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Abstract: OMA-Digital Rights Management System is a standard proposed by the Open Mobile Alliance (OMA) for 
protecting digital content distribution via mobile networks. To solve the decision problem, in the case that 
multiple licenses refer to the same content, OMA suggests a license choice algorithm. This algorithm 
ensures the fine grained consumption of contents. CafeOBJ is a new generation algebraic specification 
language. We apply the OTS/CafeOBJ method to formally model, specify and verify the above mentioned 
license choice algorithm. More specifically, we develop the mathematical model of the OMA decision 
algorithm as an OTS, a kind of transition system expressed in an equational CafeOBJ specification style. 
Finally, we verify that this algorithm fulfills the following safety property: Whenever a license is chosen for 
a given content, then the license is valid at that specific time.  

1 INTRODUCTION 

Digital Rights Management Systems (DRMSs) are 
apart from a set of cryptographic methods to forbid 
unauthorized usage, a method for expressing 
permissions and obligations on a content. A set of 
such permissions and obligations is called a license. 
Such licenses are written in languages known as 
Rights Expression Languages (RELs).  The most 
commonly used such languages today are ODRL 
(Iannella, 2002), XrML (ContentGuard, 2007) and 
MPEG REL (Rightscom, 2007) 

Open Mobile Alliance (OMA) is an organization 
created to be the center of mobile service enabler 
specification work. OMA REL (OMA-TS-DRM-
REL-V2_0-020060303-A, 2007) is a digital rights 
expression language that specifies the syntax and the 
semantics of rights governing the usage of DRM 
contents in the OMA DRM system (OMA-TS-
DRM-REL-V2_0-020060303-A, 2007).  It is based 
on ODRL and is defined as a mobile profile of it. 

Together with the specification of the language, in 
(OMA-TS-DRM-REL-V2_0-020060303-A, 2007), 
OMA proposes an algorithm that comes to lift the 
burden of the user when he faces the problem of 
having more than one license that refers to the same 
content. This algorithm takes into consideration the 
constraints each license contains, and decides for the 
user the “best” suited license to use for a desired 
action on the content. Since this algorithm does not 
have an official name, we will refer to it for the rest 
of the paper as the “Choice Algorithm”. 

Digital Right protected contents are a commodity 
and as such their success highly depends on their 
acceptance by the market. DRM systems need to 
protect the interests of both the publisher and the end 
user. As a result, licenses intended to work in one 
manner but end up working differently cause 
discomfort to both of the parties involved. The end 
user is dissatisfied because they may end up 
purchasing a service that does not respond to the 
advertised manner and the producer might end up 
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losing the consumption control of his contents if the 
licenses behave unexpectedly.  

For these reasons we believe that formal 
semantics and specification in order to achieve the 
unambiguous licenses and software that control 
them, is the key to ensure the success and longevity 
of these commercial DRM systems. In this paper we 
formally analyze the Choice Algorithm and verify 
that it behaves in a correct manner using the 
Observational Transition System (OTS) / CafeOBJ 
method (Diaconescu, Futatsugi, 1998, CafeOBJ 
home page, 2009), thus showing both how such 
techniques can be applied to the field of Mobile 
DRM and provide at the same time a proof of a 
fundamental property for the algorithm 

The rest of the paper is organized as follows: 
Section 2 gives a brief introduction to the 
OTS/CafeOBJ method (Ogata, Futatsugi, 2006, 
Ogata, Futatsugi, 2003). In section 3 we describe the 
Choice Algorithm and its specification as an OTS in 
CafeOBJ while in section 4 we present the invariant 
property and the corresponding proof scores. 
Finally, section 5 concludes the paper. 

2 THE OTS/CAFEOBJ METHOD 

2.1 Observational Transition Systems 

An Observational Transition System, or OTS 
(Ogata, Futatsugi, 2006, Ogata, Futatsugi, 2003), is a 
transition system that can be written in terms of 
equations. We assume that there exists a universal 
states space called  and we also assume that each 
data type we need to use in the OTS, including the 
equivalence relationship for that data type, has been 
declared in advance. An OTS S is the triplet 

, ,O I T   where: 

 :O  is a finite set of observers. Each o O is a 
function :o D , where D is a data type 
that may differ from observer to observer. 
Given an OTS S and two states 1 2,u u  , 

the equivalence (
1 2u s u  ) between them 

wrt. S is defined as 
1 2, ( ) ( )o O o u o u   . 

 :I  is the set of initial states such that I   . 

 :T  A set of conditional transitions. Each 
  is a function :  , such that 

1 2( ) ( )Su u  for each
1 2, / Su u   . For each 

, ( )u u  is called the successor state of u wrt 

τ. The condition c of τ is called the effective 

condition. Also for each u , ( )u u   if 

( )C u . 

Observers and transitions may be parameterized. 
Generally observers and transitions are denoted as 

1 ,..., mi io and 
1 ,..., ni i respectively provided that , 0m n 

and there exist data types kD , D   where

nm jjiik ,...,,,..., 11 . 

2.2 OTSs in CafeOBJ 

An OTS S is written in CafeOBJ. The universal state 
space Y is denoted by a hidden sort, say H. An 
observer oi1 , ...,im ∈ O is denoted by a CafeOBJ 
observation operator. We assume that there exist 
visible sorts Vk and V corresponding to the data 
types Dk and D, where k = i1, ..., im. The CafeOBJ 
observation operator denoting oi1, ...,im is declared 
as follows: bop o : Vi1 ... Vim H -> V. Any state in 
I, namely any initial state, is denoted by a constant, 
say init, which is declared as follows: op init :-> H 

The initial value returned by oi1 , ...,im is 
denoting by the term o(Xi1 , ..., Xim , init) where Xk 
is a CafeOBJ variable whose sort is Vk, where k = i1, 
..., im. A transition τj1 , ..., jn ∈ T is denoted by a 
CafeOBJ action operator as follows: bop a : Vj1 ... 
Vjn H -> H with Vk a visible sort corresponding to 
the data type Dk, where k = j1, ..., jn. 

Each transition is defined by describing what the 
value returned by each observer oi1 , ...,im in the 
successor state becomes when τj1 , ..., jn is applied 
in a state u. When c − τj1 , ..., jn (u) holds, this is 
expressed generally by a conditional equation that 
has the form ceq o(Xi1,...,Xim,  a(Xj1,...,Xjn,S)) = 
e-a(Xj1,...,Xjn, Xi1,...,Xim, S) if c-a(Xj1,...,Xjn, S) .  
S is a CafeOBJ variable whose sort is H and Xk is a 
CafeOBJ variable whose sort is Vk, where k = j1, ..., 
jn. a(Xj1 , ..., Xjn , S ) denotes the successor state of 
S w.r.t. τj1 , ..., jn plus Xj1 , ..., Xjn . e-a(Xj1 , ..., Xjn 
, Xi1 , ..., Xim, S ) denotes the value returned by oi1 , 
...,im in the successor state. c-a(Xj1 , ..., Xjn , S ) 
denotes the effective condition c − τj1 , ..., jn . The 
value returned by oi1 , ...,im is not changed if τj1,..., 
jn is applied in a state u such that ￢c − τj1, ...,jn (u), 
which can be written generally as follows:  ceq 
o(Xi1,Xim, a(Xj1,Xjn,S)) = o(Xi1,Xim, S) if not c-
a(Xj1,Xjn, S) . 
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3 OMA LICENSE CHOICE 
ALGORITHM 

Because the process of manually choosing which 
license to use, when dealing with multiple licenses 
referring to the same contents, may cause discomfort 
to the user, the following algorithm is proposed by 
OMA (OMA-TS-DRM-REL-V2_0-020060303-A, 
2007):  

1) Only rights that are valid at the given time 
should be taken into account from the 
algorithm. 

2) Rights that are not constrained should always 
be preferred over constrained rights. 

3) Any right that includes a Datetime constraint, 
and possibly others, should be preferred over 
rights that are constrained but do not have 
such a restriction. 

4) If there exist more than one rights with a 
Datetime constraint, the one with the further 
in the future End element should be preferred. 

5) If there exist a choice between many rights 
and none of them contains a Datetime 
constraint the one containing an Interval 
constraint should be preferred if there exists 
such. 

6) Rights that contain a Count constraint should 
be preferred after rights that contain a Timed- 
Count constraint. 

This algorithm basically states an ordering on the 
constraints of the licenses. Based on this ordering, 
the decision for the best license to use is made 
between licenses that are valid at the given time, and 
refer to the desired right.  

We will clarify the above algorithm through the 
use of an example. We assume that Alice has the 
following two licenses installed in her DRM agent: 

License 1: You can listen before the tenth of the 
month songs A or B one time 

License 2: You can listen to songs A or C up to 
ten times 

Notice that the first license contains a datetime 
constraint, which is stated above as the constraint 
“before the tenth of the month”. The right to listen to 
songs A or B is further constrained using a count 
constraint stated by “up to one time”, while the 
second license contains only a count constraint 
stated as “up to ten times”. 

We assume the case where Alice decides to use 
these licenses installed in her DRM agent to listen to 
song A. The DRM agent is supposed (OMA-TS-
DRM-REL-V2_0-020060303-A, 2007) to include an 
implementation of the above License Choice 
Algorithm. 

When Alice gives the command to listen to song 
A, the algorithm will search the licenses installed in 
her DRM agent to find a corresponding right that is 
valid at that given time based on their constraints, 
say “listen song A”, will check the constraints of the 
“matching” licenses and based on the ordering 
provided by the OMA Choice Algorithm it will 
select a license as the best to use the “listen song A” 
right, and finally exercises it. In our example this 
license will be the first one. 

3.1 Basic Data Types 

Before introducing the OTS model of the OMA 
Choice Algorithm, we define the basic data types we 
need to use.  

1) Action: Defines the data type of an action 
that a user wants to apply to a content, as they 
are defined by OMA REL. 

2) Content: Is the data type that represents the 
unique identification of a specific content. 

3) Use: represents an action enforced to some 
content. This is defined in our model as 

: ,use action content . The only actions 

allowed by OMA REL are play, display, print, 
execute and export. 

4) Cons: Defines the data type of the 
constraints defined by OMA REL. 

5) Right, RightSET: define a granted right 
by a license and a set of such rights 
respectively. A right is an expression of the 
form U under C, where U is a Use and C a 
Cons. RightSET is defined as a super type 
(Right is a sub sort of RightSET, in CafeOBJ 
terms) of the data type Right. It has added 
functionalities such as a “belong” operator (in) 
and the union of sets. In addition to those, in 
the definition of these data types we define 
operators “check”, “belong” and 
“?”. The “check” operator takes a Use 
and a Right element and checks whether that 
Use belongs to that Right. The “belong” 
operator works in a similar way but checks if a 
Use belongs to a RightSET. Finally the  “?” 
operator takes a RightSET and returns true or 
false if the constraints of it hold or not 
respectively. 

6) Lic, LicSET: These data types define a 
license and a set of licenses respectively. As in 
Right and RightSET, Lic is a sub sort of 
LicSET. A Lic is constructed by operator, C 
about R, where C is a Cons and R is a 
RightSET. Lics are defined likewise, to 
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capture the fact that in a license written in 
OMA REL a constraint can apply to a set of 
rights that can be further more constrained and 
refer to different contents. LicSET is again 
defined as a set of Lic data types with the 
usual set functions. Again, we use the 
operators “belong”, “belongLS”, 
“existLi”, “exist” and “?”.  The 
“belong” operator determines whether or 
not a Use element belongs in a Lic element 
and “belongLS”, if a Use element belongs 
to a set of licenses. The operator “existLi” 
checks whether there exists a suitable right for 
a Use element in a license, while “exist“ 
performs the same check for a set of licenses. 
Finally the “?” operator determines if a 
license is valid at a given time. As an example 
of this specification in CafeOBJ, we present 
the corresponding code for Use data type: 

Table 1: Definition of the Use data type. 

 

3.2 OTS Model and its Specification 

According to the methodology presented in section 3 
the hidden state space is denoted by a hidden sort, 
*[Sys]*.  

The observers we will use are: lics, chosenSet, 
bestLic, user and valid. The lics observer is 
specified by the behavioral operator bop lics: 
Sys -> LicSet and returns the installed 
licenses on the agent at any given time. The observer 
chosenSet defined in CafeOBJ by the behavioral 
operator bop chosenSet: Sys -> LicSet 
denotes the set of licenses that refer to the same 
content and the same action as the users choice at 
the current time. The bestLic observer defines the 
most appropriate license to use for a user request 
according to the OMA Choice Algorithm. This 
observer is defined in CafeOBJ by the following 
behavioral operator bop bestLic: Sys -> 
Lic.  The observer user denotes the current user 
request and it is specified in CafeOBJ as bop 
user: Sys -> Use. Finally the valid observer 

shows whether or not a license is valid at a given 
time and is denoted as bop valid: Sys Lic -
> Bool 

The actions we used in order to specify the OMA 
Choice Algorithm are the following: request, use, 
hold, NoHold.  
1) The action request is declared through the 

action operator bop request: Sys 
Action Cont -> Sys and defines the 
request by a user to use an action on some 
content. The transition can only occur if there 
is such a license in the set of currently 
installed license of the agent. This is specified 
using the effective condition for this transition  
 
eq c-request(S,A,CONT)= 
existsLi((A,CONT);lics(S)). 
 

2) The action use defines the consumption of a 
usage right on some content. This is denoted 
by the following action operator: bop _ 
use _ with _: Sys Use Lic -> 
Sys. This transition can only occur if the 
license is valid at that given time,  is the best 
license as that is defined by the Choice 
Algorithm and finally the usage right about 
that content belongs to that license. This is 
defined in CafeOBJ again through the 
effective condition of the transition rule: 
 
 eq c-use(S,A ,CONT),L) 
=exist((A,CONT);L) and valid(S ,L) 
and (L=bestLic(S)) . 
 

3) Hold is used to specify the fact that after the 
execution of a usage right, that right remains 
valid, i.e. its constraints are not depleted. This 
is defined by the action operator: bop 
hold: Sys Lic -> Sys. Since the 
only time a usage right can be exercised is if it 
belongs to the best license, defined by the 
OMA Choice Algorithm, and for this 
transition to occur it must remain valid the 
effective condition of this transition rule is 
defined as:  
 
eq c-hold(S,L)=(L in lics(S)) and 
(L)? and (L= bestLic(S)) . 
 

4) NoHold is the opposite transition of hold. That 
is after the execution of the usage right, it is 
no longer valid. This transition is defined in 
CafeOBJ as: bop NoHold: Sys Lic -> 
Sys.  The only difference with the above 
effective condition is that for this transition to 

mod* USe { pr(ACtion + COntent) 
  [Use] 
op _,_ : Action Cont -> Use {constr} 
op none : -> Use 
ops play display print execute  
export: -> Action 
op _ = _ : Use Use -> Bool {comm} 
var U : Use 
eq (U = U) = true .  } 
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occur the license must no longer be valid. The 
is specified as: 
 
 eq c-NoHold(S,L)= (L in 
lics(S))andnot(L)? and 
(L=bestLic(S)).   

 
As stated in section 3, a state of an OTS is 

characterized by the values the observation operators 
return. Here we present such an example for our 
specification, for the case of the NoHold transition: 

Table 2: Definition of the NoHold action in CafeOBJ. 

 
 

In the above table the numbers at the beginning 
of each line are not part of the code. In line 1 the 
signature of the effective condition for the transition 
rule is declared, as a predicate that takes a system 
state and a license. In line 2 the equation defining 
the effective condition is declared as: the license 
belongs on the set of licenses installed in the agent 
in S, its constraints no longer hold in S and it is the 
license chosen by the OMA Choice Algorithm in S. 
In line 3 we declare that the successor state of the 
application of the NoHold transition is S if the 
effective condition does not hold. 

Lines 4 to 8 denote the values returned by the 
observers of the OTS when the NoHold transition is 
applied to the arbitrary state S for an arbitrary 
license L. 

In line 4 we declare that the lics observer 
returns the same set of licenses as the one in S where 
license L is removed from the set, if the effective 
condition of the transition holds.  In line 5 the 
observer chosenSET observes the empty set, if the 
effective condition of the transition holds. In line 6 
the observer bestLic observes nil, a dummy 
license constant that denotes the fact that no license 
exists. In line 7 the user observer, observes again a 

dummy use constant to denote that no user choice is 
made in that state. Finally in line 8 the valid 
observer for the license L returns false, when the  
effective condition holds. 

4 VERIFICATION OF OMA 
CHOICE ALGORITHM 

The invariant property that corresponds to the proper 
function of the algorithm is the following: Whenever 
a license is chosen for a given content, then the 
license is valid at that specific time. In order to 
prove such a property, several steps need to be taken 
(Futatsugi, Goguen, Ogata 2005, Ogata, Futatsugi, 
2008). 

Express the property in a formal way as a 
predicate, say invariant pred(p,x), where p is a free 
variable for states and x denotes other free variables 
of pred.In a module, usually called INV, pred(p,x) is 
expressed in CafeOBJ  

 
op inv : H V -> Bool 
eq inv(P, X) = pred(P, X) . 
 
where V the list of visible sorts corresponding to x, 
P is a CafeOBJ variable for H, the state space and X 
is a list of CafeOBJ variables for V. 

In a proof score we show that our predicate holds 
at any initial state, say init.  
 
open INV  
red inv(init, x) . 
close 
 
red is a command that reduces a given term by 
regarding declared equations as left-to-right  rewrite 
rules. 

We write a module, usually ISTEP, where the 
predicate to prove in each inductive case is 
expressed in CafeOBJ, using two constants p, p’ 
denoting any state and the successor state after 
applying a transition in the state: 

 
op istep : V -> Bool 
eq istep(X)=inv(p,X) implies inv(p’,X). 
 

For each case we write the proof score. It usually 
looks like the following: 

 
open ISTEP 
Declare constants denoting arbitrary 
objects. 
Declare equations denoting the case. 
Declare equations denoting the facts if 
necessary. 

1.op c-NoHold : Sys Lic -> Bool 
2.eq c-NoHold(S,L)=(L in lics(S))  

and not(L)? and 
L=bestLic(S)).   
3.ceq NoHold(S,L) = S  

if not c-NoHold(S,L) . 
4.ceq lics(NoHold(S ,L))  
= (lics(S) del L) if c-NoHold(S,L) . 
5.ceq chosenSet(NoHold(S,L)) = empty 

if c-NoHold(S,L) . 
6.ceq bestLic(NoHold(S,L))=nil 

if c-NoHold(S,L) . 
7.ceq user(NoHold(S,L))=none 

if c-NoHold(S,L) . 
8.ceq valid(NoHold(S,L),L)= false  

if c-NoHold(S,L) . 
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eq p’ = a(p, y) . 
red istep(x) . 
close 
 

Where y is a list of constants that are used as the 
arguments of CafeOBJ action operator a, which are 
declared in this proof score and denote arbitrary 
objects for the intended sorts.  If istep(x) is reduced 
to true, it is shown that the transition preserves 
pred(p, x) in this case. Otherwise, we may have to 
split the case, may need some invariants that will be 
used as lemmas (lemma discovery), or we may show 
that the predicate is not invariant to the system. 

Following the procedure presented above several 
lemmas where required to prove the desired 
invariant safety property. Their informal description 
is presented in table 3, where property 1 is the main 
property. The formal definition of invariant 1 in 
terms of CafeOBJ specification is: 

 
op inv1 : Sys Lic -> Bool 
eq inv1(S,L) = ((L = bestLic(S)) and 
not (L = nil) ) implies valid(S,L) . 

Table 3: Properties to verify. 

No. Informal definition of Properties to be proven 

1 
Whenever a license is chosen for a given 
content, then the license is valid at that specific 
time. 

2 

If a license L is the chosen license by the OMA 
Choice Algorithm for a given set S  and that 
license exits, i.e. is not nil then L belongs to the 
set S. 

3 

If the choice made by the OMA choice algorithm 
for the set R union  S, where R is an arbitrary 
license containing one usage right and S is a set 
of Licenses, is not R nor is it a choice made 
solely on S then the chosen license is nil, i.e. not 
valid license is available 

4 

If the set of licenses contains only a single 
license, say L and the choice made by the OMA 
Choice Algorithm is not nil, i.e. there exists a 
valid license, then the choice is this license L 

5 

If the choice made by OMA Choice Algorithm 
when the license set contains two licenses L and 
L’ is not nil, and if the choice made is not that 
made based on the second license L’ then the 
chosen license is L 

Some of the properties presented above are 
stateless, meaning that they do not depend on the 
state of our OTS. We can prove such properties in a 
similar manner, the only difference relies on the fact 
that the induction does not occur on the states of our 
OTS but on the complexity of the data types,e.g. on 
the way a set is constructed 

In module ISTEP, the following operator 
denoting the predicate to prove is declared and 
defined: 

 
op istep1 : Lic  -> Bool 
eq istep1(l)=inv1(s,l)implies 
inv1(s’,l)). 
 

Using the follow proof passage we prove that the 
predicate holds for any initial state, say init. 
 
open INV 
red inv1(init,l) .   
close 
 

This proof passage returns true, so the base case 
is proven. 

Next we write the proof passage for each of the 
transition rules used in the OTS. For the case of the 
request, transition rule. 

 
open ISTEP 
op s' : -> Sys . 
op a : -> Action . 
op c : -> Cont .   
eq s' = request(s,a,c) . 
red istep1(l). 
close 
 

The above case returns neither true nor false. In 
this case we need to split the case to help the 
CafeOBJ system reduce it. The most natural choice 
is to split the effective condition of the transition 
rule based on whether it holds or not.  

 
open ISTEP 
op s' : -> Sys . 
op a : -> Action . 
op c : -> Cont .    
eq s' = request(s,a,c) . 
eq c-request(s,a,c) = false . 
red istep1(l). 
close 
 

The above refers to the case that effective 
condition of the transition is false, that is not c-
request(s,a,l) and CafeOBJ returns true. 
Now that this case is covered we must cover its 
symmetrical one, i.e. when c-request (s,a,l) 
is true. This is shown in the following proof passage: 

WINSYS 2010 - International Conference on Wireless Information Networks and Systems

178



open ISTEP 
op s' : -> Sys . 
op a : -> Action . 
op c : -> Cont .   
eq s' = request(s,a,c) . 
eq existsLi((a,c);lics(s)) = true . 
red istep1(l). 
close 
 

Here we replaced the equation c-
request(s,a,c)= true with the definition of 
c-request(s,a,c), that is the equation 
existsLi((a,c);lics(s)) = true, to 
help CafeOBJ with the reductions. 

In this case CafeOBJ returns again nor true nor 
false and we need more case splitting based on the 
returned formula (interactive computer – human 
proof). 

 
open ISTEP 
op s' : -> Sys . 
op a : -> Action . 
op c : -> Cont . 
eq s' = request(s,a,c) . 
eq existsLi((a,c) ; lics(s)) = true . 
eq (l=chooseLic(belongLS((a,c); 
lics(s)) ))=false . 
red istep1(l). 
close 
 

The above proof passage corresponds to the case 
existsLi((a,c);lics(s))  l= 
chooseLic( belongLS((a,c);lics(s))).  

This proof passage returns true, so we must 
continue with the symmetric case once again. 

 
open ISTEP 
op s' : -> Sys . 
op a : -> Action . 
op c : -> Cont .                    
eq s' = request(s,a,c) . 
eq existsLi((a,c) ; lics(s)) = true . 
eq l=chooseLic(belongLS((a,c);lics(s))) 
. 
red istep1(l). 
close 
 

This case corresponds to existsLi((a,c); 
lics(s)) l=chooseLic(belongLS((a,c); 
lics(s)))and CafeOBJ returns again nor true nor 
false. Once again we need to split the case based on 
the formula returned by CafeOBJ. 

Following this procedure we reach state 
existsLi((a,c);lics(s)) l=chooseLic( 
belongLS((a,c);lics(s))) 
(chooseLic( 
belongLS((a,c);lics(s)))=nil) 
(chooseLic(belongLS((a,c);lics(s))inlic

s(s)) where CafeOBJ has returned true to all the 
symmetrical subcases.  

Here CafeOBJ returns nor true nor false again. 
Normally we would, and can, apply more case 
splitting, but we notice that these predicates cannot 
hold simultaneously in our OTS (another example of 
the interactive proving procedure).  So we can use 
these contradicting predicates to conjuncture a 
lemma and discard this case. These predicates 
constitute lemma 2 we described in table 3 and it is 
formally defined as: 

 
eq  inv2(LS,L,A,C)=((L=chooseLic 
(belongLS ((A,C);LS)))and not(L=nil)) 
implies(L in LS). 
 

Using this lemma we can discard this case as is 
show in the following proof passage: 

 
open ISTEP 
op s' : -> Sys . 
op a : -> Action . 
op c : -> Cont .                    
eq s' = request(s,a,c) . 
eq existsLi((a,c) ; lics(s)) = true . 
eq 
l=chooseLic(belongLS((a,c);lics(s))). 
eq (chooseLic(belongLS((a,c);lics(s))) 
= nil) = false . 
eq (chooseLic(belongLS((a,c);lics(s))) 
in lics(s)) = false . 
red inv2(lics(s),l,a,c)implies 
istep1(l) . 
close 
 

CafeOBJ returns true for the above proof passage 
and hence, once we prove lemma 2, this concludes 
the proof for the request transition rule of our safety 
property. 

Applying the same technique, CafeOBJ returned 
true for all transitions. Finally, all the lemmas 
presented in table 3 were proven using the same 
technique and thus our proof concludes. 

5 CONCLUSIONS AND FUTURE 
WORK 

We have modeled OMA Choice Algorithm as an 
Observational Transition System in CafeOBJ, and 
verified that the algorithm possesses an important 
invariant property using CafeOBJ system as an 
interactive theorem prover. We are not the first to 
use algebraic specification techniques for modeling 
and verification of Digital Rights Management 
Systems (Xiang, Bjørner, Futatsugi, 2008). This 
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paper is a part of our work in modeling, 
specification and verification of algorithms and 
protocols used in mobile settings, using algebraic 
specification techniques (Ouranos, Stefaneas, 2007).  

We have also proposed an abstract syntax for 
OMA Rights Expression Language in (Triantafyllou, 
Ouranos, Stefaneas, 2009). Some problems for the 
OMA Choice Algorithm are presented in (Barth, 
Mitchell, 2006). More specifically, let us consider 
the example of section 3.In this example if the user 
tries to exercise the right “play song A” the OMA 
Choice Algorithm will decide that the best license to 
use is license A. By doing so, the user is deprived of 
the right to listen to song B because license A will 
no longer be valid after the execution of the above 
right. So, the user ends up losing some of the rights 
the initial license set contained without exercising 
them. This malfunction could have been avoided if 
the OMA Choice Algorithm  decided the most 
fitting license to use for the right “play song A” was 
license B. After the execution of the right the user 
would retain the rights to play songs A, B and C.   

We intend to redesign the OMA Choice 
Algorithm so that problems like the ones presented 
in (Barth, Mitchell, 2006) do not occur. The redesign 
method will include Falsification techniques (Ogata, 
Nakano, Kong, Futatsugi, 2006) for CafeOBJ 
together with the OTS/CafeOBJ method.  
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