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Abstract: In this paper, a strategy for automatic tuning of decentralized predictive controller synthesis parameters 
based on multiobjective optimization for multivariable systems is proposed. This strategy integrates the 
genetic algorithm to generate the synthesis parameters (the prediction horizon, the control horizon and the 
cost weighting factor) making a compromise between closed loop performances (the overshoot, the variance 
of the control and the settling time). A simulation example is presented to illustrate the performance of this 
strategy in the on-line adjustment of generalized predictive control parameters. 

1 INTRODUCTION 

Processes with only one output being controlled by a 
single manipulated variable are classified as single-
input single output (SISO) systems. Many processes, 
however, do not conform to such simple control 
configuration. These systems are known as multi-
input multi-output (MIMO) or multivariable 
systems. As most of the multivariable systems 
present interactions, the interaction problem between 
control loops has long been recognised as an area for 
concern and many approaches to deal with this 
problem were proposed. The method used in this 
work is to design non-interacting or decoupling 
controllers to eliminate completely the effects of 
loop interactions. This is achieved via decouplers 
(Albertos and Sala, 2004). As a control technique, 
we have used the Generalized Predictive Control 
(GPC) which has achieved great success in practical 
applications in recent decades. This strategy of 
control requires the determination of synthesis 
parameters: prediction horizon, control horizon and 
cost weighting factor which give acceptable closed 
loop performances. But, there is not exact rules 
giving the values of required parameters. Some 
works deal with the automatic tuning of GPC such 
as (Ben Abdennour, Ksouri and Favier, 1998) in 
which, an on-line adjustment of GPC’s synthesis 
parameters using the fuzzy logic is presented. But, 

this method does not give exact values of synthesis 
parameters but allows a fuzzy description of each 
parameter (small, average, big). On the other hand, 
in (Ben Abdennour, Ksouri and Favier, 1998) to 
determine the GPC parameters, each performance 
criterion is minimized without considering the others 
criteria, so the problem is considered as a single-
objective one. In practice, the optimization problems 
are rarely single-objective; where from the interest 
of multiobjective optimization (MOO) based on the 
minimization of all performance criteria at every 
sample time. The MOO leads to a set of optimal 
solutions, i.e. the Pareto optimal solutions or the non 
dominated solutions (Collette and Siarry, 2002). In 
this context, many works such as (Popov, Farag and 
Werner, 2005), (Yang and Pedersen, 2006), 
(Bemporada and Muñoz de la Peñab, 2009) and 
(Muldera, Tiwari and Kothare, 2009) were interested 
in the synthesis of controllers based on 
multiobjective optimisation which has more and 
more interest. In this paper, we propose a new 
method allowing the on-line adjustment of synthesis 
parameters of predictive controller using the genetic 
algorithm and that for the multivariable systems. 
The performances’ criteria to be simultaneously 
minimized are the settling time, the overshoot and 
the variance of the control. This paper is organized 
as follows. The problem is formulated in section two 
where the multivariable decoupling control and the 
predictive control principle are given. The proposed 
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method allowing the tuning of synthesis parameters 
and the design of the multiobjective predictive 
controller are described in section three. The 
obtained simulation results are presented in section 
four. Conclusions are given in the last section. 

2 PROBLEM FORMULATION 

2.1 Multivariable System 
Representation 

We consider a multivariable linear system with m 
inputs ui(k): i=1,…,m and n outputs yj(k) : j=1,…,n. 
The system equation is given by: 

1( ) ( ) ( )Y k G z U k−=    (1)

with: 1 2( ) [ ( ), ( ),...., ( )]TmU k u k u k u k=  is the control 

vector, 1 2( ) [ ( ), ( ),....., ( )]TnY k y k y k y k=  is the output 

vector and ( )1G z− is the transfer function matrix 
having as dimension m n×  given by: 
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For the P canonical structure (Albertos and Sala, 
2004)., in the case of a system with two inputs and 
two outputs, the outputs are related to the inputs 
according to: 

1 1
1 11 1 12 2( ) ( ) ( ) ( ) ( )y k g z u k g z u k− −= +    (3)

1 1
2 22 2 21 1( ) ( ) ( ) ( ) ( )y k g z u k g z u k− −= +  (4)

2.2 Multivariable Decoupling Control 

Generally, in the industry the distributed control  is 
the most favorable and the most used thanks to its 
structure simplicity. During the decentralized control 
design for a two inputs two outputs (TITO) process, 
the input-output pairing is essential and determining 
for the obtained performances as well as for the 
stability of the system (Moaveni and Khaki-Sedigh, 
2006). Several methods were proposed to solve the 
interaction problem (Bristol, 1966), (Khelassi, 
Wilson and Bendib, 2004). The method which will 
be applied in this work is the one using decouplers 
having as role to decompose a multivariable process 
into a series of independent single-loop sub-systems, 
and the multivariable process can be controlled 
using independent loop controllers. As well as the 
input-output representation of multivariable 

processes, different structures are possible, like P or 
V decouplers. Judging by the literature, the P-
decoupler seems to be the most popular. In this 
work, we choose to use the decoupling network of 
Zalkind given in (Zalkind, 1967). The structure of 
the obtained decoupled process having as auxilliary 
inputs 1( )v k  and 2 ( )v k   is presented in the figure 
below. 

 
Figure 1: The structure of the decoupled process. 

The control signals are given by: 
1 1

1 11 1 12 2( ) ( ) ( ) ( ) ( )u k D z v k D z v k− −= +    (5)
1 1

2 21 1 22 2( ) ( ) ( ) ( ) ( )u k D z v k D z v k− −= +  (6)

where -1( ), 1,2 1,2ijD z  i  and  j= =  are the elements 

of the transfer function -1( )D z . 

In taking into account equations (3), (4), (5) and (6), 
we shall have: 
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(8)

To have y2(k) independent of v1(k) and y1(k) 
independent of  v2(k), we introduce the decouplers 
between the process and the controller such as : 
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Generally we take D11(z)=1 and D22(z)=1 except in 
case the delays are more important in the direct 
branches than in the crossed branches (Albertos and 
Sala, 2004). 
By using (9) and (10) in (7) and (8), we obtain: 

-1 -1
-1 12 21

1 11 1-1
22

( ) ( )
( ) ( ) - ( )

( )
g z g z

y k g z v k
g z

⎛ ⎞
= ⎜ ⎟⎜ ⎟
⎝ ⎠

  (11)

 
1( )G z−

 
1( )D z−

y1(k) 

y2(k) 

u1(k) 

u2(k) 

v1(k) 

v2(k) 

ICINCO 2010 - 7th International Conference on Informatics in Control, Automation and Robotics

110



 

-1 -1
-1 12 21

2 22 2-1
11

( ) ( )
( ) ( ) - ( )

( )
g z g z

y k g z v k
g z

⎛ ⎞
= ⎜ ⎟⎜ ⎟
⎝ ⎠

  (12)

The use of (9) and (10) leads to the following 
control signals: 

-

-
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The ( m n× ) multivariable process is treated as a set 
of n SISO processes. Each SISO process is 
characterized by a CARIMA (Controlled Auto 
Regressive Integrated Moving Average) dynamic 
model. This model   is    given   by the following 
relation:  

( )
( ) ( ) ( ) v( )   ( )  

( )

1
1 d 1

1

C z
A z y k z B z k 1 e k

z

−
− − −

−
= − +

Δ
 

 (15)

where 
- ( )y k and ( )v k are respectively the output and the 
input of the system. 
- ( )e k is a sequence of white noise with zero mean 
average and a finite variance. 
-The polynomials ( )1A z− , ( )1B z− , ( )1C z−  and ( )1z−Δ  
are given by: 

( ) .....  1 1 nA
1 nAA z 1 a z a z− − −= + + +     (16)

( ) .....1 1 nB
0 1 nBB z b b z b z− − −= + + + (17)

( ) .....1 1 nC
1 nCC z 1 c z c z− − −= + + + (18)

( )1 1z 1 z− −Δ = − (19)

-The roots in z of ( )1C z − must be strictly inside the 
unit circle.  
- d represents the time delay of the system. 

2.3 The GPC Optimal Control 

The generalized predictive control is based on the 
minimization of a quadratic criterion given by the 
following expression (Richalet, Lavielle and Mallet, 
2005), (Clarke, Mohtadi and Tuffs, 1987): 
 

ˆ( ( ) - ( / ))   ( ( ))
Hp d Hc 1

j 1 d j 0
GPC

2 2J cr k j y k j k v k j
+ −

= + =
= + + +ρ Δ +∑ ∑

 
 (20)

where
pH  is the prediction horizon, cH is the control 

horizon, ρ is the cost weighting factor, ( )cr k  is the 
set point, ˆ( / )y k j k+ is the predicted output 
and ( )k jv +Δ is the future increments of the control 
given by:  

( ) ( ) ( 1)v k j v k j v k jΔ + = + − + −    (21)

By minimizing the criterion GPCJ , we can determine 
the expression of the optimal vector 

( ) ( ),..., ( 1) T
cV k v k v k HΔ = Δ Δ + −⎡ ⎤⎣ ⎦   as follows: 

( ) ( ) [ ( ) ( ) ( )] 
( )

1

1

1
V k K R k Gy k R z v k 1GPC c

C z

−

−
Δ = − + Δ −

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥

⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦
      (21) 

where 

GPCK =[ ]  
c

T 1 T
1 1 1HIN N N−+ ρ  (23) 

( ) [ ( ), ..., ( )]  .T
c c c pk r k 1 d r k H dR = + + + +  

(24) 

1N  is a ( , )p cH H matrix, G and R are obtained by 
the resolution of Diophantine equations (Clarke, 
Mohtadi, and Tuffs, 1987). The optimal control to be 
applied to the process is defined from the vector 
given by (22) using the receding horizon principle. 
This optimal control ( )v k is computed from the first 
element ( )v 1Δ of the vector ( )V kΔ : 

( ) ( 1) (1)v k v k v= − + Δ  (25) 

It is evident that the optimal predictive control 
depends on synthesis parameters ( ,  ,  )p cH H ρ . So, in 
this paper, we present a new method allowing the 
automatic determination of required GPC’s synthesis 
parameters in the case of multivariable systems. 

3 MULTIOBJECTIVE 
GENERALIZED PREDICTIVE 
CONTROL 

Multi-objective optimization (MOO) can be defined 
as the problem of finding a vector of 
parameters [ ],..., T

1 lX x x= , which optimizes a 
vector of objective functions ( ,..., )1 nJ J (Gambier, 
2008). In general, the MOO problem can be 
formulated as follows: 

min  ( ( ),  ( ),..., ( ))  1 2 nX
J X J X J X  (26) 
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At present, a very huge number of methods to solve 
MOO problems can be found in literature (Collette 
and Siarry, 2002), (Gambier, 2008). The method 
applied in this work is the weighted sum method that 
belongs to the family of aggregative methods. 

3.1 Weighted Sum Method 

This method allows the transformation of the 
objective functions vector in a single-objective 
function. It is known for its efficiency and suitability 
to generate a strongly non dominated solution that 
can be used as an initial solution for other 
techniques. The single criterion is obtained by the 
sum of the weighted criteria as follows (Gambier, 
2008): 

  
n

i i
i 1

J w J
=

= ∑  (27) 

where the weights are chosen such that: 

 =       
n

i i
i 1

w 1 and 0 w 1
=

≤ ≤∑  (28) 
 

The MOO leads to a set of solutions known as a 
Pareto set. This set is also called non-dominated 
solutions. When the non dominated solutions are 
collectively plotted in the criterion space, they 
constitute the Pareto front (Gambier, 2008). All 
points of the Pareto front are equally acceptable 
solution for the problem. However, it is necessary to 
obtain only one point in order to be able to 
implement the controller (Gambier, 2008).To choose 
one solution from the Pareto front, we can compute 
the following norm for each solution which gives a 
compromise between all criteria (Bouani, Laabidi, 
and Ksouri, 2006): 

2 2 2
1 2 ...i nd J J J   = + + +  (29) 

The quality of a control applied to a process is 
generally estimated by the closed loop performances 
of the system. Among these performances we 
choose as objective functions to optimize: 
 The overshoot %D    

max
%   c

c

y r
D 100

r
−

=  (30) 

maxy is the maximum value of the output and cr is 
the set point value. 
    The variance of the control vV  

( )
2

1

N
2

N
v

2 1

v k
V

N N

∑
=

−
 (31) 

1N is the first  measure iteration and 2N is the last 
one.

  The settling time sT : It is the first instant after 
which, the system output doesn’t exceed %5±  of 
the set point value. 
So, to estimate the synthesis parameters for GPC, 
the following criterion will be minimized. 

%     .1 2 v 3 sJ w D w V w T= + +  (32) 
such  that: 

1 2 3w w w 1+ + = and ; ,...,i0 w 1  i 1 3≤ ≤ = . 

 
 

3.2 Generating Optimal Solutions 
Using Genetic Algorithms  

In genetic algorithms, each parameter is represented 
by a string structure. This is similar to the 
chromosome structure in natural genes (Goldberg, 
1991). A group of strings are called population. It 
should be notice that GAs evaluate a set of solutions 
in the population at each iteration step. Every 
solution is formed by GPC’s synthesis parameters. A 
number of genetic operators (selection, crossover 
and mutation) are available to generate new 
individuals in next generation. 
In this paper, we propose an on-line supervisor for 
each classic predictive controller based on genetic 
algorithms. In figure 2, we present the structure of 
this supervisor. Each supervisor permits the on-line 
adjustment of the GPC algorithm parameters in 
order to optimize simultaneously closed loop 
performances.  

 
Figure 2: The Supervisor of the Classic Predictive 
Controller. 

In our work, the GA population is formed by the 
synthesis parameters ( pH , cH ,ρ ). The initial 
population is formed by arbitrary values, such as: 

p1 H 20≤ ≤ ; c1 H 3≤ ≤  and 0 10< ρ ≤ . For each 
individual of the population, we use the process 
model and the generalized predictive controller in 
order to compute, for a given set point, the output 
sequence along two hundreds sample times. Then, 
we evaluate the performance indices ( %D , vV , sT ) 

 

Supervisor 

Process GPC 
( )y k( )u k  

, ,p cH H ρ

( ),..., ( )c c pr k r k H+
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and the fitness. To obtain the new population, we 
use the roulette wheel as a selection operator. To 
acquire more information in the new population, the 
crossover and the mutation operators are needed. 
This procedure will be repeated until a stop criterion 
(e.g. max number of generation) is reached. Then, 
we obtain the best individual (optimal values of 

pH , cH andρ ) that minimizes the performances 
indices. The steps used to compute the best synthesis 
parameters are given in algorithm 1. In this 
algorithm, we design by max_gen the maximum 
number of generations and by max_pop the 
maximum number of population. 

Algorithm 1: The principal steps to design multi-objective 
predictive controller. 

   Form the initial population 
   For j=1 To max_gen 
       For i=1 To max_pop 

- Take the ith individual of the population, 
- Use the GPC with the process model, 
- Compute the model output, 
- Evaluate the criteria: %D , vV , sT  
- Evaluate the fitness using (32) 

       End 
Use the GA operators (selection, crossover and   
mutation) to form the new population. 

    End  
    Take the best individual ( , , )p cH H ρ . 
 
Once the non dominated solutions are computed, the 
problem is which solution can be used with the GPC 
to handle the real process. To choose one solution 
from the Pareto front, we compute the following 
norm for each solution: 

2 2 2
% .i v sd D V T   = + +  (33) 

The steps allowing to find the synthesis parameters 
which minimize the performance criteria, given by 
the proposed algorithm is executed  twice because 
the TITO system is decomposed into two 
monovariable systems controlled each by 
multiobjective predictive controller.  

4 SIMULATION RESULTS 

To estimate the closed loop performances obtained 
by applying the approach presented in this paper, we 
consider the TITO process given in (Miskovic, 
Karimi, Bonvin and Gevers, 2007) characterized by 
the next transfer functions matrix:  

.  z .  z     
.  z .  z( )

.  z .  z     
.  z .  z

1 1

1 1
1

1 1

1 1

0 09516 0 03807
1 0 9048 1 0 9048G z

0 02974 0 04758
1 0 9048 1 0 9048

− −

− −
−

− −

− −

⎛ ⎞
⎜ ⎟

− −⎜ ⎟= ⎜ ⎟−⎜ ⎟
⎜ ⎟− −⎝ ⎠

 (34) 

4.1 Generating Optimal Solutions  

To apply the genetic algorithm, we choose a 
population of 20 individuals and a maximum 
number of generations equals to 150. The crossover 
probability and the mutation probability are fixed 
respectively to .pc 0 7= and .pm 0 3= . We vary 

1w between 0 and 0.9, and 2w  and 3w  are computed 
by: 

 .1
2 3

1 w
w w

2
−

= =  (35) 

For every set of ( , , )1 2 3w w w , the genetic algorithm 
evaluates the criterion given by (32) and generates 
the best individual (

pH , cH , ρ ).  
In tables 1 and 2, we have, respectively reported the 
values of the best individuals corresponding to every 
set of weights for the first and the second SISO 
systems. 

Table 1: The values of best individuals corresponding to 
every set of weights for the first SISO system. 

 Weights Best individuals 
i 

1w      2w     3w  
pH

  cH
    
ρ  

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

0       0.5     0.5 
0.1    0.45   0.45 
0.2     0.4     0.4 
0.3    0.35   0.35 
0.4     0.3     0.3 
0.5    0.25   0.25 
0.6     0.2     0.2 
0.7    0.15   0.15 
0.8     0.1     0.1 
0.9    0.05   0.05 

2     1    5.75 
3     2    6.71 
3     2    6.71 
2     2    7.98 
3     2    6.72 
3     2    6.77 
3     1    9.40 
2     2    9.99 
3     1    9.42 
2     2    5.62 

Table 2: The values of best individuals corresponding to 
every set of weights for the second SISO system. 

 Weights Best individuals 
i 

1w      2w     3w  
pH

  cH
   
ρ  

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

0       0.5     0.5 
0.1    0.45   0.45 
0.2     0.4     0.4 
0.3    0.35   0.35 
0.4     0.3     0.3 
0.5    0.25   0.25 
0.6     0.2     0.2 
0.7    0.15   0.15 
0.8     0.1     0.1 
0.9    0.05   0.05 

6       3    7.51 
5       3    7.43 
7       2    8.36 
4       2    6.43 
5       3    7.41 
4       2    6.47 
2       1    9.78 
2       1    9.76 
6       3    7.43 
7       2    8.31 

DESIGN OF A MULTIOBJECTIVE PREDICTIVE CONTROLLER FOR MULTIVARIABLE SYSTEMS

113



 

Figures 3 and 4, describe respectively the non 
dominated solutions which constitute the Pareto 
front for the first and the second SISO systems. 
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Figure 3: The Pareto front for the first SISO system. 
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Figure 4: The Pareto front for the second SISO system. 

4.2 Multiobjective Predictive 
Controller 

To implement the controller, it is necessary to 
choose a single solution among all non dominated 
solutions. This choice is made by the user, if he 
decides to give the priority to the minimization of 
overshoot, he will choose the solution giving the 
overshoot minimum value. If the most important 
criterion to be minimized for the user is the settling 
time, he will choose the solution giving the 
minimum settling time. In this paper we choose to 
make a compromise between the three closed loop 
performances. For that, the step to be followed is to 
calculate the norm given by (33) for every set of iw  
and to choose the synthesis parameters 
corresponding to the smallest value of id . 
For the first SISO system, the synthesis parameters 
giving a minimal value of the norm id  are given in 
Table 3. For the second SISO system the synthesis 
parameters chosen by the supervisor are presented in 
table 4. So we can notice that this proposed method 
allows automatic adjusting of synthesis parameters. 

Table 3: The Synthesis Parameters Chosen by the 
Supervisor for the first SISO system. 

p1H  c1H  1ρ  

2 2 7.98 

Table 4: The Synthesis Parameters Chosen by the 
Supervisor for the second SISO system. 

p2H  c2H  2ρ  
5 3 7.43 

The obtained synthesis parameters, given in Table 3 
and Table 4 are used with the two predictive 
controllers to control the multivariable process.  
The obtained results are shown in Figure 5 and 
Figure 6 which respectively present the evolution of 
the system outputs and the set points and the 
evolution of the control signals. From these figures, 
we can notice that this proposed method allows 
automatic adjusting of synthesis parameters 
permitting a compromise between closed loop 
performances.  
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Figure 5: Evolution of the outputs and the set points. 
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Figure 6: Evolution of the control signals. 

The tables 5 and 6 recapitulate respectively the 
overshoots, the settling times values and the 
variances of the controls found for the first and the 
second SISO system. 
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Table 5: Closed loop performances Values Obtained for 
the First SISO System. 

 
Overshoot 

( %D ) 
Settling 

time ( sT ) 

Variance of 
the control 

( vV ) 
k∈  [0;400] 12 64s 0.69 k∈ [401;800] 24 66s 

Table 6: Closed loop Performances values for the Second 
SISO System. 

 Overshoot 
( %D ) 

Settling 
time ( sT ) 

Variance of 
the control 

( vV ) 
k∈  [0;300] 05.8 71s 10.06 k∈ [301;800] 12.8 77s 

5 CONCLUSIONS 

In this paper, a new method allowing the on line 
adjustment of the predictive controller synthesis 
parameters for multivariable systems has been 
presented. The decentralized control using the 
decoupling network is applied to decouple the 
different subsystems and to control the MIMO 
system using multiple SISO controllers. Genetic 
algorithms and the weighted sum method are 
exploited to find the synthesis parameters by 
minimizing simultaneously three criteria which are 
the overshoot, the settling time and the variance of 
the control. The obtained simulation results have 
shown that the proposed method can lead to 
acceptable closed loop performances. 
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