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Abstract. In the present work, we used Kohonen’s self-organizing map algo-
rithm (SOM) to analyze functional magnetic resonance imaging (fMRI) data. As
a first step to increase computational efficiency in data handling by the SOM al-
gorithm, we performed an entropy analysis on the input dataset. The resulting
map allowed us to define the pattern of active voxels correlated with auditory
stimulation in the data matrix. The validity of the algorithm was tested using both
real and simulated data.

1 Introduction

Functional magnetic resonance imaging (fMRI) is a non-invasive tool widely used for
studying the human brain in action. The fMRI has been applied to cognitive studies
and also in a clinical setting to monitor tumour growth, pre-surgical mapping, and
to diagnose epilepsy, Alzheimer’s disease, etc [1]. The fMRI measurements are based
on blood-oxygen-level-dependent correlations (BOLD) [2],[3], with hemoglobin being
used as endogenous contrast agent, due to the magnetic properties of oxy-hemoglobin
(diamagnetic) and deoxy-hemoglobin (paramagnetic) [4].

The BOLD signal was obtained using two experimental paradigms. The first used a
blocked design, with the subject being exposed to alternating periods of stimulation and
rest. The event-related paradigm, on the other hand, required that the subject performs
a simple task, intercalated by long resting intervals.

A fMRI dataset consists of images in 3D spdeex y x z), with each image point,
named a voxel, changing a long tirt¢. Most fMRI analysis try to identify how signal
related to voxels in a region of interest (ROI) vary in time and to find out whether
these variations are somehow correlated with the stimulus. This analysis, however, is a
computational challenge due to the low signal to noise ratio in the BOLD response and
the usually large amount of data that needs to be processed. Many analytical methods
have been developed to deal with this complexity, some of them were created earlier to
analyze positron emission topography-generated signals (PET).

Most methods available in the literature use statistical techniques to identify active
regions, includingtudent’s t test [5], crossed correlation [6], and the general linear
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model (GLM) [7]. These methods are based on the standard dyamamic function,
which models the BOLD response in the brain. Other populdhous are independent
component analysis (ICA) [8], [9] and principal componemalysis (PCA) [10].

Clustering techniques have also been used successfullyding K-means, fuzzy
cluster and hierarchical clustering. Clustering techagare based on the similarity
observed in voxel's time series. The present study uses ¢theméen’s self-organizing
maps algorithm (SOM) to analyse fMRI data. The SOM [11] isetyf clustering tech-
nique which transforms a signal input pattern of an arbjtthmension into a discrete
map and implements transformations in a topologically oizd way.

2 Material and Methods

2.1 Simulated Data

We simulated the fMRI experimeii64 x 64) depicted in Figure 1 with 120 slices by
convoluting a block-like stimulus function with the cancal hemodynamic response
function generated as a sum of two distribution functior®:[1
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witha = 6,d’ = 12, b = b = 0.9 andc = 0.35, having been determined experimen-
tally by Glover in 1999 with auditory stimulation [13].
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Fig. 1. Diagram showing the spatial distribution of active voxeis gheir intensity along time in
simulated data.

The active area corresponds to 49 voxels, while 1349 voxaiesponded to the
remaining grey matter. The other 2698 voxels corresporalétetbackground and are
not time modulated. We added uniform Gaussian noise to r@@MR of 2dB, which
was calculated with the following expression:
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SNR= 10log | == |, (2)
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wherec?2 ands? are signal and noise variances, respectively.



2.2 Real Data

The fMRI experimentused a 1.5 T Siemens scanner (MagnetsiorViErlangen, Ger-
many), with the following parameters for EPI (echo-plamaagiing) sequences: TE =
60ms, TR=4.6s, FA=90, FOV =220 mm, and slice thickness & 1. 64 cerebral
volumes with 16 slices each were acquired with a matrix dsm@nof128 x 128.

During the experimental procedure the subject receivedt@ydstimulation in a
blocked design, with 5 stimulation blocks (27.5s each)oakated with 6 resting blocks
(27.5 s each). During the task, the subject listened pdgsive complex story with a
standard narrative structure. After, the test the subjedtd inform to the experimenter
its comprehension of the story content.

Acquired images were preprocessed with the software SPk8g&cal Parametric
Mapping) in order to increase the signal-to-noise ratioR$Bnd to eliminate incident
noise associated with the hardware, involuntary movemeitise head, cardiac and
respiratory rhythms, etc.

2.3 Sdf-organizing Maps

fMRI data was analyzed with Kohonen’s SOMs using an impletaén available in
the literature (see [14], [15], [16], [17], [18], [19]). Kolhen’s SOM is an artificial
neural network where neurons are disposed as a uni- or léfdiional grid layout. In a
bi-dimensional layout, geometriy is free and can be reatarghexagonal, triangular
etc. Ina SOM, each neuronin a grid is represented by a priifyatstribution function
of the input data.

The SOM algorithm responsible for map formation beginsafi#ing the grid neu-
rons weights with random values, which can be obtained fioeitiput data. In the
present work we used a bidimensional grid of dimengiox 10 (: = 100) [19]. Each
neuron in the grid is connected to every element of the inptagbt, i.e., the dimension
of weightsm,; is the same as the input dataset:

m; — [mﬂ,mm, - ,min]T c %, (3)

wheren indicates the total amount of points available in the timéesegenerated by
the fMRI experiment.
After each iteratiort of the ANN, we selected randomly a vector from the input
dataset, given by:
Xi:[xl,xg,...,l‘n]TG%, (4)

which indicates the time series of a given voxel from the f\MRtaset.

Thenx is compared to weights; in the grid using the minimun euclidean distance
as criteriom for choosing a winner in the ANN [15],[19]. Sanihe correlation distance
metric, however, seems to be a better method to discernasitids than conventional
Euclidean distance [16], the winner neuron is selected by:

m, = arg max {corr(x(t), m;(t))}, (5)
with i = 1..., M whereM is the total number of neurons in the grieh,.(¢) repre-

sents the time series of the winneand corfx(¢), m;(¢)) is the correlation coefficient
betweenx(t) andm, ().



The updating of the weight vecten(¢ + 1) in time¢ + 1, with¢ = 0,1,2,...is
defined by:
m;(t + 1) = my(t) + hei () [x(t) — mi(t)], (6)

which is applied to every neuron on the grid that is withinttiy@ological neighborhood-
kernelh.; from the winner. Thus, Equation (6) has the goal of approkimyahe weight
vectorm; of neuroni towards the input vector, following the degree of intenatig;.
This approach transforms the grid, after training, in a togizally organized charac-
teristic map, in the sense that adjacent neurons tend todiraniar weights.

A function frequently used to represent the topologicahbbrhood-kernét,; is
the Gaussian function, which is defined by:

—|lre — il
hei(t) = a(t) exp { 202(0) }, @)
where«(t) is the learning rate, which has to gradually decrease aliomg to avoid
that new data gathered after a long training session couttbommise the knowledge
already sedimented in the ANN; andr; determine the discrete position of neurons
c andi in the grid; ando(t) defines the full-width at half-maximum (FWHM) of the
Gaussian kernel. Parametet($) anda(t) gradually decrease iy~ (7 is a time cons-
tant) after each iteratiot) following an exponential decay.

2.4 Evaluating the SOM Quality

There are several mechanisms that can evaluate the quittyg generated map ob-
tained after the learning process. In the present work we teequantization error:

1
By =~ D Ix—m|*. (8)

The quantization error is defined as the mean error correlpgio the difference
between each characteristic vectoand the winner neurom., whereN is the total
number of patterns.

2.5 Analysisof Entropy

Some authors recommend the ad-hoc reduction of voxel sartplaptimize the algo-
rithm implementation [20]. Thus, in order to improve ariaéit efficiency, only signals
originating from the brain were actually processed. Besides performed an entropy
analysis to each voxel of the characteristics set and editachall voxels with an en-
tropy level below an empirically determined threshold. Biannon’s entropy, as well
as other techniques based on Information Theory, has ptoveglsatisfactory in fMRI
experiments [21].

The Shannon entropy of a random varialflewith probability vector(py, ..., p,)
is defined by:

H(X) == pi-log, pi, 9
=1



with H(X) being the entropy of variabX. The Shannon entropy [22] measures the
uncertainty present in any dataset and allows the compenists properties with other
datasets of similar dimensions, by representing the amafunformation contained in
each as a probabilistic event.

To calculate the entropy, the time series of each voxel igldi/into two levels of
intensity, then is calculated the probabilities of leveisnbensity from the amount of
time points at each level. Finally, the entropy of each tierges is calculated according
to Equation (9). The entropy of signals corresponding to-active voxels tends to
have low value because of an irregular configuration of tgeadi On the other hand,
the signal of a probable active voxel tends to present a hadjrevof entropy, which is
associated with a wide distribution of probability.

3 Results

In this work, the configuration parameters of the SOM wergallized according to
previous studies [16],[19], both in real and simulated diat&quation (7), the learning
rate was initialized a&(0) = 0.1 and the parameter effective width a&) = 7. The

number of SOM iterations was regulated dinamically acetgdd error stabilization

(Eq. 8).

3.1 Simulated Data

First, we calculate Shannon’s entropy for each voxel of tmeikated data. The values
of entropy for the 1398 voxels contained in the interior & #rtificial brain had varied
of 0.4949 to 1, where the 49 voxels with activation signal peesented one high value
of entropy (Figure 2a). After that, abo6i#; of 1398 voxels were eliminated from the
input data of SOM, these voxels had presented a value ofnfio < 0.85 (Figure

2b).

Fig. 2. (a) Entropic map of the artificial data; (b) Entropic anadysf synthetic data. The dark
dots in the image were eliminated, the equivalent%fof the input data.




From the final conformation of the neuronal grid achievedrafDO0 algorithm itera-
tions (Figure 3), we can observe that voxels with similargenal patterns are clustered
together in the SOM.
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Fig. 3. 10 x 10 grid of neurons after implementation of the SOM algorithing ¢luster of neurons
in yellow match the patterns of activity.

For better visualization of these clusters, there are séwehrstering methods that
can be used, such as K-means [23], fuzzy logic [24] and aiosl as a measure of
similarity in a hierarchical clustering [16]. We use thistlaeference utilizing a simple
correlation as a measure of similarity between neuronsamytd.

Figure 4 shows the active regions defined using the averggaldrom the neurons
demarcated in the Figure 3. A correlation coefficient (CC$ dtermined between this
average and each voxel in a fMRI dataset, showing only thdatke@C > 0.7056.

Fig.4. The dark regions in the brain correspond to active regiordefised by the SOM after
100 iterations.



3.2 Real Data

The same analytical procedure used for simulated data veaktasieal with real data.
However, we adopted the quantization error (Eq. 8) to esérttee amount of steps of
the algorithm and also act as quality controller of learnfigure 5 shows the evolution
of error to each 10 iterations, using normalized data. Bahé#the error has begun to
stabilize at around 100 repetitions, the training is cargohuntil 250 iterations in order
to perform a fine tuning of the map features and thus producatiastially accurate

quantization of the input space. Analyzing the same figtiis gossible verify that the

magnitude of error for the case where it was applied to ameatlye entropic prior to

SOM (Fig. 5a) presents lower, also have begun to stabilineesdat earlier than the
case where not used the Shannon'’s entropy (Fig. 5b).
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Fig. 5. Graph of the quantization error for a total of 250 iteratidj@a$ quantization error with the
application of entropy; (b) quantization error without rexmly.

Figure 6 reveals the active voxels, according to our methothe eighth slice of
fMRI data CC> 0.6. In it you can see two main regions as a result of the auditmsiy t
located in the temporal lobe.



Fig. 6. Active regions correlated with the auditory stimulatiorfided after 250 iterations with
the SOM.

4 Conclusions

The Kohonen's self-organizing map was applied in data otfiemal magnetic reso-
nance in synthetic and real models, this last one repregpati auditory experiment
with the paradigm in block. With the purpose of increasing éifficiency of the analy-
sis method was proposed to Shannon’s entropy, which elietina range o$ — 10%
of the set of input data. The configuration of the data afterthitropy analysis allowed
more likely to find groups of neurons active in the SOM gridhnatsmaller number of
iterations. Moreover, in the temporal evolution of the digation error of the SOM, it
can be verified that entropy analysis decreased the ameldtitis error and admitted
his slightly faster stabilization. The results of SOM, b@hsimulated data, as for real
data, reaffirmed that it can be used as a tool for interpretatf fMRI data. And it has
the advantage that the shaped of the hemodynamic respamstecisnsidered, that is, a
HRF modeled mathematically is not used.
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