
FORMAL SPECIFICATION AND VERIFICATION OF THE OMA
LICENSE CHOICE ALGORITHM IN THE OTS/CAFEOBJ

METHOD

Nikolaos Triantafyllou, Iakovos Ouranos

School of Electrical and Computer Engineering, National Technical University of Athens, Athens, Greece

Petros Stefaneas, Panayiotis Frangos
School of Applied Mathematical and Physical Sciences, National Technical University of Athens, Athens, Greece

School of Electrical and Computer Engineering, National Technical University of Athens, Athens, Greece

Keywords: Mobile Digital Rights Systems, OMA-Rights Expression Language, CafeOBJ, Observational Transition
Systems, License choice algorithm.

Abstract: OMA-Digital Rights Management System is a standard proposed by the Open Mobile Alliance (OMA) for
protecting digital content distribution via mobile networks. To solve the decision problem, in the case that
multiple licenses refer to the same content, OMA suggests a license choice algorithm. This algorithm
ensures the fine grained consumption of contents. CafeOBJ is a new generation algebraic specification
language. We apply the OTS/CafeOBJ method to formally model, specify and verify the above mentioned
license choice algorithm. More specifically, we develop the mathematical model of the OMA decision
algorithm as an OTS, a kind of transition system expressed in an equational CafeOBJ specification style.
Finally, we verify that this algorithm fulfills the following safety property: Whenever a license is chosen for
a given content, then the license is valid at that specific time.

1 INTRODUCTION

Digital Rights Management Systems (DRMSs) are
apart from a set of cryptographic methods to forbid
unauthorized usage, a method for expressing
permissions and obligations on a content. A set of
such permissions and obligations is called a license.
Such licenses are written in languages known as
Rights Expression Languages (RELs). The most
commonly used such languages today are ODRL
(Iannella, 2002), XrML (ContentGuard, 2007) and
MPEG REL (Rightscom, 2007)

Open Mobile Alliance (OMA) is an organization
created to be the center of mobile service enabler
specification work. OMA REL (OMA-TS-DRM-
REL-V2_0-020060303-A, 2007) is a digital rights
expression language that specifies the syntax and the
semantics of rights governing the usage of DRM
contents in the OMA DRM system (OMA-TS-
DRM-REL-V2_0-020060303-A, 2007). It is based
on ODRL and is defined as a mobile profile of it.

Together with the specification of the language, in
(OMA-TS-DRM-REL-V2_0-020060303-A, 2007),
OMA proposes an algorithm that comes to lift the
burden of the user when he faces the problem of
having more than one license that refers to the same
content. This algorithm takes into consideration the
constraints each license contains, and decides for the
user the “best” suited license to use for a desired
action on the content. Since this algorithm does not
have an official name, we will refer to it for the rest
of the paper as the “Choice Algorithm”.

Digital Right protected contents are a commodity
and as such their success highly depends on their
acceptance by the market. DRM systems need to
protect the interests of both the publisher and the end
user. As a result, licenses intended to work in one
manner but end up working differently cause
discomfort to both of the parties involved. The end
user is dissatisfied because they may end up
purchasing a service that does not respond to the
advertised manner and the producer might end up

173
Triantafyllou N., Ouranos I., Stefaneas P. and Frangos P. (2010).
FORMAL SPECIFICATION AND VERIFICATION OF THE OMA LICENSE CHOICE ALGORITHM IN THE OTS/CAFEOBJ METHOD.
In Proceedings of the International Conference on Wireless Information Networks and Systems, pages 173-180
DOI: 10.5220/0002944501730180
Copyright c© SciTePress

losing the consumption control of his contents if the
licenses behave unexpectedly.

For these reasons we believe that formal
semantics and specification in order to achieve the
unambiguous licenses and software that control
them, is the key to ensure the success and longevity
of these commercial DRM systems. In this paper we
formally analyze the Choice Algorithm and verify
that it behaves in a correct manner using the
Observational Transition System (OTS) / CafeOBJ
method (Diaconescu, Futatsugi, 1998, CafeOBJ
home page, 2009), thus showing both how such
techniques can be applied to the field of Mobile
DRM and provide at the same time a proof of a
fundamental property for the algorithm

The rest of the paper is organized as follows:
Section 2 gives a brief introduction to the
OTS/CafeOBJ method (Ogata, Futatsugi, 2006,
Ogata, Futatsugi, 2003). In section 3 we describe the
Choice Algorithm and its specification as an OTS in
CafeOBJ while in section 4 we present the invariant
property and the corresponding proof scores.
Finally, section 5 concludes the paper.

2 THE OTS/CAFEOBJ METHOD

2.1 Observational Transition Systems

An Observational Transition System, or OTS
(Ogata, Futatsugi, 2006, Ogata, Futatsugi, 2003), is a
transition system that can be written in terms of
equations. We assume that there exists a universal
states space called and we also assume that each
data type we need to use in the OTS, including the
equivalence relationship for that data type, has been
declared in advance. An OTS S is the triplet

, ,O I T where:

 :O is a finite set of observers. Each o O is a
function :o D , where D is a data type
that may differ from observer to observer.
Given an OTS S and two states 1 2,u u ,

the equivalence (
1 2u s u) between them

wrt. S is defined as
1 2, () ()o O o u o u .

 :I is the set of initial states such that I .

 :T A set of conditional transitions. Each
 is a function : , such that

1 2() ()Su u for each
1 2, / Su u . For each

, ()u u is called the successor state of u wrt

τ. The condition c of τ is called the effective

condition. Also for each u , ()u u if

()C u .

Observers and transitions may be parameterized.
Generally observers and transitions are denoted as

1 ,..., mi io and
1 ,..., ni i respectively provided that , 0m n

and there exist data types kD , D where

nm jjiik ,...,,,..., 11 .

2.2 OTSs in CafeOBJ

An OTS S is written in CafeOBJ. The universal state
space Y is denoted by a hidden sort, say H. An
observer oi1 , ...,im ∈ O is denoted by a CafeOBJ
observation operator. We assume that there exist
visible sorts Vk and V corresponding to the data
types Dk and D, where k = i1, ..., im. The CafeOBJ
observation operator denoting oi1, ...,im is declared
as follows: bop o : Vi1 ... Vim H -> V. Any state in
I, namely any initial state, is denoted by a constant,
say init, which is declared as follows: op init :-> H

The initial value returned by oi1 , ...,im is
denoting by the term o(Xi1 , ..., Xim , init) where Xk
is a CafeOBJ variable whose sort is Vk, where k = i1,
..., im. A transition τj1 , ..., jn ∈ T is denoted by a
CafeOBJ action operator as follows: bop a : Vj1 ...
Vjn H -> H with Vk a visible sort corresponding to
the data type Dk, where k = j1, ..., jn.

Each transition is defined by describing what the
value returned by each observer oi1 , ...,im in the
successor state becomes when τj1 , ..., jn is applied
in a state u. When c − τj1 , ..., jn (u) holds, this is
expressed generally by a conditional equation that
has the form ceq o(Xi1,...,Xim, a(Xj1,...,Xjn,S)) =
e-a(Xj1,...,Xjn, Xi1,...,Xim, S) if c-a(Xj1,...,Xjn, S) .
S is a CafeOBJ variable whose sort is H and Xk is a
CafeOBJ variable whose sort is Vk, where k = j1, ...,
jn. a(Xj1 , ..., Xjn , S) denotes the successor state of
S w.r.t. τj1 , ..., jn plus Xj1 , ..., Xjn . e-a(Xj1 , ..., Xjn
, Xi1 , ..., Xim, S) denotes the value returned by oi1 ,
...,im in the successor state. c-a(Xj1 , ..., Xjn , S)
denotes the effective condition c − τj1 , ..., jn . The
value returned by oi1 , ...,im is not changed if τj1,...,
jn is applied in a state u such that ￢c − τj1, ...,jn (u),
which can be written generally as follows: ceq
o(Xi1,Xim, a(Xj1,Xjn,S)) = o(Xi1,Xim, S) if not c-
a(Xj1,Xjn, S) .

WINSYS 2010 - International Conference on Wireless Information Networks and Systems

174

3 OMA LICENSE CHOICE
ALGORITHM

Because the process of manually choosing which
license to use, when dealing with multiple licenses
referring to the same contents, may cause discomfort
to the user, the following algorithm is proposed by
OMA (OMA-TS-DRM-REL-V2_0-020060303-A,
2007):

1) Only rights that are valid at the given time
should be taken into account from the
algorithm.

2) Rights that are not constrained should always
be preferred over constrained rights.

3) Any right that includes a Datetime constraint,
and possibly others, should be preferred over
rights that are constrained but do not have
such a restriction.

4) If there exist more than one rights with a
Datetime constraint, the one with the further
in the future End element should be preferred.

5) If there exist a choice between many rights
and none of them contains a Datetime
constraint the one containing an Interval
constraint should be preferred if there exists
such.

6) Rights that contain a Count constraint should
be preferred after rights that contain a Timed-
Count constraint.

This algorithm basically states an ordering on the
constraints of the licenses. Based on this ordering,
the decision for the best license to use is made
between licenses that are valid at the given time, and
refer to the desired right.

We will clarify the above algorithm through the
use of an example. We assume that Alice has the
following two licenses installed in her DRM agent:

License 1: You can listen before the tenth of the
month songs A or B one time

License 2: You can listen to songs A or C up to
ten times

Notice that the first license contains a datetime
constraint, which is stated above as the constraint
“before the tenth of the month”. The right to listen to
songs A or B is further constrained using a count
constraint stated by “up to one time”, while the
second license contains only a count constraint
stated as “up to ten times”.

We assume the case where Alice decides to use
these licenses installed in her DRM agent to listen to
song A. The DRM agent is supposed (OMA-TS-
DRM-REL-V2_0-020060303-A, 2007) to include an
implementation of the above License Choice
Algorithm.

When Alice gives the command to listen to song
A, the algorithm will search the licenses installed in
her DRM agent to find a corresponding right that is
valid at that given time based on their constraints,
say “listen song A”, will check the constraints of the
“matching” licenses and based on the ordering
provided by the OMA Choice Algorithm it will
select a license as the best to use the “listen song A”
right, and finally exercises it. In our example this
license will be the first one.

3.1 Basic Data Types

Before introducing the OTS model of the OMA
Choice Algorithm, we define the basic data types we
need to use.

1) Action: Defines the data type of an action
that a user wants to apply to a content, as they
are defined by OMA REL.

2) Content: Is the data type that represents the
unique identification of a specific content.

3) Use: represents an action enforced to some
content. This is defined in our model as

: ,use action content . The only actions

allowed by OMA REL are play, display, print,
execute and export.

4) Cons: Defines the data type of the
constraints defined by OMA REL.

5) Right, RightSET: define a granted right
by a license and a set of such rights
respectively. A right is an expression of the
form U under C, where U is a Use and C a
Cons. RightSET is defined as a super type
(Right is a sub sort of RightSET, in CafeOBJ
terms) of the data type Right. It has added
functionalities such as a “belong” operator (in)
and the union of sets. In addition to those, in
the definition of these data types we define
operators “check”, “belong” and
“?”. The “check” operator takes a Use
and a Right element and checks whether that
Use belongs to that Right. The “belong”
operator works in a similar way but checks if a
Use belongs to a RightSET. Finally the “?”
operator takes a RightSET and returns true or
false if the constraints of it hold or not
respectively.

6) Lic, LicSET: These data types define a
license and a set of licenses respectively. As in
Right and RightSET, Lic is a sub sort of
LicSET. A Lic is constructed by operator, C
about R, where C is a Cons and R is a
RightSET. Lics are defined likewise, to

FORMAL SPECIFICATION AND VERIFICATION OF THE OMA LICENSE CHOICE ALGORITHM IN THE
OTS/CAFEOBJ METHOD

175

capture the fact that in a license written in
OMA REL a constraint can apply to a set of
rights that can be further more constrained and
refer to different contents. LicSET is again
defined as a set of Lic data types with the
usual set functions. Again, we use the
operators “belong”, “belongLS”,
“existLi”, “exist” and “?”. The
“belong” operator determines whether or
not a Use element belongs in a Lic element
and “belongLS”, if a Use element belongs
to a set of licenses. The operator “existLi”
checks whether there exists a suitable right for
a Use element in a license, while “exist“
performs the same check for a set of licenses.
Finally the “?” operator determines if a
license is valid at a given time. As an example
of this specification in CafeOBJ, we present
the corresponding code for Use data type:

Table 1: Definition of the Use data type.

3.2 OTS Model and its Specification

According to the methodology presented in section 3
the hidden state space is denoted by a hidden sort,
[Sys].

The observers we will use are: lics, chosenSet,
bestLic, user and valid. The lics observer is
specified by the behavioral operator bop lics:
Sys -> LicSet and returns the installed
licenses on the agent at any given time. The observer
chosenSet defined in CafeOBJ by the behavioral
operator bop chosenSet: Sys -> LicSet
denotes the set of licenses that refer to the same
content and the same action as the users choice at
the current time. The bestLic observer defines the
most appropriate license to use for a user request
according to the OMA Choice Algorithm. This
observer is defined in CafeOBJ by the following
behavioral operator bop bestLic: Sys ->
Lic. The observer user denotes the current user
request and it is specified in CafeOBJ as bop
user: Sys -> Use. Finally the valid observer

shows whether or not a license is valid at a given
time and is denoted as bop valid: Sys Lic -
> Bool

The actions we used in order to specify the OMA
Choice Algorithm are the following: request, use,
hold, NoHold.
1) The action request is declared through the

action operator bop request: Sys
Action Cont -> Sys and defines the
request by a user to use an action on some
content. The transition can only occur if there
is such a license in the set of currently
installed license of the agent. This is specified
using the effective condition for this transition

eq c-request(S,A,CONT)=
existsLi((A,CONT);lics(S)).

2) The action use defines the consumption of a
usage right on some content. This is denoted
by the following action operator: bop _
use _ with _: Sys Use Lic ->
Sys. This transition can only occur if the
license is valid at that given time, is the best
license as that is defined by the Choice
Algorithm and finally the usage right about
that content belongs to that license. This is
defined in CafeOBJ again through the
effective condition of the transition rule:

 eq c-use(S,A ,CONT),L)
=exist((A,CONT);L) and valid(S ,L)
and (L=bestLic(S)) .

3) Hold is used to specify the fact that after the
execution of a usage right, that right remains
valid, i.e. its constraints are not depleted. This
is defined by the action operator: bop
hold: Sys Lic -> Sys. Since the
only time a usage right can be exercised is if it
belongs to the best license, defined by the
OMA Choice Algorithm, and for this
transition to occur it must remain valid the
effective condition of this transition rule is
defined as:

eq c-hold(S,L)=(L in lics(S)) and
(L)? and (L= bestLic(S)) .

4) NoHold is the opposite transition of hold. That
is after the execution of the usage right, it is
no longer valid. This transition is defined in
CafeOBJ as: bop NoHold: Sys Lic ->
Sys. The only difference with the above
effective condition is that for this transition to

mod* USe { pr(ACtion + COntent)
 [Use]
op _,_ : Action Cont -> Use {constr}
op none : -> Use
ops play display print execute
export: -> Action
op _ = _ : Use Use -> Bool {comm}
var U : Use
eq (U = U) = true . }

WINSYS 2010 - International Conference on Wireless Information Networks and Systems

176

occur the license must no longer be valid. The
is specified as:

 eq c-NoHold(S,L)= (L in
lics(S))andnot(L)? and
(L=bestLic(S)).

As stated in section 3, a state of an OTS is

characterized by the values the observation operators
return. Here we present such an example for our
specification, for the case of the NoHold transition:

Table 2: Definition of the NoHold action in CafeOBJ.

In the above table the numbers at the beginning
of each line are not part of the code. In line 1 the
signature of the effective condition for the transition
rule is declared, as a predicate that takes a system
state and a license. In line 2 the equation defining
the effective condition is declared as: the license
belongs on the set of licenses installed in the agent
in S, its constraints no longer hold in S and it is the
license chosen by the OMA Choice Algorithm in S.
In line 3 we declare that the successor state of the
application of the NoHold transition is S if the
effective condition does not hold.

Lines 4 to 8 denote the values returned by the
observers of the OTS when the NoHold transition is
applied to the arbitrary state S for an arbitrary
license L.

In line 4 we declare that the lics observer
returns the same set of licenses as the one in S where
license L is removed from the set, if the effective
condition of the transition holds. In line 5 the
observer chosenSET observes the empty set, if the
effective condition of the transition holds. In line 6
the observer bestLic observes nil, a dummy
license constant that denotes the fact that no license
exists. In line 7 the user observer, observes again a

dummy use constant to denote that no user choice is
made in that state. Finally in line 8 the valid
observer for the license L returns false, when the
effective condition holds.

4 VERIFICATION OF OMA
CHOICE ALGORITHM

The invariant property that corresponds to the proper
function of the algorithm is the following: Whenever
a license is chosen for a given content, then the
license is valid at that specific time. In order to
prove such a property, several steps need to be taken
(Futatsugi, Goguen, Ogata 2005, Ogata, Futatsugi,
2008).

Express the property in a formal way as a
predicate, say invariant pred(p,x), where p is a free
variable for states and x denotes other free variables
of pred.In a module, usually called INV, pred(p,x) is
expressed in CafeOBJ

op inv : H V -> Bool
eq inv(P, X) = pred(P, X) .

where V the list of visible sorts corresponding to x,
P is a CafeOBJ variable for H, the state space and X
is a list of CafeOBJ variables for V.

In a proof score we show that our predicate holds
at any initial state, say init.

open INV
red inv(init, x) .
close

red is a command that reduces a given term by
regarding declared equations as left-to-right rewrite
rules.

We write a module, usually ISTEP, where the
predicate to prove in each inductive case is
expressed in CafeOBJ, using two constants p, p’
denoting any state and the successor state after
applying a transition in the state:

op istep : V -> Bool
eq istep(X)=inv(p,X) implies inv(p’,X).

For each case we write the proof score. It usually
looks like the following:

open ISTEP
Declare constants denoting arbitrary
objects.
Declare equations denoting the case.
Declare equations denoting the facts if
necessary.

1.op c-NoHold : Sys Lic -> Bool
2.eq c-NoHold(S,L)=(L in lics(S))

and not(L)? and
L=bestLic(S)).
3.ceq NoHold(S,L) = S

if not c-NoHold(S,L) .
4.ceq lics(NoHold(S ,L))
= (lics(S) del L) if c-NoHold(S,L) .
5.ceq chosenSet(NoHold(S,L)) = empty

if c-NoHold(S,L) .
6.ceq bestLic(NoHold(S,L))=nil

if c-NoHold(S,L) .
7.ceq user(NoHold(S,L))=none

if c-NoHold(S,L) .
8.ceq valid(NoHold(S,L),L)= false

if c-NoHold(S,L) .

FORMAL SPECIFICATION AND VERIFICATION OF THE OMA LICENSE CHOICE ALGORITHM IN THE
OTS/CAFEOBJ METHOD

177

eq p’ = a(p, y) .
red istep(x) .
close

Where y is a list of constants that are used as the
arguments of CafeOBJ action operator a, which are
declared in this proof score and denote arbitrary
objects for the intended sorts. If istep(x) is reduced
to true, it is shown that the transition preserves
pred(p, x) in this case. Otherwise, we may have to
split the case, may need some invariants that will be
used as lemmas (lemma discovery), or we may show
that the predicate is not invariant to the system.

Following the procedure presented above several
lemmas where required to prove the desired
invariant safety property. Their informal description
is presented in table 3, where property 1 is the main
property. The formal definition of invariant 1 in
terms of CafeOBJ specification is:

op inv1 : Sys Lic -> Bool
eq inv1(S,L) = ((L = bestLic(S)) and
not (L = nil)) implies valid(S,L) .

Table 3: Properties to verify.

No. Informal definition of Properties to be proven

1
Whenever a license is chosen for a given
content, then the license is valid at that specific
time.

2

If a license L is the chosen license by the OMA
Choice Algorithm for a given set S and that
license exits, i.e. is not nil then L belongs to the
set S.

3

If the choice made by the OMA choice algorithm
for the set R union S, where R is an arbitrary
license containing one usage right and S is a set
of Licenses, is not R nor is it a choice made
solely on S then the chosen license is nil, i.e. not
valid license is available

4

If the set of licenses contains only a single
license, say L and the choice made by the OMA
Choice Algorithm is not nil, i.e. there exists a
valid license, then the choice is this license L

5

If the choice made by OMA Choice Algorithm
when the license set contains two licenses L and
L’ is not nil, and if the choice made is not that
made based on the second license L’ then the
chosen license is L

Some of the properties presented above are
stateless, meaning that they do not depend on the
state of our OTS. We can prove such properties in a
similar manner, the only difference relies on the fact
that the induction does not occur on the states of our
OTS but on the complexity of the data types,e.g. on
the way a set is constructed

In module ISTEP, the following operator
denoting the predicate to prove is declared and
defined:

op istep1 : Lic -> Bool
eq istep1(l)=inv1(s,l)implies
inv1(s’,l)).

Using the follow proof passage we prove that the
predicate holds for any initial state, say init.

open INV
red inv1(init,l) .
close

This proof passage returns true, so the base case
is proven.

Next we write the proof passage for each of the
transition rules used in the OTS. For the case of the
request, transition rule.

open ISTEP
op s' : -> Sys .
op a : -> Action .
op c : -> Cont .
eq s' = request(s,a,c) .
red istep1(l).
close

The above case returns neither true nor false. In
this case we need to split the case to help the
CafeOBJ system reduce it. The most natural choice
is to split the effective condition of the transition
rule based on whether it holds or not.

open ISTEP
op s' : -> Sys .
op a : -> Action .
op c : -> Cont .
eq s' = request(s,a,c) .
eq c-request(s,a,c) = false .
red istep1(l).
close

The above refers to the case that effective
condition of the transition is false, that is not c-
request(s,a,l) and CafeOBJ returns true.
Now that this case is covered we must cover its
symmetrical one, i.e. when c-request (s,a,l)
is true. This is shown in the following proof passage:

WINSYS 2010 - International Conference on Wireless Information Networks and Systems

178

open ISTEP
op s' : -> Sys .
op a : -> Action .
op c : -> Cont .
eq s' = request(s,a,c) .
eq existsLi((a,c);lics(s)) = true .
red istep1(l).
close

Here we replaced the equation c-
request(s,a,c)= true with the definition of
c-request(s,a,c), that is the equation
existsLi((a,c);lics(s)) = true, to
help CafeOBJ with the reductions.

In this case CafeOBJ returns again nor true nor
false and we need more case splitting based on the
returned formula (interactive computer – human
proof).

open ISTEP
op s' : -> Sys .
op a : -> Action .
op c : -> Cont .
eq s' = request(s,a,c) .
eq existsLi((a,c) ; lics(s)) = true .
eq (l=chooseLic(belongLS((a,c);
lics(s))))=false .
red istep1(l).
close

The above proof passage corresponds to the case
existsLi((a,c);lics(s)) l=
chooseLic(belongLS((a,c);lics(s))).

This proof passage returns true, so we must
continue with the symmetric case once again.

open ISTEP
op s' : -> Sys .
op a : -> Action .
op c : -> Cont .
eq s' = request(s,a,c) .
eq existsLi((a,c) ; lics(s)) = true .
eq l=chooseLic(belongLS((a,c);lics(s)))
.
red istep1(l).
close

This case corresponds to existsLi((a,c);
lics(s)) l=chooseLic(belongLS((a,c);
lics(s)))and CafeOBJ returns again nor true nor
false. Once again we need to split the case based on
the formula returned by CafeOBJ.

Following this procedure we reach state
existsLi((a,c);lics(s)) l=chooseLic(
belongLS((a,c);lics(s)))
(chooseLic(
belongLS((a,c);lics(s)))=nil)
(chooseLic(belongLS((a,c);lics(s))inlic

s(s)) where CafeOBJ has returned true to all the
symmetrical subcases.

Here CafeOBJ returns nor true nor false again.
Normally we would, and can, apply more case
splitting, but we notice that these predicates cannot
hold simultaneously in our OTS (another example of
the interactive proving procedure). So we can use
these contradicting predicates to conjuncture a
lemma and discard this case. These predicates
constitute lemma 2 we described in table 3 and it is
formally defined as:

eq inv2(LS,L,A,C)=((L=chooseLic
(belongLS ((A,C);LS)))and not(L=nil))
implies(L in LS).

Using this lemma we can discard this case as is
show in the following proof passage:

open ISTEP
op s' : -> Sys .
op a : -> Action .
op c : -> Cont .
eq s' = request(s,a,c) .
eq existsLi((a,c) ; lics(s)) = true .
eq
l=chooseLic(belongLS((a,c);lics(s))).
eq (chooseLic(belongLS((a,c);lics(s)))
= nil) = false .
eq (chooseLic(belongLS((a,c);lics(s)))
in lics(s)) = false .
red inv2(lics(s),l,a,c)implies
istep1(l) .
close

CafeOBJ returns true for the above proof passage
and hence, once we prove lemma 2, this concludes
the proof for the request transition rule of our safety
property.

Applying the same technique, CafeOBJ returned
true for all transitions. Finally, all the lemmas
presented in table 3 were proven using the same
technique and thus our proof concludes.

5 CONCLUSIONS AND FUTURE
WORK

We have modeled OMA Choice Algorithm as an
Observational Transition System in CafeOBJ, and
verified that the algorithm possesses an important
invariant property using CafeOBJ system as an
interactive theorem prover. We are not the first to
use algebraic specification techniques for modeling
and verification of Digital Rights Management
Systems (Xiang, Bjørner, Futatsugi, 2008). This

FORMAL SPECIFICATION AND VERIFICATION OF THE OMA LICENSE CHOICE ALGORITHM IN THE
OTS/CAFEOBJ METHOD

179

paper is a part of our work in modeling,
specification and verification of algorithms and
protocols used in mobile settings, using algebraic
specification techniques (Ouranos, Stefaneas, 2007).

We have also proposed an abstract syntax for
OMA Rights Expression Language in (Triantafyllou,
Ouranos, Stefaneas, 2009). Some problems for the
OMA Choice Algorithm are presented in (Barth,
Mitchell, 2006). More specifically, let us consider
the example of section 3.In this example if the user
tries to exercise the right “play song A” the OMA
Choice Algorithm will decide that the best license to
use is license A. By doing so, the user is deprived of
the right to listen to song B because license A will
no longer be valid after the execution of the above
right. So, the user ends up losing some of the rights
the initial license set contained without exercising
them. This malfunction could have been avoided if
the OMA Choice Algorithm decided the most
fitting license to use for the right “play song A” was
license B. After the execution of the right the user
would retain the rights to play songs A, B and C.

We intend to redesign the OMA Choice
Algorithm so that problems like the ones presented
in (Barth, Mitchell, 2006) do not occur. The redesign
method will include Falsification techniques (Ogata,
Nakano, Kong, Futatsugi, 2006) for CafeOBJ
together with the OTS/CafeOBJ method.

REFERENCES

Iannella, R., 2002. Open Digital Rights Language (ODRL)
version 1.1. Available at: http://odrl.net/1.1/ODRL-
11.pdf .

ContentGuard, 2007. XrML 2.0 Technical Overview
version 1.0. Available at: http://www.xrml.org/
Reference/ XrMLTechnicalOverviewV1.pdf

 Rightscom, 2007. The MPEG-21 Rights Expression
Language - A Whitepaper. Available at:
http://www.xrml.org/reference/MPEG21_REL_
whitepaper _ Rightscom.pdf“.

 Diaconescu, R, Futatsugi, K., 1998. CafeOBJ Report.
World Scientific.

Open Mobile Alliance, 2006. OMA-TS-DRM-REL-V2_
0-020060303-A. Available at: http://www.
openmobilealliance.org.

CafeOBJ home page, 2009, http://www.ldl.jaist.ac.jp/
cafeobj/.

Ouranos, I., Stefaneas, P., Frangos, P., 2007. An Algebraic
Framework for Modeling of Mobile Systems, In:
IEICE Trans. Fund., Vol. E90-A, No. 9, pp. 1986-
1999.

Ouranos, I., Stefaneas, P., 2007. Verifying Security
Protocols for Sensor Networks using Algebraic
Specification Techniques. In: Proc. CAI 2007,

Thessalonica, Greece, May 2007, LNCS 4728, pp.
247-259, Springer.

Barth, A., Mitchell, J.C., 2006. Managing Digital Rights
using Linear Logic. In: 21th IEEE Symposium on
Logic in Computer Science (LICS), pp. 127-136.

Futatsugi, K., Goguen, J.A., Ogata, K., 2005. Verifying
Specifications with Proof Scores in CafeOBJ. In: B.
Meyer, J. Woodcock (Eds.), Verified Software:
Theories, Tools, Experiments, First IFIP TC 2/WG 2.3
Conference, VSTTE, LNCS 4171, pp. 277-290.

Futatsugi, K., Ogata, K., 2008. Simulation-based
Verification for Invariant Properties in the
OTS/CafeOBJ Method. In: Electronic Notes Theor.
Comp. Science 201, pp. 127-154.

Futatsugi, K., Ogata, K., 2006. Some Tips on Writing
Proof Scores in the OTS/CafeOBJ Method. In: K.
Futatsugi, J.-P. Jouannaud, J. Meseguer (Eds.),
Algebra, Meaning, and Computation, Essays
Dedicated to Joseph A. Goguen on the Occasion of
His 65th Birthday, LNCS 4060, pp. 596-615, Springer.

Futatsugi, K., Ogata, K., 2003. Proof Scores in the
OTS/CafeOBJ Method. In: Proc. of the 6th IFIP
WG6.1 Intl. Conf. on Formal Methods for Open
Object-Based Distributed Systems, LNCS 2884,
pp.170--184, Springer .

Diaconescu, R. 2000. Behavioral Coherence in Object -
Oriented Algebraic Specification. J. Universal
Computer Science. 6(1), pp. 74—96

Ogata, K., Nakano, M., Kong, W., and Futatsugi, K.,
2006. Induction-Guided Falsification. Formal
Methods and Software Engineering, LNCS 4260, pp.
114-131, Springer.

 Triantafyllou, N., Ouranos, I., Stefaneas, P., 2009.
Algebraic Specifications for OMA REL Licenses. In
Proc: IEEE International Conference on Wireless and
Mobile Computing, Networking and Communications.
wimob, pp.376-381.

Xiang, J., Bjørner, D., Futatsugi, K., 2008 Formal digital
license language with OTS/CafeOBJ, method.
IEEE/ACS International Conference on Computer
Systems and Applications 2008, pp. 652 – 660.

WINSYS 2010 - International Conference on Wireless Information Networks and Systems

180

