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Abstract: Linearization techniques are well known tools that can transform nonlinear models into linear models. In the 
paper we employ a successive model linearization along predicted state and input trajectories resulting in 
linear time-varying model. The nonlinear behaviour is represented in each time sample by recurrent set of 
linear time-varying models. Solution of the optimal non-linear model predictive control problem is obtained 
in an iterative way where the most important step is the linearization along predicted trajectory. The main 
aim of this paper is to analyse how the nonlinear system should be transformed into linear one to ensure 
possibly fast solution of the model predictive control problem based on the successive linearization method.  

1 INTRODUCTION 

Model predictive control (MPC) is attractive control 
strategy, which have 3 common properties 
(Camacho et. al. 2004): explicit use of a model to 
predict the output at future time instants, calculation 
of a control trajectory minimizing an objective 
function and receding horizon (moving horizon) 
strategy. MPC issues for linear systems including 
stability are well known (Camacho et. al., 2004), 
(Morari et. al. 1999), (Tatjewski, 2007), (Mayne et. 
al., 2000) also (Qin et. al. 2003), (Magni et. al. 
1999), including fast algorithms (Blachuta, 1999) 
and discrete-time system with delays (Kowalczuk et. 
al. 2005). Many real systems are inherently 
nonlinear. Due to higher product quality 
specifications, some important environmental and 
economical reasons linear models are often 
inadequate to describe the system properties. 
Computing the optimal control trajectory directly for 
nonlinear model is difficult, non-convex 
optimization problem. Generally there is no 
guarantee that the computed solution is global 
optimal solution. Moreover it is difficult to prove 
global stability of the system using directly the 
nonlinear model for control synthesis. In practise 
some transformations and simplifications are applied 
to the nonlinear model in order to prove stability, 

and also to take advantages of theory for linear 
systems.  
Among some existing approaches in nonlinear 
model predictive control in the paper we consider 
successive model linearization along predicted state 
and input trajectories with recurrent linear time-
varying (LTV) model. A large class of these 
methods uses a common algorithm, i.e. 
(Kouvartiakis et. al., 1999) employ an optimal 
control trajectory calculated at the previous time 
instant of the control algorithm for NMPC. (Lee et. 
al., 2002) use a similar methodology and employ a 
linearization at points of the seed trajectory for the 
discrete-time model of the system. Also the 
technique presented in (Dutka et. al., 2004), (Ordys 
et. al., 2001), (Mracek et. al., 1998), (Grimble et. al., 
2001), (Dutka et. al., 2003) uses similar idea to 
(Kouvartiakis et. al., 1999), (Lee et. al., 2002) but 
with a different model representation and an 
optimisation technique. Similar approach for the 
construction of an explicit nonlinear control law 
approximating nonlinear constrained finite-time 
optimal control using approximate mapping of a 
general nonlinear system into a set of piecewise 
affine systems is presented in (Ulbig et. al., 2007). 
The main aim of this paper is to analyse how to 
linearize (decompose) nonlinear system into linear 
one for using with the successive model linearization 
method along predicted state and input trajectories. 
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The main difficulty is to find proper transformation 
method, which ensure fast computation of stable and 
optimal solution for nonlinear control problem. 

2 SYSTEM DESCRIPTION 

Let us assume general discrete-time, time-varying 
nonlinear model in the following form: 

 ( ) ( ) ( )( )1 , ,k k k k+ =x f x u  (1) 
The nonlinear system can be transformed into 
following discrete-time, time-varying state-
dependent form: 
( )

( ) ( )( ) ( ) ( ) ( )( ) ( )
1

, , , ,

k

k k k k k k k k

+ =

+

x

A x u x B x u u
 (2) 

where ( ) ( )( ) ( ) ( )( ), , ,  , ,k k k k k kA x u B x u  are 
state and input dependent matrices calculated for 
given initial condition x0 and control trajectory 
( )ku  at each time instant.  

Then, using the past input and state trajectories, 
matrices 
( ) ( ) ( )( ) ( ) ( ) ( )( ), , ,  , ,k k k k k k k k= =A A x u B B x u

may be calculated for the subsequent points of the 
trajectories and the nonlinear system (1) is 
approximated by the LTV model with matrices 
( ) ( ),  k kA B . Discrete-time LTV system is given in 

the state space form: 
 ( ) ( ) ( ) ( ) ( )1k k k k k+ = +x A x B u  (3) 
where 
( ) ( ),n n n mk k× ×∈ ∈A BR R , 0 0,..., 1k k k N= + −  and 

N is the prediction horizon. 
Linear time-varying discrete-time system can be 
equivalently defined using evolution operators or in 
the finite horizon case, also by following block 
matrix operators ˆ ˆ ˆ, ,L N B : 
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where ( ) ( ) ( )1k
i k k iφ = −A A A… . For state and 

input trajectories ˆ ˆ,  x u  we use the following block 
column vector notation, i.e. 

 ( ) ( )0 0ˆ 1
TT Tk k N⎡ ⎤= + +⎣ ⎦x x x  (6) 

 ( ) ( )0 0ˆ 1
TT Tk k N⎡ ⎤= + −⎣ ⎦u u u  (7) 

It follows that the mathematical model can be 
rewritten in the final form as 
 0

ˆ ˆ ˆˆ ˆ= +x LBu Nx  (8) 
We assume that at each time instant the system can 
be analyzed as starting from time sample equal to 
zero with a current initial condition ( )0 0k=x x  up 
to N steps into the future (prediction horizon).  
The operator ˆ ˆLB  is a compact and Hilbert-Schmidt 
one from l2 into l2 and boundedly maps signals 

[ ]2 0 0( ) , 1k l k k N∈ = + −u L  into signals x∈X .  
For simulation purposes we employ cost function in 
the following form: 

 ( ) ( ) ˆˆˆ ˆ ˆ ˆ ˆ ˆ
T T

ref refJ = − − +x x P x x u Qu  (9) 

where ( ) ( ) ( ) ( )ˆˆ ,nN nN mN mN× ×∈ ∈P QR R  are weighting 
operators, constructed with weighting matrices 
( ) ( ),  1... ,  ,  0... 1n n m mk k N k k N× ×∈ = ∈ = −P QR R , 

respectively usually given in following block matrix 
form: 

( )

( )

( )

( )

1 0
ˆˆ ,  

1N N

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

P 0 0 Q 0 0
P 0 0 Q 0 0

0 0 P 0 0 Q
 

Usually weighting matrices are time-invariant with 
the exception of ( )NP  which represents the 
terminal cost. Equivalently the cost function can be 
rewritten in the following form: 
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where the term  

( )
( )

( )
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0 0
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N k N k
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N k N k
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x x
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for k=N in the first sum of (10) is the terminal cost.  

3 PROBLEM DESCRIPTION 

The nonlinear system described by the discrete-time 
nonlinear state space model can be rearranged into 
the so-called state and control dependent linear form 
(Mracek et. al., 1998), (Huang et. al., 1996). The 
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non-linear behaviour of the system is included in the 
state and control dependent matrices. If the 
trajectory prediction for the system may be obtained 
within the algorithm then one can pretend that the 
future behaviour is known during the prediction 
horizon (Dutka et. al., 2004). Such a system can be 
treated as a linear time-varying (LTV) one. Most 
often the algorithm, shown on fig. 1 has common 
steps (Kouvartiakis et. al., 1999), (Orlowski, 2005). 

 
Figure1: Algorithm of the time-varying linearization along 
predicted trajectory.  

In general there no restrictions to the cost function. 
For simulation purposes we employ cost function 
given by eq. (9). However in practise the method can 
be also used with different frequently used in MPC 
cost functions and stabilizing conditions, e.g.: 
terminal cost function, terminal equality constraint, 
terminal constraint set. It is only required to define 
an MPC problem for the LTV system. 

The second important problem is choosing initial 
control trajectory. The simplest choice could be step 
control signal with amplitude from normal operating 
range for the control. Another possibility is to use at 
the beginning a few initial control trajectories and 
choose the one which results in the smallest cost 
function. The trajectory is required only for 
linearization purposes and only in the first iteration 
of the algorithm for the first time step. For the 
consecutive time steps on receding horizon it may be 
assumed from previous control predictions. 

Definition 1. The algorithm from fig. 1 is 
convergent if there exists a limiting control sequence 
ˆ optu  such that for any arbitrarily small positive 

number ε>0, there is a large integer I such that for 
all i≥I, ( )ˆ ˆ opti ε− ≤u u . The algorithm that is not 

convergent is said to be divergent.  
The algorithm converges both for local or global 
optimal solutions. Divergent algorithm cannot 
satisfy a stopping condition usually given by 
following absolute tolerance condition:  
 ( ) ( )1ˆ ˆi i ε−− ≤u u  (11) 

for arbitrarily small ε. 
The control can be computed using arbitrary method 
for LTV systems, including algorithms with signal 
constraints. The algorithm from fig. 1 refer only to 
one time step computation. Usually it is employed 
with receding horizon. The algorithm must be 
repeated for successive time steps 0 0 1k k= + .  

4 NONLINEAR SYSTEM 
DECOMPOSITION 

To transform of the non-linear model (1) into the 
time-varying state dependent form given by eq. (2) 
one needs to decompose nonlinear function 

( ) ( )( ), ,k k kf x u  into 2 factors corresponding to 
state and input matrices such that: 
( ) ( ) ( ) ( ) ( ) ( )( ), ,k k k k k k k+ =A x B u f x u .  

For example, let us assume nonlinear function: 
( ) ( )( ) ( ) ( )( ) ( ) ( )( ), sin arctanf x k u k x k x k u k u k= +

Transformation into state and input dependent form 
can be easily done by simple expansion terms 
dependent on state and input only, i.e.: 

( ) ( )( ) ( ) ( )( )sin ,   arctank x k k u k= =A B  
More difficult problem is decomposition of a system 
consisting coupled input-state terms. Assume for 
example function ( ) ( )( ) ( ) ( ),f x k u k x k u k= . One 

Choose the cost function, signal constraints, the reference 
trajectory and the initial control trajectory 

( )0û . 

Transform the non-linear model given in general form  
( ) ( ) ( )( )1 , ,k k k k+ =x f x u  

into the time-varying state dependent form  
( )1k + =x  

( ) ( )( ) ( ) ( ) ( )( ) ( ), , , ,k k k k k k k k+A x u x B x u u  

Increase iteration number j=j+1 
Calculate new control ( )ˆ iu  

Check stopping condition 

( ) ( )1ˆ ˆi i ε−− ≤u u  

Satisfied ? 
N

Optimal control ( )ˆ ˆopt i=u u  found 

Ye
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of possible decompositions is to divide the function 
into following 2 additive terms: 

( ) ( )( ) ( ) ( ) ( ) ( ) ( ), 1f x k u k x k u k x k u kα α= + −  
where: 

( ) ( ) ( ) ( ) ( ),   1k u k k x kα α= = −A B  
In general we propose following method which 
allow to decompose arbitrary nonlinear function 

( ) ( )( ), ,k k kf x u  into series of M additive 
components. Using the simplified notation 

( ) ( )( ), ,i i k k k=f f x u  for a fixed input trajectory 
and initial conditions we have 

( ) ( )( ) ( ) ( )( )
1 1

, , , ,
M M

i i
i i

k k k k k k
= =

= =∑ ∑f x u f x u f  (12) 

Every system (1) can be decomposed into the state 
dependent form (2). In general, this decomposition 
takes the following form: 

( ) , ,
1 1 1 1 1

1
M n M m M

i i j i i j i
i j i j i

k α β
= = = = =

⎛ ⎞ ⎛ ⎞
+ = = +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑ ∑ ∑ ∑ ∑x f f f  (13) 

( )

,1 , ,1 ,
1 1 1 1

1
M M M M

i i i n i i i i m i
i i i i

k

α α β β
= = = =

+ =

+ + + + +∑ ∑ ∑ ∑

x

f f f f… …
 (14) 

What can be arranged into following vector-matrix 
state and input dependent form: 
( )
[ ][ ] [ ][ ]

1 1 1 1

1 1 1 1

1

 
n n m m

T T
n n m m

k x x u u

x x u u

+ = + + + + +

= +

= +

x a a b b

a a b b
Ax Bu

… …

 (15) 

where 

 ,
1

,   
M

j j i j i
i

x α
=

= ∑a f  (16) 

 ,
1

,   
M

j j i j i
i

u β
=

= ∑b f  (17) 

 , ,
1 1

 1
n m

i j i ji j j
α β

= =

∀ + =∑ ∑  (18) 

The component column vectors of matrices A(k) and 
B(k) can be determined under assumption that the 

following limits 
0 0

lim , lim
j j

j j j j

j x j u
j j

x u
x u→ →

∀ ∀
a b

 exist and 

are finite. These vectors are given by expressions 

 

0

           0

lim       0
j

j j
j

j
j

j j
jx

j

x
x

x

x
x

x→

⎧
≠⎪

⎪= ⎨
⎪ =⎪
⎩

a

a
a

 (19) 

 

0

           u 0

lim       u 0
j

j j
j

j
j

j j
ju

j

u
u

u
u→

⎧
≠⎪

⎪= ⎨
⎪ =⎪
⎩

b

b
b

 (20) 

where  
( ) [ ] ( ) [ ]1 1 ,n mk k= =A a a B b b , n – order, m – 

number of inputs, ,j ja b  - column vectors with n 
rows 
Let us assume that function f(x,u,k) can be 
decomposed into the following four additive terms: 

 
( )
( ) ( ) ( ) ( )1 2 3 4

, ,

, , , ,

k

k k k k

=

+ + +

f x u

f x f x u f u f
 (21) 

The vector functions f must be continuous and the 
following limits calculated in respect to all 
coordinates of f and x/u must be finite: 

 31

0 0
lim , lim
→ →x u

ff
x u

 (22) 

and either 

 2 2

0 0
lim ,  or/and lim
→ →x u

f f
x u

 (23) 

where  

[ ]

[ ]

[ ] [ ]

[ ] [ ]

1

1

1 1 1 1

0 01 1 1
1

1 0

1 1 1

0 0
1

lim lim

,  lim

lim lim

R

R

x x
R

R R R

x x
R

f f
f x x

f f f

x x

→ →

→

→ →

⎡ ⎤
⎢ ⎥⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥= ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎢ ⎥
⎣ ⎦

x

f
f

x
∼  

And the limit is finite if and only if all elements in 
above matrix are finite. 
Norms of matrices A, B should approach neither 
zero nor infinity. The best performance is achieved 
if the norms of matrices A, B have similar order of 
magnitudes.  
Although the convergence of the algorithm from fig. 
1 for a given decomposition cannot be proved for 
general nonlinear systems stability for linearized 
ones follows directly from the applied computation 
method for control. The conversion from a nonlinear 
into LTV system can be successfully applied to all 
systems for which the optimal nonlinear control lies 
in the neighbourhood of the optimal control for the 
linearized LTV system.  

5 NUMERICAL EXAMPLE 

In the example algorithm from fig. 1 is combined 
with formula (24), where x0 is current initial 
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condition ( )0 0k=x x  and ˆˆ ,  P Q  are weighting 
matrices. Control is calculated iteratively using cost 
function (9) with ˆ ref =x 0 , from following formula: 

( )

( ) ( )( ) ( ) ( ) ( ) ( )( ) ( )( )

1

1

0

ˆ

ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

i

T T

i i i i i i ii

+

−

=

⎛ ⎞− +⎜ ⎟
⎝ ⎠

u

L B PL B Q L B PN x
(24) 

We assume following model for the nonlinear 
system: 
 2 2 3

1 0.5   k k k k kx x x u u+ = + +  (25) 
The initial control trajectory is equal to 

( ) [ ]0ˆ 0.5 1,1,1= −u , the absolute tolerance, defined by 
(11) 0.001ε =  and the weighting matrices are 
unitary ˆˆ ˆ ˆ,  .P Q= =P I Q I  The system (25) can be 
decomposed into two following state and input 
dependent parts: 

( ) ( )( )2 2
1

( , ) ( , )

0.5
k k k k

k k k k k k k k

A x u B x u

x x x u x x u uα α+ = + ⋅ + − + ⋅  (26) 

The decomposition is dependent on parameter α. 
Equation (26) is equivalent to (25) for arbitrary 
values of α, although convergence of the algorithm 
from fig. 1 is analysed for [ ]5,0.5α ∈ − .  
Figure 2 shows number if iterations η required to 
converge to optimal control solution for given initial 
state ( ]0 0,8x ∈  and decomposition parameter 

[ ]5,0.5α ∈ − . To improve readability of the figure 2 
it is also assumed that η≤100. Value η=100 
corresponds to a divergent solutions or solutions 
with that require more than 100 iterations. It may be 
concluded from fig. 2 that convergence of the 
algorithm from fig. 1 is dependent both on the initial 
state and the decomposition. Usually it is required 
for the algorithm to be convergent and possibly fast 
for all initial conditions from given range. To ensure 
fast convergence (the minimal number if iterations) 
for e.g. x0=8 parameter α should be chosen in the 
range [ ]0.5,0α ∈ − , whereas for x0=1.4 the smallest 
number if iterations is for [ ]3, 1.5α ∈ − − . For x0<1 
the algorithm is fast convergent for all α.  
It should be underlined that the 
convergence/divergence is a property of: the system, 
the initial condition, the decomposition and the 
initial control trajectory. First of all it is assumed 
that the system is controllable and observable and 
the state is reachable from arbitrary initial state x0. 
Although changes in each of three above factors 
may be effective to achieve convergence of the 
algorithm, the easiest way to improve the method or 
fasten the algorithm is to change the decomposition. 
Convergence of the algorithm is strongly connected 
with the conditional number rcond of the inverse of 
   

   

 
Figure 2: Number of iterations η required to converge 
optimal control solution for given initial state x0 and the 
decomposition parameter α for unitary weighting 
operators without terminal cost and time horizon N=3. 

 
Figure 3: Logarithm base 10 of reciprocal condition 
number estimate vs. initial state x0 and the decomposition 
parameter α for unitary weighting operators without 
terminal cost and time horizon N=3. 

matrix ( ) ( )( ) ( ) ( )
ˆˆ ˆ ˆ ˆ ˆT

i i i i
⎛ ⎞+⎜ ⎟
⎝ ⎠

L B PL B Q . Logarithm base 

10 of the conditional number is shown in figure 3.  

6 CONCLUSIONS 

The paper discuss selected problems concerned to 
successive model linearization along predicted state 
and input trajectories with linear time varying 
model.  
The paper mainly focus on the transformation 
method from a general nonlinear form into the state 
space dependent form. We formulate the problem 
and introduce the generalised form of the algorithm. 
Nonlinearities are decomposed into two additive 
terms – state and input dependent matrices of the 
state space dependent form and then model 
predictive control can be calculated using methods 
for linear systems. 
An important consequence of the chosen 
decomposition is reachability of the optimal solution 
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and required computation time – number of 
iterations. In many cases the number of iterations 
can be cut down. The optimal decomposition, for 
which the algorithm is convergent with minimal 
number of iterations depends on the initial condition 
– for receding horizon problems the initial condition 
is the current state in each time sample. The 
selection of the decomposition parameters ,  α β  
should be always connected with current value of 
the state to ensure suitable value of conditional 
number corresponding to the inverse of matrix in 
formula (24). 
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