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Abstract. Four construction principles that compose more complicated percep-
tual gestalts from less complex ones are defined in detail: Mirror gestalts, lat-
tice gestalts, rotational mandalas, and clusters, respectively. These can be en-
capsulated as constructions in a production system. Since any of the four con-
structions can work on any gestalt, a recursive and very expressive scheme is 
set up with many prospective applications in image mining. Of particular inter-
est is such analysis for aerial and satellite images and for façade images of 
buildings. 

1 Introduction 

Gestalt is ubiquitous in nature as well as in man-made artifacts. Recognition of gestalt 
goes far beyond today’s understanding of “pattern recognition”. We have to drop 
back to a naïve understanding of the word “pattern”, to forget the feature vectors we 
are used to deal with in the pattern recognition community and imagine patterns we 
perceived occasionally in a more contemplative situation. Usually we are not aware of 
the mathematics, particularly of the implicit algebra in our intuitive understanding of 
gestalt, like symmetries, repetition, rotational mandalas, variation, etc. Understanding 
the word “recognition” according to its Latin roots means to reconstruct the hidden 
gestalt idea, resulting, as far as possible, in the most probable explanation. The 
appearance of a gestalt is uncertain – there may be displacement, deletion and clutter. 
Humans still recognize the gestalt. For a machine, however, this poses a very hard 
search task which nonetheless is indispensible for real content-based image mining. 

1.1 Related Work 

For more than thirty years now automatic analysis of complex aerial images has been 
a challenge and also basic approaches to their algebraic gestalt have been attempted 
[11]. Today emphasis is more on learning of rules and stochastic modeling of con-
straints and relations [12]. Automatic understanding of buildings currently also in-
cludes façade analysis [17] including the grouping of semantically similar SIFT in-
stances in lattices [13]. The main economic motive is apparently application in the 
games industry. The computer graphics community acknowledged that a deeper un-
derstanding of gestalt principles and design customs in architecture are prerequisite to 
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swift setup and detailed elaboration of cyber city models [16]. This includes work for 
archeologists as well. Up to now we are not aware of much other work on gestalt 
recognition in our understanding in the machine vision community. This paper con-
tinues work presented in [8, 10]. Here we focus on the precise construction methods.   

2 Constructions of Gestalts 

Given a set of points and corresponding assignments to orbits a new gestalt instance 
is constructed by error sum minimization. The errors are displacements between the 
actual positions of the points and the set positions given by the gestalt principle and 
the corresponding attribute values. All gestalts are given modulo the action of a par-
ticular group on the indices of the points, which do not alter the identity of an in-
stance. We distinguish the following constructions:    

2.1 Mirror Symmetry Gestalt 

Given k pairs (p1,0, p1,1), …, (pk,0,pk,1) of points in the usual 2D vector space, we are 
looking for an optimal axis a such that by a mirror mapping according to this axis the 
points pi,j are flipped into the points pi,j+1 in the least squares error manner. Here we 
have i=1…k, and j=0,1 to be understood modulo 2. We can decompose the constraint 
into two parts: 1) The axis should be incident with the k midpoints (pi,0+pi,1)/2. And 
2) the axis should be perpendicular to the k difference vectors pi,0-pi,1. This leads to a 
linear one-step solution using singular value decomposition of the matrix 
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(upper indices x and y indicate the coordinates in 2D). The eigenspace corresponding 
to the least singular value is accepted as solution a (axis equation for the new gestalt). 
Furthermore the new gestalt obtains the center of gravity of all points as position o. 
We state here without proof that this algebraic solution approaches the desired least 
squares solution – for which according to its non-linear setting an iterative calculation 
would be necessary – provided that the coordinate system is chosen properly. For our 
preference towards one-step linear algebraic solutions we refer to [4]. Figure 1 dis-
plays such minimization and the histogram of residuals. We have used particular such 
gestalt instances in SAR-image understanding [9]. It is evident that this definition is 
invariant under action of the trivial finite group of order 2 on the second index 0↔1. 
The gestalt is understood modulo this group. 
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Fig. 1. Left: Construction of a mirror symmetry gestalt– here with k=7 point pairs and σ=0.07; 
right: Histogram of the residuals. 

2.2 Lattice Gestalt 

Given k m-tuples (p1,0, …,p1,m-1), …, (pk,0, …, pk,m-1 ) of points, we are looking for an 
optimal common start position po and a shift vector v such that: 
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This is a linear problem and thus the one-step linear algebraic solution is indeed 
the least squared error sum solution.  It is just averaging the differences for v and 
taking the center of gravity for o is optimal. The construction of the starting points 
p,i,o is also trivial. A typical lattice gestalt is depicted below in Figure 3. 

2.3 Rotational Gestalts 

Given k m-tuples (p1,0, …,p1,m-1), …, (pk,0, …, pk,m-1 ) of points, we are looking for an 
optimal common center point o such that by rotation with angle 2π/m the points pi,j 
are mapped onto the points pi,j+1 in the least squares error manner. Here we have 
i=1…k, j=0…m-1. This leads to a sum of squared errors reading 

21

2 / , ,
1 0

( ) ( )
k m

j k i o i j
i j





 

      M p o p o  (3) 

to minimized, where o and the vectors pi,o are varying. Mα denotes the usual turning 
matrix for angle α in 2D. Already from this definition can be seen that the gestalt has 
to be understood modulo the finite rotation group of order m. I.e. a cyclic shift on the 
indices j does not change the identity of the gestalt. The vector pi,o that results from 
the minimization has to be understood as giving a radius for the ith orbit with its 
length and a phase modulo 2π/m. Figure 2 shows the situation. Minimization of (3) is 
a non-linear problem closely related to circle fitting.  
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We are not aware of a direct linear algebraic setting for it (such as is presented for 
mirror gestalts above). We refer to the closely related circle fitting problem [6], and 
initialize o by the center of gravity of all observed points and pi,o by pi,0 . The itera-
tion is performed using the Jacobian displayed in (4). Entries to the matrix are the 
partial derivatives ρ for the current iteration. As above the lower indices denote i (the 
index inside the orbit), and j (the index of the orbit) respectively. Upper index x or y 
denotes the direction in the plane. The parameter vectors pi,o are treated with radius r 
and phase p. These are the other upper indices. 
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The columns of this matrix correspond to the parameters ox, oy, r1, p1, …, rk, pk 
and the rows to the current residuals. For iteration this matrix has to be squared and 
inverted in each step. For the rotational gestalt we observed that convergence is 
quick. Usually three or four steps are sufficient. 

 

Fig. 2. Left: Construction of a rotational symmetry – here of order m=6 with k=4 orbits and 
σ=0.25; right: Histogram of the residuals. 
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2.4 Cluster Gestalts 

A very important principle in gestalt perception is proximity. This clusters a set of 
adjacent points into a new gestalt by constructing the center of gravity as new posi-
tion o. Also the eigenspace corresponding to the larger eigenvector may be used as 
orientation attribute v. Clustering also yields a sum of squared residuals. The parts are 
added to the cluster gestalt as set – i.e. the full permutation group acting on the indic-
es of the parts does not alter identity of the cluster gestalt instance. Clusters are the 
least significant gestalt. If any of the gestalt constructions listed above applies better, 
they will be preferred. 

3 Testing for Equality and Similarity 

When entering a newly constructed gestalt instance into the database care has to be 
taken that this gestalt has not yet been constructed in a different order or manner. 
Actually, this is the part where algebraic knowledge is required most of all. In fact, 
almost for any gestalt construction trees there are very many other possible construc-
tions. The same object may be described in different ways. Here we need canonic 
representatives allowing swift tests for equality – and more important: A metric or 
similarity measure that does not require extensive computational effort. For gestalts 
with uncertainty care has to be taken, that all construction principles use the same 
kind of residuals – here squared error sums – so as to compare two different descrip-
tions for the same set of primitives and decide for the simplest description with mi-
nimal squared error sum. 

3.1 Sub-lattices and Lattices of Lattice Gestalts 

Any lattice of size m can also be understood as lattice using -v as translation vector 
and replacing j by m+1-j. Moreover, if m is not a prime number and thus can be de-
composed m=pq a lattice gestalt of order m can also be understood as lattice of size p 
containing sub-lattices of size q (and vice versa). According to the Helmholtz prin-
ciple of the “maximal meaningful element” as claimed by A. Desolneux [3] the max-
imal gestalt is the preferred canonic description, in which the gestalt is to be stored in 
the database. Particular lattice gestalts – of bright spots, i.e. salient scatterers - have 
been investigated in [9] as well. This includes the preference for maximal gestalts 
(scatterer rows).  

Occasionally, we have coded a production system grouping rows of rows where 
the outer gestalt has a different direction than the inner ones (preferably perpendicu-
lar) [15]. This can be seen as a practical step towards gestalt algebra. Columns of 
objects which form again a row are one of the main examples, ubiquitous in facades 
and remotely sensed industrial sites. Again, the situation is different with angle be-
tween the inner and the outer vector: Vectors of π/3, π/4 or π/6 difference in orienta-
tion and of equal length construct a 2D-lattice (triangular, orthogonal or hexagonal). 
There is an elaborated theory on these wallpaper lattices [5] and also practical work 
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of recognition of such lattices [1]. We also refer to the investigations on 2D and 3D 
lattices going on in Physics [14] and in particular in cristallography. In aerial images 
or images of facades, in particular, orthogonal 2D lattices are not rare. However, we 
do not introduce these as a special gestalt. Instead, the equality test has to take care of 
the different possibilities. If the angle is not very close to one of the three wallpaper 
possibilities, or if the length of the vectors v is different there will be a preferable 
canonic representation: The classical gestalt principle proximity demands that the 
closer objects are grouped first into the inner lattice, after that these columns are 
grouped into rows – with longer distance vector v. Moreover, we are not treating 
infinite lattices here. 

3.2 Sub-rotations of Rotational Gestalts 

In analogy to the lattice gestalts we have to take care here also whether m is a prime 
number. If not it can be decomposed m=pq and the rotational gestalt can also be un-
derstood as rotational gestalt of order p or also q (in accordance to the decomposition 
of the finite cyclic groups of order m). Again obeying the Helmholtz principle the 
maximal gestalt is the preferred canonic description, in which the gestalt is to be 
stored in the database, provided it yields no significantly larger error sum.    

3.3 Equality of Lattice and Mirror Gestalts 

It is easily verified that a lattice of symmetric gestalts can also be understood as mir-
ror symmetry provided that the symmetry axes of the parts ai are perpendicular to the 
generating vector v. For an even m there will be k·m/2 mirror orbits created by flip-
ping i,j↔m-i,j and simultaneously switching the internal mirror indices. Figure 3 
shows such a case. According to gestalt principles the simplest model is again pre-
ferred as canonic description – which is here of course the lattice.  

 

Fig. 3. A lattice with m=5 and k=4 orbits (traces); it can also be understood as mirror gestalt 
with the axis displayed dotted. 

3.4 Equality of Rotational and Mirror Gestalt 

Provided that the axes of symmetric parts of a rotational gestalt all are incident with 
the center of this rotational gestalt it can also be understood as a symmetry gestalt 
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with respect to any of axes of its parts. Here we have to change the rotation direction 
of the indices in the orbits and also flip the internal mirror indices around. Rotational 
symmetry is regarded as stronger than mirror symmetry. Thus such a gestalt will be 
stored as rotation in the database, provided it yields no significantly larger error sum 

4 Coding the Search for Gestalts as Production System 

Searching for gestalt instances in measured image data using the algebraic structures 
outlined above poses a non-trivial challenge. We recommend using the production 
system interpreter as outlined e.g. in [9]. It has any-time performance, avoids com-
plete search, is quality driven bottom-up per default and allows sophisticated top-
down acceleration. The class Gestalt is inherited from the class CImageObject and 
may thus be handled by this interpreter. All other classes listed in Table 1 below are 
in turn inherited from the class Gestalt. 

Table 1. Productions coding the gestalt constructions above. 

Right side  comment construction Left side 
MirrorGestalt ← only 2 instances Sect. 2.1 Gestalt, Gestalt 
LatticeGestalt ← starting a row Sect. 2.2 Gestalt, Gestalt 
LatticeGestalt ← continuing “ LatticeGestalt, Gestalt 
RotatGestalt ← starting a row Sect. 2.3 Gestalt, Gestalt 
RotatGestalt ← cont. until full “ RotatGestalt, Gestalt 
ClusterGestalt ←  Sect. 2.4 Gestalt, …, Gestalt 

 
Productions for this interpreter usually have not only a construction function for 

the right hand side but also a condition on the left hand side objects in order to avoid 
any object to be combined with any other (constrained set grammar). This is omitted 
here, because our approach attempts to construct a gestalt algebra – where indeed any 
member should be a possible partner for any other member. In practice, however, a 
threshold should be set on the residual error sum (which of course sets the quality 
assessment driving the search). The constraint resulting from such a threshold can be 
transformed into a search region setting a focus where to look for prospective partner 
gestalts.  

The productions listed in the table can construct arbitrarily complex gestalt alge-
bra instances such as sketched in [10]. First parts of this coding endeavor have al-
ready been accomplished. But there remain some questions which have to be ans-
wered before the whole system can be set up. These are discussed below.   

5 Discussion and Conclusions 

This contribution introduced in more detail the constructions necessary for setting up 
gestalt algebra as indicated  earlier in [8, 10]. It is our goal to add more precision and 
detail on the way to the implementation of this structure for practical applications.  
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As long as the set of equality and similarity relations and canonical forms for ges-
talts, as listed in chapter 3, is not complete there is little sense in starting the coding 
endeavor. While for infinite 2D lattices there is an elaborated mathematical theory at 
hand for more than hundred years [2], we have no proof for completeness of the list 
of Section 3 indicating possible different appearances of the same finite gestalt with 
respect to all our gestalt constructions yet. 

As indicated in Section 3 in the description of a composed gestalt simplicity in the 
tree structure (flatness of hierarchy) has to be balanced against the achieved squared 
residual sum. Another open problem concerns the scale: Gestalt instances with a deep 
tree composed from many objects distributed on a large area should be assessed on a 
different scale. But the common displacement error measure is a prerequisite of mu-
tual comparison for the gestalts. We are looking forward to interesting future work. 
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