
30th IEEE Symposium on Security and Privacy, 331-
346.

OWASP (May 14, 2009). Reviewing Code for Cross-site
scripting. Retrieved January 10, 2010, from
http://www.owasp.org/index.php/Reviewing_Code_fo
r_Cross-site_scripting

OWASP (January 6, 2010). XSS Prevention Cheat Sheet.
Retrieved January 10, 2010, from
http://www.owasp.org/index.php/XSS_(Cross_Site_Sc
ripting)_Prevention_Cheat_Sheet

Sinha, S., Harrold M. J., and Rothermel G. (2001).
Interprocedural control dependence. ACM
Transactions on Software Engineering and
Methodology, 10, 209-254.

Soot (2008). Soot: a Java Optimization Framework.
Retrieved February 12, 2009, from
http://www.sable.mcgill.ca/soot/

Wassermann, G. and Su, Z. (2008). Static detection of
cross-site scripting vulnerabilities. In ICSE ’08:
Proceedings of the 30th International Conference on
Software Engineering, 171-180.

Xie, Y. and Aiken, A. (2006). Static detection of security
vulnerabilities in scripting languages. In USENIX
Security ’06: Proceedings of the 15th USENIX
Security Symposium, 179-192.

AUDITING THE DEFENSE AGAINST CROSS SITE SCRIPTING IN WEB APPLICATIONS

511

