AN EFFECTIVE CLUSTERING APPROACH TO WEB QUERY LOG ANONYMIZATION

Amin Milani Fard and Ke Wang

School of Computing Science, Simon Fraser University, BC, V5A 1S6, Burnaby, Canada

- Keywords: Query Logs Data, Privacy-preserving Data Publishing, Transaction Data Anonymization, Item Generalization.
- Abstract: Web query log data contain information useful to research; however, release of such data can re-identify the search engine users issuing the queries. These privacy concerns go far beyond removing explicitly identifying information such as name and address, since non-identifying personal data can be combined with publicly available information to pinpoint to an individual. In this work we model web query logs as unstructured transaction data and present a novel transaction anonymization technique based on clustering and generalization techniques to achieve the *k*-anonymity privacy. We conduct extensive experiments on the AOL query log data. Our results show that this method results in a higher data utility compared to the state-of-the-art transaction anonymization methods.

1 INTRODUCTION

Web search engines generally store query logs data for the purpose of improving ranking algorithms, query refinement, user modelling, fraud/abuse detection, language-based applications, and sharing data for academic research or commercial needs (Cooper, 2008). On the other hand, the release of query logs data can seriously breach the privacy of search engine users. The privacy concern goes far beyond just removing the identifying information from a query. Sweeney (Sweeney, 2000) showed that even non-identifying personal data can be combined with publicly available information, such as census or voter registration databases, to pinpoint to an individual. In 2006 the America Online (AOL) query logs data, over a period of three months, was released to the public (Barbaro et al., 2006). Although all explicit identifiers of searchers have been removed, by examining query terms, the searcher No. 4417749 was traced back to the 62year-old widow Thelma Arnold. Since this scandal, data publishers become reluctant to provide researchers with public anonymized query logs (Hafner, 2006).

An important research problem is how to render web query log data in such a way that it is difficult to link a query to a specific individual while the data is still useful to data analysis. Several recent works start to examine this problem, with (Kumar et al., 2007) and (Adar, 2007) from web community focusing on privacy attacks, and (He et al., 2009), (Terrovitis et al., 2008), and (Xu et al., 2008) from the database community focusing on anonymization techniques. Although good progresses are made, a major challenge is reducing the significant information loss of the anonymized data.

The subject of this paper falls into the field of *privacy preserving data publishing (PPDP)* (Fung et al., 2010), which is different from access control and authentication associated with computer security. The work in these latter areas ensures that the recipient of information has the authority to receive that information. While such protections can safeguard against direct disclosures, they do not address disclosures based on inferences that can be drawn from released data. The subject of *PPDP* is not much on whether the recipient can access to the information or not, but is more on what values will constitute the information the recipient will receive so that the privacy of record owners is protected.

1.1 Motivations

This paper studies the query log anonymization problem with the focus on reducing information loss. One approach is modelling query logs data as a special case of transaction data, where each

Milani Fard A. and Wang K. (2010). AN EFFECTIVE CLUSTERING APPROACH TO WEB QUERY LOG ANONYMIZATION. In Proceedings of the International Conference on Security and Cryptography, pages 109-119 DOI: 10.5220/0002924901090119 Copyright © SciTePress transaction contains several "items" from an item universe *I*. In the case of query logs, each transaction represents a query and each item represents a query term. Other examples of transaction data are emails, online clicking streams, online shopping transactions, and so on. As pointed out in (Terrovitis et al., 2008) and (Xu et al., 2008), for transaction data, the item universe I is very large (say thousands of items) and a transaction contains only a few items. For example, each query contains a tiny fraction of all query terms that may occur in a query log. If each item is treated as a binary attribute with 1/0 values, the transaction data is extremely high dimensional and sparse. On such data, traditional techniques suffer from extreme information loss (Terrovitis et al., 2008) and (Xu et al., 2008).

Recently, the authors of (He et al., 2009) adapted the top-down *Mondrian* (LeFevre et al., 2006) partition algorithm originally proposed for relational data to generalize the set-valued transaction data. We refer to this algorithm as *Partition* in this paper. They adapted the traditional *k*-anonymity (Samarati, 2001) and (Sweeney, 2002) to the set valued transaction data. A transaction database is *kanonymous* if transactions are partitioned into equivalence classes of size at least *k*, where all transactions in the same equivalence class are exactly identical. This notion prevents linking attacks in the sense that the probability of linking an individual to a specific transaction is no more than 1/k.

Our insight is that Partition method suffers from significant information loss on transaction data. Consider the transaction data $S = \{t_1, t_2, t_3, t_4, t_5\}$ in the second column of Table 1 and the item taxonomy in Figure 1. Assume k = 2. Partition works as follows. Initially, there is one partition $P_{\{food\}}$ in which the items in every transaction are generalized to the top-most item food. At this point, the possible drill-down is food \rightarrow {fruit, meat, dairy}, yielding 2^3 -1 sub-partitions corresponding to the non-empty subsets of {fruit, meat, dairy}, i.e., $P_{\{fruit\}}, P_{\{meat\}}, ..., \text{ and } P_{\{fruit, meat, dairy\}}, \text{ where the curly}$ bracket of each sub-partition contains the common items for all the transactions in that sub-partition. All transactions in $P_{\{food\}}$ are then partitioned into these sub-partitions. All sub-partitions except $P_{\{fruit,meat\}}$ violate k-anonymity (for k=2) and thus are merged into one partition $P_{\{food\}}$. Further partitioning of $P_{\{fruit,meat\}}$ also violates k-anonymity. Therefore, the algorithm stops with the result shown in the last column of Table 1.

One drawback of *Partition* is that it stops partitioning the data at a high level of the item

taxonomy. Indeed, specializing an item with n children will generate 2^{n} -1 possible sub-partitions. This exponential branching, even for a small value of n, quickly diminishes the size of a sub-partition and causes violation of k-anonymity. This is especially true for query logs data where query terms are drawn from a large universe and are from a diverse section of the taxonomy.



Figure 1: Food taxonomy tree.

Table 1: The motivating example and its 2-anonymization.

TID	Original Data	Partition	
t ₁	<orange, beef="" chicken,=""></orange,>	<fruit, meat=""></fruit,>	
t ₂	<banana, beef,="" cheese=""></banana,>	<food></food>	
t ₃	<chicken, butter="" milk,=""></chicken,>	<food></food>	
t ₄	<apple, chicken=""></apple,>	<fruit, meat=""></fruit,>	
t ₅	<chicken, beef=""></chicken,>	<food></food>	

Moreover, the *Partition* does not deal with item duplication. As an example, the generalized t_3 in the third column of Table 1 contains only one occurrence of *food*, which clearly has more information loss than the generalized transaction $\langle food, food \rangle$ because the latter tells more truthfully that the original transaction purchases at least three items. Indeed, the TFIDF used by many ranking algorithms critically depends on the term frequency of a term in a query or document. Preserving the occurrences of items (as much as possible) would enable a wide range of data analysis and applications.

1.2 Contributions

To render the input transaction data k-anonymous, our observation is: if "similar" transactions are grouped together, less generalization and suppression will be needed to render them identical. As an example, grouping two transactions <*Apple*> and <Milk> (each having only one item) entails more information loss than grouping two transactions <Apple> and <Orange>, because the former results in the more generalized transaction <Food> whereas the latter results in the less generalized transaction <Fruit>. Therefore, with a proper notion of transaction similarity, we can treat the transaction anonymization as a clustering problem such that each cluster must contain at least *k* transactions and these transactions should be "similar". Our main contributions are as follows:

Contribution 1. For a given item taxonomy, we introduce the notion of the *Least Common Generalization* (*LCG*) as the generalized representation of a subset of transactions, and as a way to measure the similarity of a subset of transactions. The distortion of *LCG* models the information loss caused by both item generalization and item suppression. We devise a linear-time algorithm to compute *LCG*.

Contribution 2. We formulate the transaction anonymization as the problem of clustering a given set of transactions into clusters of size at least k such that the sum of *LCG* distortion of all clusters is minimized.

Contribution 3. We present a heuristic linear-time solution to the transaction anonymization problem.

Contribution 4. We evaluate our method on the AOL query logs data.

The structure of the paper is as follows. Section 2 describes problem statements. Section 3 gives our clustering algorithm. Section 4 presents the detailed algorithm for computing *LCG*. Section 5 presents the experimental results. Section 6 reviews related works. We conclude in Section 7.

2 PROBLEM STATEMENTS

This section defines our problems. We use the terms "transaction" and "item". In the context of web query logs, a transaction corresponds to a query and an item corresponds to a query term.

2.1 Item Generalization

We assume that there is a taxonomy tree T over the item universe I, with the parent being more general than all children. This assumption was made in the literature (Samarati, 2001), (Sweeney, 2002), (He et al., 2009), (Terrovitis et al., 2008). For example, WordNet (Fellbaum, 1998) could be a source to obtain the item taxonomy.

The process of generalization refers to replacing a special item with a more general item (i.e., an ancestor), and the process of specialization refers to the exact reverse operation. In this work, an item is its own ancestor and descendant.

Definition 1 (*Transactions and Generalization*). A *transaction* is a bag of items from I (thus allowing duplicate items). A transaction t' is a *Generalized*

Transaction of a transaction t, if for every item $i' \in t'$ there exists one *distinct* item $i \in t$ such that i' is an ancestor of i. In this case, t is the *Specialized Transaction* of t'.

The above transaction model is different from (He et al., 2009) in several ways. First, it allows duplicate items in a transaction. Second, it allows items in a transaction to be on the same path in the item taxonomy, in which case, each item represents a distinct leaf item. For example, we interpret the transaction $\langle Fruit, Food \rangle$ as: *Fruit* represents (the generalization of) a leaf item under *Fruit* and *Food* represents a leaf item under *Food* that is not represented by *Fruit*. Also, if t' is a generalized transaction of t, each item $i' \in t'$ represents one *distinct* item $i \in t$. We say that an item $i \in t$ is *suppressed* in t' if no $i' \in t'$ represents the item i. Hence, our generalization also models item suppression.

Example 1: Consider the taxonomy tree in Figure 1 and the transaction t=<Orange, Beef>. All possible generalized transactions of t are <, <Orange>, <Beef>, <Orange, Beef>, <Fruit, Beef>, <Orange, Meat>, <Fruit, Meat>, <Fruit, Beef>, <Orange, Meat>, <Fruit, Meat>, <Fruit>, <Meat>, <Food>, <Orange, Meat>, <Fruit, Meat>, <Fruit>, <Meat>, <Food>, <Orange, Meat>, <Fruit, Meat>, <Fruit>, <Meat>, <Food>, <Orange, Meat>, <Food>, <Food, Beef>, <Fruit, Food>, <Food, Meat>, and <Food, Beef>, <Fruit, Food>, <Food>, <Food>, Srout, Food>, Srout, Fruit represents (the generalization) of some item under the category Fruit (i.e., Orange), and Beef is a suppressed item since no more item in t' represents it. For t'=<Food>, Food represents one item under Food, therefore, one of Orange and Beef in t is suppressed. For t'=<Food>, Food>, each occurrence of Food represents a different item in t. \Box

2.2 Least Common Generalization

The main idea of transaction anonymization is to build groups of identical transactions through generalization. We introduce the following notion to capture such generalizations.

Definition 2 (*LCG*). The *Least Common Generalization* of a set of transactions *S*, denoted by LCG(S), is a common generalized transaction for all of the transactions in *S*, and there is no other more special common generalized transaction.

The following properties follow from the above definition. The proof has been omitted due to the space limit

Property 1 *LCG*(*S*) is unique for a given *S*.

Property 2 The length of LCG(S) (i.e. the number of items in it) is equal to the length of the shortest transaction in *S*. This property can be ensured by padding the root item to LCG if necessary.

Example 2: Consider the taxonomy tree in Figure 1. Let $S_I = \{ \langle Orange, Beef \rangle, \langle Apple, Chicken, Beef \rangle \}, \}$ $LCG(S_1) = \langle Fruit, Beef \rangle$. $LCG(S_1)$ cannot be $\langle Fruit,$ Meat> since <Fruit, Beef> is a more specialized common transaction. For $S_2 = \{\langle Orange, Milk \rangle, \}$ $\langle Apple, Cheese, Butter \rangle \}, LCG(S_2) = \langle Fruit, Dairy \rangle$. Dairy represents Milk in the first transaction and represents one of Cheese and Butter in the second transaction. Thus one of Cheese or Butter is considered as a suppressed item. For $S_3 = \{ < Orange, \}$ Apple>, <Orange, Banana, Milk>, <Banana, Apple, *Beef*>}, *LCG*(*S*₃)=*<Fruit*, *Fruit*>, which represents that all three transactions contain at least two items under Fruit. Milk and Beef are suppressed items. For $S_4 = \{ \langle Orange, Beef \rangle, \langle Apple, Milk \rangle \}, LCG(S_4) = \}$ <Fruit, Food>, where Food represents Beef in the first transaction and *Milk* in the second transaction. Here *LCG* contains both a parent and a child item.

Various metrics have been proposed in the literature to measure the quality of generalized data including Classification Metric (CM), Generalized Loss Metric (LM) (Iyengar, 2002), and Discernibility Metric (DM) (Bayardo et al., 2005). We use LM to measure item generalization distortion. The similar notion of NCP has also been employed for setvalued data (Terrovitis et al., 2008) and (He et al., 2009). Let M be the total number of leaf nodes in the taxonomy tree T, and let Mp be the number of leaf nodes in the subtree rooted at a node p. The Loss Metric for an item p, denoted by LM(p), is defined as (Mp-1) / (M-1). For the root item p, LM(p) is 1. In words, LM captures the degree of generalization of an item by the percentage of the leaf items in the domain that are indistinguishable from it after the generalization. For example, considering taxonomy in Figure 1, LM(Fruit)=2/7.

Suppose that we generalize every transaction in a subset of transactions *S* to a common generalized transaction *t*, and we want to measure the distortion of this generalization. Recall that every item in *t* represents one *distinct* item in each transaction in *S* (Definition 1). Therefore, each item in *t* generalizes exactly |S| items, one from each transaction in *S*, where |S| is the number of transactions in *S*. The remaining items in a transaction (that are not generalized by any item in *t*) are suppressed items. Therefore, the distortion for generalized items, $|S| \times \Sigma_{i \in t} LM(i)$, and the distortion for suppressed items. For each suppressed item, we charge the same distortion as if it is generalized to the *root* item, i.e., 1.

Definition 3 (GGD). Suppose that we generalize every transaction in a set of transactions S to a common generalized transaction t. The Group

Generalization Distortion of the generalization is defined as $GGD(S, t) = |S| \times \sum_{i \in t} LM(i) + N_s$, where N_s is the number of occurrences of suppressed items.

To minimize the distortion, we shall generalize S to the least common generalization LCG(S), which has the distortion GGD(S, LCG(S)).

Example 3: Consider the taxonomy in Figure 1 and $S_1 = \{ < Orange, Beef >, < Apple, Chicken, Beef > \}$. We have $LCG(S_1) = < Fruit, Beef >$. LM(Fruit) = 2/7, LM(Beef) = 0, and $|S_1| = 2$. Since Chicken is the only suppressed item, $N_s = 1$. Thus $GGD(S_1, LCG(S_1)) = 2 \times (2/7 + 0) + 1 = 11/7$.

2.3 **Problem Definition**

We adopt the transactional k-anonymity in (He et al., 2009) as our privacy notion. A transaction database D is k-anonymous if for every transaction in D, there are at least k-1 other identical transactions in D. Therefore, for a k-anonymous D, if one transaction is linked to an individual, so are at least k-1 other transactions, so the adversary has at most 1/k probability to link a specific transaction to the individual. For example, the last column in Table 1 is a 2-anonymous transaction database.

Definition 5 (*Transaction Anonymization*). Given a transaction database D, a taxonomy of items, and a privacy parameter k, we want to find the clustering $C=\{S_1,...,S_n\}$ of D such that $S_1,...,S_n$ are pair-wise disjoint subsets of D with each S_i containing at least k transactions from D, and $\sum_{i=1.|C|} GGD(S_i, LCG(S_i))$ is minimized. \Box

Let $C=\{S_1,...,S_n\}$ be a solution to the above anonymization problem. A *k*-anonymized database of *D* can be obtained by generalizing every transaction in S_i to $LCG(S_i)$, i=1,...,n.

3 CLUSTERING APPROACH

In this section we present our algorithm *Clump* for solving the problem defined in Definition 5. In general, the problem of finding optimal *k*-anonymization is *NP*-hard for $k \ge 3$ (Meyerson et al., 2004). Thus, we focus on an efficient heuristic solution to this problem and evaluate its effectiveness empirically. In this section, we assume that the functions *LCG(S)* and *GGD(S, LCG(S))* are given. We will discuss the detail of computing these functions in Section 4.

The central idea of our algorithm is to group transactions in order to reduce $\Sigma GGD(S_i, LCG(S_i))$, subject to the constraint that S_i contains at least k

transactions. Recall $GGD(S, LCG(S)) = |S| \times \sum_{i \in LCG(S)}$ $LM(i) + N_s$ and from Property 2, LCG(S) has the length equal to the minimum length of transactions in S. All "extra" items in a transaction that do not have a generalization in LCG(S) are suppressed and contributes to the suppression distortion N_s . Since the distortion of generalizing an item is no more than the distortion of suppressing an item, one heuristic is to group transactions of similar length into one cluster in order to minimize the suppression distortion $N_{\rm s}$.

Based on this idea, we present our algorithm *Clump.* Let D be the input transaction database and let $n = \lfloor |D|/k \rfloor$ be the number of clusters, where |D|denotes the number of transactions in D:

Step 1 (line 2-5): We arrange the transactions in D in the decreasing order of the transaction length, and we initialize the i^{th} cluster S_i , i=1,...,n, with the transaction at the position (i-1)k+1 in the ordered list. Since earlier transactions in the arranged order have longer length, earlier clusters in this order tend to contain longer transactions.

For the comparison purpose, we also implement other transaction assignment orders, such as random assignment order and the increasing transaction length order (i.e., the exact reverse order of the above algorithm). Our experiments found that the decreasing order by transaction length produced better results.

Step 2 (line 6-12): For each remaining transaction t_i in the arranged order, we assign t_i to the cluster S_j such that $|S_i| \le k$ and $GGD(S_i \cup \{t_i\}, LCG(S_i \cup \{t_i\}))$ is minimized. Since this step requires computing $GGD(S_{i} \cup \{t_{i}\}, LCG(S_{i} \cup \{t_{i}\}))$, we can restrict the search to the first r clusters S_i with $|S_i| \le k$, where r is a pruning parameter. Our order of examining transactions implies that longer transactions tend to be assigned to earlier clusters.

Step 3 (line 13-17): after all of the *n* clusters contain k number of transactions, for each remaining transaction t_i in the sorted order, we assign it to the cluster S_i with the minimum $GGD(S_i \cup \{t_i\})$, $LCG(S_{i} \cup \{t_{i}\})).$

Algorithm 1: Clump: Transaction Clustering.

Input: Transaction database: D, Taxonomy: T, Anonymity parameter: $k, n = \lfloor |D|/k \rfloor$

Output: k-anonymous transaction database: D* Method:

Initialize $S_i \leftarrow \emptyset$ for i=1,...,|D|; 1.

- 2. Sort the transactions in D in the descending order of length
- 3. **for** *i* = 1 to n **do**
- 4. assign the transaction at the position (i-1)k+1 to S_i
- 5. end for

- while $|S_i| \le k$ for some S_i do 6.
- 7. for each unassigned transaction t_i in sorted order do 8. Let S_i be the cluster such that $|S_i| \le k$ and
 - $GGD(S_j \cup \{t_i\}, LCG(S_j \cup \{t_i\}))$ is minimized

9. $LCG(S_j) \leftarrow LCG(S_j \cup \{t_i\})$ 10.

- $S_i \leftarrow S_i \cup \{t_i\}$
- 11. end for 12
- end while 13
- for each unassigned transaction t_i do 14. Let S_i be the cluster such that $|S_i| \le k$ and
 - $GGD(S_i \cup \{t_i\}, LCG(S_i \cup \{t_i\}))$ is minimized
- 15. $LCG(S_i) \leftarrow LCG(S_i \cup \{t_i\})$
- 16. $S_i \leftarrow S_i \cup \{t_i\}$
- 17. end for
- 18. return $LCG(S_i)$ and S_i , i=1,..., n

The major work of the algorithm is computing $GGD(S_i \cup \{t_i\}, LCG(S_i \cup \{t_i\}))$, which requires the $LCG(S_i \cup \{t_i\})$. We will present an algorithm for computing $LCG(S_i)$ in time $O(|T| \times |S_i|)$ in the next section, where |T| is the size of the taxonomy tree T and $|S_i|$ is the number of transactions in S_i . It is important to note that each cluster S_i has a size at most 2k. Since k is small, LCG can be computed efficiently. In fact, the next lemma says that $LCG(S_i \cup \{t_i\})$ can be computed incrementally from $LCG(S_j).$

Lemma 1. Let t be a transaction, S be a subset of transactions, and $S' = \{LCG(S), t\}$ consist of two transactions. Then $LCG(S \cup \{t\}) = LCG(S^{\circ})$.

Proof: Omitted due to the space limit. \Box

In words, the lemma says that the *LCG* of $S_i \cup \{t_i\}$ is equal to the *LCG* of two transactions, LCG(S) and t_i . Thus if we maintain $LCG(S_i)$ for each cluster S_i , the computation of $LCG(S_i \cup \{t\})$ involves only two transactions and takes the time O(|T|).

Theorem 1. For a database *D* and a taxonomy tree T, Algorithm 1 runs in time $O(|D| \times r \times |T|)$, where r is the pruning parameter used by the algorithm.

Proof: We apply *Counting Sort* which takes O(|D|)time to sort all transactions in D by their length. Subsequently, the algorithm examines each transaction once to insert it to a cluster. To insert a transaction t_i , the algorithm examines r clusters and, for each cluster S_i , it computes $LCG(S_i \cup \{t_i\})$ and $GGD(S_j \cup \{t_i\}, LCG(S_j \cup \{t_i\}))$, which takes $O(|T| \times |S_j|)$ according to Theorem 2 in Section 4, where $|S_i|$ is the number of transactions in S_i . With the incremental computing of $LCG(S_i \cup \{t_i\})$ in Lemma 1, computing $LCG(S_i \cup \{t_i\})$ takes time proportional to |T|. Overall, the algorithm is in $O(|D| \times r \times |T|)$.

Since |T| and r are constants, the algorithm takes a linear time in the database size |D|.

4 COMPUTING LCG

In the previous section, we make use of the functions LCG(S) and GGD(S, LCG(S)) to determine the cluster for a transaction. Since these functions are frequently called, an efficient implementation is crucial. In this section, we present a linear time algorithm for computing LCG and GGD. We focus on LCG because computing GGD is straightforward once LCG is found.

4.1 Bottom-up Generalization

We present a bottom-up item generalization (*BUIG*) algorithm to build LCG(S) for a set *S* of transactions. First, we initialize LCG(S) with the empty set of items. Then, we examine the items in the taxonomy tree *T* in the bottom-up fashion: examine a parent only after examining all its children. For the current item *i* examined, if *i* is an ancestor of some item in *every* transaction in *S*, we add *i* to LCG(S). In this case, *i* is the least common generalization of these items. If *i* is not an ancestor of any item in some transaction in *S*, we need to examine the parent of *i*.

This algorithm is described in Algorithm 2. Let $S = \langle t_1, ..., t_m \rangle$. For an item *i*, we use an array $R_i[1..m]$ to store the number of items in a transaction of which *i* is an ancestor. Specifically, $R_i[j]$ is set to the number of items in the transaction t_j of which *i* is an ancestor. *MinCount*(R_i) returns the minimum entry in R_i , i.e., min_{j=1..m} $R_i[j]$. If $MinCount(R_i) > 0$, *i* is an ancestor of at least $MinCount(R_i)$ distinct items in *every* transaction in *S*, so we will add $MinCount(R_i)$ copies of the item *i* to LCG(S).

Algorithm 2 is a call to the recursive procedure BUIG(root) with the root of T. Line 1-6 in the main procedure initializes *LCG* and R_i . Consider *BUIG(i)* for an item *i*. If *i* is a leaf in *T*, it returns. Otherwise, line 4-9 examines recursively the children *i*' of *i*, by the call BUIG(i'). On return from BUIG(i'), if $MinCount(R_{i'}) > 0$, *i*' is an ancestor of at least $MinCount(R_{i'})$ items in every transaction in S, so $MinCount(R_{i'})$ copies of i' are added to LCG. If $MinCount(R_{i'})=0$, i' does not represent any item for some transaction in S, so the examination moves up to the parent item *i*; in this case, line 8 computes R_i by aggregating R_i for all child items i' such that *MinCount*($R_{i'}$)=0. Note that, by not aggregating $R_{i'}$ with $MinCount(R_i) > 0$, we stop generalizing such child items. If *i* is the root, line 10-11 adds MinTranSize(S)-|LCG| copies of the root item to LCG, where MinTranSize(S) returns the minimum transaction length of S. This step ensures that LCG has the same length as the minimum transaction

length of S (Property 2).

Example 4: Let $S=\{\langle Orange, Apple \rangle, \langle Orange, Banana, Milk \rangle, \langle Banana, Apple, Beef \rangle \}$ and consider the taxonomy in Figure 1. *BUIG(Food)* recurs until reaching leaf items. Then the processing proceeds bottom-up as depicted in Figure 2. Next to each item *i*, we show $o:R_i$, where *o* is the sequence order in which *i* is examined and R_i stores the number of items in each transaction of which *i* is an ancestor.

The first three items examined are *Apple*, *Orange*, and *Banana*. $R_{Apple} = [1,0,1]$ (since *Apple* appeared in transactions 1 and 3), $R_{Orange} = [1,1,0]$, and $R_{Banana} = [0,1,1]$. *MinCount*(R_i)=0 for these items *i*. Next, the parent *Fruit* is examined and $R_{Fruit} = R_{Apple} + R_{Orange} + R_{Banana} = [2,2,2]$. With *MinCount*(R_{Fruit}) = 2, two copies of *Fruit* are added to *LCG*, i.e., *LCG*(*S*)=<*Fruit*, *Fruit*> and we stop generalizing *Fruit*.

A similar processing applies to the sub-trees at *Meat* and *Dairy*, but no item *i* is added to *LCG* because $MinCount(R_i)=0$. Finally, at the root *Food*, $R_{Food} = R_{Meat} + R_{Dairy} = [0,1,1]$. Note that we do not add R_{Fruit} because $MinCount(R_{Fruit})>2$, which signals that the generalization has stopped at *Fruit*. Since |LCG|=MinTranSize(S), no *Food* is added to *LCG*. So the final LCG(S)=<Fruit, *Fruit*>. As mentioned in Example 2, the two occurrences of *Fruit* indicate that all three transactions contain at least two items under *Fruit*.

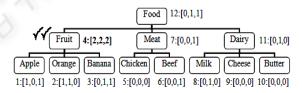


Figure 2: BUIG's processing order.

Algorithm 2: Bottom-up Item Generalization.				
Input: Taxonomy: <i>T</i> , Set of <i>m</i> transactions: $S = \langle t_1,, t_m \rangle$ Output: <i>LCG(S)</i>				
Method:				

1. $LCG \leftarrow \emptyset;$

- 2. for each item $i \in T$ do
- 3. for each $t_i \in S$ do
- $5. \quad \text{for each } l_j \in S \text{ up}$
- 4. **if** t_j contains i **then** $R_i[j] \leftarrow 1$ **else** $R_i[j] \leftarrow 0$

- 5. end for
- 6. end for
- 7. BUIG(root);
- 8. return *LCG*;

BUIG(i):

- 1. **if** i is a leaf in T **then**
- 2. return

3.	else
4.	for each child <i>i</i> ' of <i>i</i> do
5.	BUIG(i');
6.	if $MinCount(R_{i'})>0$ then
7.	Add $MinCount(R_i)$ copies of i' to LCG
8.	else $R_i \leftarrow R_i + R_i$, /* examining the parent <i>i</i> */
9.	end for
10.	if <i>i=root</i> then
11.	Add <i>MinTranSize(S)- LCG</i> copies of <i>root</i> to <i>LCG</i>
12.	return

Theorem 2. Given a set of transactions *S* and a taxonomy tree *T* of items, *BUIG* produces *LCG(S)* and takes time $O(|T| \times |S|)$, where |S| is the number of transactions in *S* and |T| is the number of items in taxonomy tree *T*.

Proof: First, *BUIG* generalizes transactions by examining the items in *T* in the bottom-up order and stops generalization whenever encountering an item that is a common ancestor of some unrepresented item in every transaction in *S*. This property ensures that each item added to *LCD* is the earliest possible common ancestor of some unrepresented item in every transaction. Second, *BUIG* visits each node in *T* once, and at each node *i*, it examines the structures $R_{i'}$ and R_{j} of size |S|, where *i'* is a child of *i*. So the complexity is $O(|T| \times |S|)$.

4.2 A Complete Example

Let us illustrate the complete run of *Clump* using the motivating example in Section 1.1. We reproduce the five transactions t_1 to t_5 in Table 2, arranged by the descending order of transaction length. Let k=2. First, the number of clusters is $m = \lfloor 5/2 \rfloor = 2$, and the first cluster S_1 is initialized to the first transaction t_1 and the second cluster S_2 is initialized to the third transaction t_3 . Next, we assign the remaining transactions t_2 , t_4 , and t_5 in that order. Consider t_2 . If we assign t_2 to S_1 , $LCG(S_1 \cup \{t_2\}) = \{fruit, beef, food\}$, and $GGD = 2 \times (2/7+0+1) = 2.57$. If we assign t_2 to S_2 , $LCG(S_2 \cup \{t_2\}) = \{meat, dairy, food\}$ and $GGD = 2 \times (1/7+2/7+1) = 2.85$. Thus the decision is assigning t_2 to S_1 resulting in $S_1 = \{t_1, t_2\}$ and $LCG(S_1) = \{fruit, beef, food\}$.

Next, we assign t_4 to S_2 because S_1 has contained k=2 transactions. So $S_2=\{t_3, t_4\}$ and $LCG(S_2)=$ *<chicken,food>*. Next, we have the choice of assigning t_5 to S_1 or S_2 because both have contained 2 transactions. The decision is assigning t_5 to S_2 because it results in a smaller *GGD*, and $LCG(S_2)=$ *<chicken,food>*. So the final clustering is $S_1=\{t_1, t_2\}$ and $S_2=\{t_3, t_4, t_5\}$. The last column of Table 2 shows the final generalized transactions. Let us compare this result of *Clump* with the result of *Partition* in the third column (which has been derived in Section 1.1). For *Clump*, we measure the distortion by $\Sigma GGD(S_i, LCG(S_i))$ over all clusters S_i . For *Partition*, we measure the distortion by $\Sigma GGD(S_i, t_j)$ over all sub-partitions S_i where t_j is the generalized transaction for S_i . The *GGD* for *Clump* is $2\times(2/7+0+1) + [3\times(0+1)+1] = 6.57$, compared to $[2\times(2/7+1/7)+1] + [3\times(1)+5] = 8.85$ for the *Partition*.

Table 2: The motivating example and its 2-anonymization.

ID	Original Data	Partition	Clump	
T_1	<orange,chicken,beef></orange,chicken,beef>	<fruit,meat></fruit,meat>	<fruit,beef,food></fruit,beef,food>	
T_2	<banana,beef,cheese></banana,beef,cheese>	<food></food>	<fruit,beef,food></fruit,beef,food>	
T_3	<chicken,milk,butter></chicken,milk,butter>	<food></food>	<chicken,food></chicken,food>	
T_4	<apple,chicken></apple,chicken>	<fruit,meat></fruit,meat>	<chicken,food></chicken,food>	
T_5	<chicken,beef></chicken,beef>	<food></food>	<chicken,food></chicken,food>	

5 EXPERIMENTS

We now evaluate our approach using the real AOL query logs (Pass et al., 2006). We compared our method *Clump* with the state-of-the-art transaction anonymization method *Partition* (He et al., 2009). The implementation of both algorithms was done in Visual C++ and the experiments were performed on a system with core-2 Duo 2.99GHz CPU with 3.83 GB memory.

5.1 Experiment Setup

Dataset Information. The AOL query log collection dataset consists of 20M web queries collected from 650k users over three months in form of {*AnonID*, *QueryContent*, *QueryTime*, *ItemRank*, *ClickURL*} and are sorted by anonymous *AnonID* (user ID). Our experiments focused on anonymizing *QueryContent*. The dataset has a size of 2.2GB and is divided into 10 subsets, each of which has similar characteristics and size. In our experiment, we used the first subset. In addition, we merged the queries issued by the same *AnonID* into one transaction because each query is too short, and removed duplicate items, resulting in 53,058 queries or transactions with the average transaction length of 20.93.

We generated the item taxonomy T using the *WordNet* dictionary (Fellbaum, 1998). According to the *WordNet*, each noun has multiple senses. A sense is represented by a synset, i.e., a set of words with the same meaning. We used the first word to

represent a synset. In pre-processing the AOL dataset, we discarded words that are not in the *WordNet* dictionary. We treated each noun as an item and interpreted each noun by its most frequently used sense i.e., the first synset. Therefore, nouns together with the *is-a-kind-of* links among them comprise a tree. The generated taxonomy tree contains 25645 items and has the height 18. (We will release the dataset and the taxonomy tree for research if this work is published.)

We investigate the following four quality indicators: a) distortion (i.e., information loss), b) average generalized transaction length, which reflects the number of items suppressed, c) average level of generalized items (with the root at level 1), and d) execution time. The distortion is measured by $\Sigma GGD(S_i, LCG(S_i))$ over the clusters S_i for *Clump*, and by $\Sigma GGD(S_i, t_j)$ over the sub-partitions S_i for *Partition* where t_j is the generalized transaction.

Parameters. The first parameter is the anonymity parameter k. We set k to 5, 7, 10, and 15. Another parameter is the database size |D| (i.e., the number of transactions). In our experiments, we used the first 1000, 10000, and 53,058 transactions to evaluate the runtime and the effect of "transaction density" on our algorithm performance. The transaction density is measured by the ratio $N_{\text{total}} / (|D| \times |L|)$, where N_{total} is the sum of number of items in all transactions, |D|is the number of transactions, and |L| is the number of leaf items in our taxonomy. $|D| \times |L|$ is the maximum possible number of items that can occur in |D| transactions. Table 3 shows the density of the first |D| transactions. Clearly, a database gets sparser as |D| grows. Unless otherwise stated, we set the parameter *r*=10 (a parameter used by *Clump*).

Table 3: Transaction database density.

D	1,000	10,000	20,000	30,000	40,000	53,058
Density	0.2 <mark>8</mark> %	0.25%	0.20%	0.16%	0.14%	0.11%

5.2 **Results**

As discussed in Section 1.1, one of our goals is to preserve duplicate items after generalization because duplication of items tells some information about the number of items in an original transaction, which is useful to data analysis. To study the effectiveness of achieving this goal, we consider two versions of the result produced by *Clump*, denoted by *Clump1* and *Clump2*. *Clump1* represents the result produced by *Clump* as discussed in Section 4, thus, preserves duplicate items in *LCG*. *Clump2* represents the result after removing all duplicate items from *LCG*. Figures 3, 4, 5 show the results with respect to information loss, average transaction length, and average level of generalized items. Below, we discuss each in details.

Information Loss. Figure 3 clearly shows that the information loss is reduced by the proposed *Clump* compared with Partition. The reduction is as much as 30%. As we shall see shortly, this reduction comes from the lower generalization level of the generalized items in LCG, which comes from the effectiveness of grouping similar transactions in our clustering algorithm. However, the difference between *Clump1* and *Clump2* is very small. A close look reveals that many duplicate items preserved by *Clump1* are at a high level of the taxonomy tree. For such items, generalization has a GGD close to that of suppressing an item. However, this does not mean that such duplicate items carry no information. Indeed, duplicates of items tell some information about the quantity or frequency of an item in an original transaction. Such information is not modelled by the GGD metric.

As the database gets larger, the data gets sparser, the improvement of *Clump* over *Partition* gets smaller. In fact, when data is too sparse, no algorithm is expected to perform well. As the privacy parameter k increases, the improvement reduces. This is because each cluster contains more transactions, possibly of different lengths; therefore, more generalization and more suppression are required for the *LCG* of such clusters. Typically, k in the range of [5,10] would provide adequate protection.

Average Generalized Transaction Length. Figure 4 shows the average length of generalized transactions. *Clump1* has significantly larger length than *Clump2* and *Partition*. This longer transaction length is mainly the consequence of preserving duplicate items in *LCG* by *Clump1*. As discussed above, duplicate items carry useful information about the quantity or frequency of items in an original transaction. The proposed *Clump* preserves better such information than *Partition*.

Average Level of Generalized Items. Figure 5 shows that the average level of generalized items for *Clump2* is lower than that for *Partition* which is lower than that for *Clump1* (recall that the root item is at level 1). This is due to the fact that many duplicate items preserved by *Clump1* are at a level close to the root. When such duplicates are removed (i.e., *Clump2*), the remaining items have a lower average level than *Partition*.

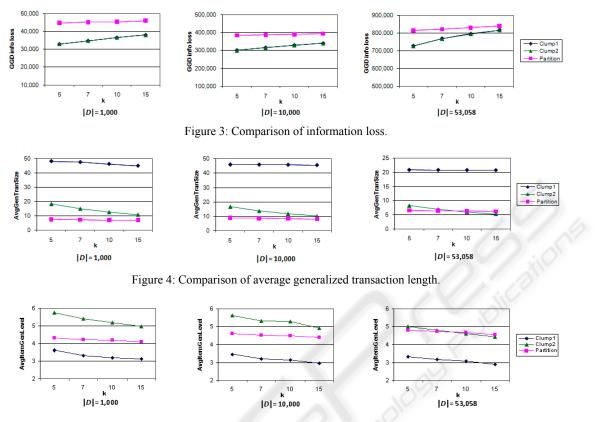


Figure 5: Comparison of average level of generalized item.

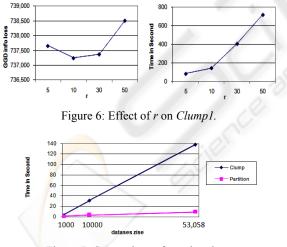


Figure 7: Comparison of running time.

Sensitivity to the Parameter *r*. This is the number of top clusters examined for assigning each transaction. A larger *r* means that more clusters will be examined to assign a transaction, thus, a better local optimal cluster but a longer runtime. In this experiment, we set |D|=53,058 and k=5. As shown in Figure 6, we set *r* to 5, 10, 30, 50, and 100. This experiment shows that a larger *r* does not always give a better result since *Clump* works in a greedy manner and by increasing the number of clusters to examine, we may come up with a locally optimal choice that later increases the overall information loss. Our experiments show that r=10 achieves a good result.

Runtime. Figure 7 depicts the runtime comparison for k=5 and r=10. Clump takes longer time than Partition does. In fact, the small runtime of Partition is largely due to the fact that the top-down algorithm stops partitioning the data at a high level of the taxonomy because a sub-partition contains less than k transactions. Thus, this small runtime is in fact at the costly information loss. Clump takes a longer runtime but is still linearly scalable with respect to the data size. Considering the notably less information loss, the longer runtime of Clump is justified.

6 RELATED WORK

A recent survey (Cooper, 2008) discussed seven query log privacy-enhancing techniques from a policy perspective, including deleting entire query logs, hashing query log content, deleting user identifiers, scrubbing personal information from query content, hashing user identifiers, shortening sessions, and deleting infrequent queries. Although these techniques protect privacy to some extent, there is a lack of formal privacy guarantees. For example, the release of the AOL query log data still leads to the re-identification of a search engine user even after hashing user's identifiers (Barbaro et al., 2006). The challenge is that the query content itself may be used together with publicly available information for linking attacks.

In token based hashing (Kumar et al., 2007) a query log is anonymized by tokenizing each query term and securely hashing each token to an identifier. However, if an unanonymized reference query log has been released previously, the adversary could employ the reference query log to extract statistical properties of query terms in the log and then processes the anonymized log to invert the hash function based on co-occurrences of tokens within queries.

Secret sharing (Adar, 2007) is another method which splits a query into k random shares and publishes a new share for each distinct user issuing the same query. This technique guarantees kanonymity because each share is useless on its own and all the k shares are required to decode the secret. This means that a query can be decoded only when there are at least k users issuing that query. The result is equivalent to suppressing all queries issued by less than k users. Since queries are typically sparse, many queries will be suppressed as a result. Split personality, also proposed in (Adar, 2007), splits the logs of each user on the basis of "interests" so that the users become dissimilar to themselves, thus reducing the possibility of reconstructing a full user trace (i.e. search history of a user). This distortion also makes it more difficult for researchers to correlate different facets.

The work on transaction anonymization is studied in the database and data mining communities. Other than the *Partition* algorithm (He et al., 2009) we discussed in Section 1.1, some techniques such as (h; k; p)-coherence (Xu et al., 2008), using suppression technique, and k^{m} -anonymity (Terrovitis et al., 2008), using generalization, have been proposed. Both works assume that a realistic adversary is limited by a maximum number of item occurrences that can be acquired as background knowledge. As pointed out in (He et al., 2009), if background knowledge can be on the absence of items, the adversary may exclude transactions using this knowledge and focus on fewer than k transactions. The k-anonymity avoids

this problem because all transactions in the same equivalence class are identical.

7 CONCLUSIONS

The objective of publishing query logs for research is constrained by privacy concerns and it is a challenging problem to achieve a good tradeoff between privacy and utility of query log data. In this paper, we proposed a novel solution to this problem by casting it as a special clustering problem and generalizing all transactions in each cluster to their least common generalization (LCG). The goal of clustering is to group transactions into clusters so that the overall distortion is minimized and each cluster has at least the size k. We devised efficient algorithms to find a good clustering. Our studies showed that the proposed algorithm retains a better data utility in terms of less data generalization and preserving more items, compared to the state-of-theart transaction anonymization approaches.

ACKNOWLEDGEMENTS

Authors would like to thank Junqiang Liu for his assistance in implementation part and also reviewers for their feedback. This research was supported by a Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant.

REFERENCES

- Adar, E. (2007). User 4XXXXX9: Anonymizing query logs, In Query Log Workshop, In *WWW 2007*.
- Barbaro, M. and Zeller, T. (2006). A face is exposed for AOL searcher no. 4417749, In *The New York Times*. 2006-08-09.
- Bayardo, R. J., and Agrawal, R. (2005). Data privacy through optimal k-anonymization. In *ICDE 2005*.
- Cooper, A. (2008). A survey of query log privacyenhancing techniques from a policy perspective, In *ACM Transactions on the Web, Vol. 2, No. 4*, 2008.
- Fellbaum, C. (1998). WordNet, an electronic lexical database, In *MIT Press, Cambridge MA*, 1998.
- Fung, B., Wang, K., Chen, R., Yu., P. (2010). Privacypreserving data publishing: a survey on recent developments. ACM Computing Surveys, Vol. 42, Issue No 4, December 2010
- Hafner, K. (2006). Tempting data, privacy concerns; researchers yearn to use AOL logs, but they hesitate, In *The New York Times*. 2006-09-13.

- He, Y., and Naughton, J. (2009). Anonymization of set valued data via top-down, local generalization. In *VLDB 2009*.
- Iyengar, V. (2002). Transforming data to satisfy privacy constraints, In SIGKDD 2002.
- Kumar, R., Novak, J., Pang, B., and Tomkins, A. (2007) On anonymizing query logs via token-based hashing. In WWW 2007.
- LeFevre, K., DeWitt, D. J., and Ramakrishnan, R. (2005). Incognito: Efficient full-domain k-anonymity. In *SIGMOD 2005*.
- LeFevre, K., DeWitt, D. J., and Ramakrishnan, R. (2006) Mondrian multidimensional k-anonymity. In *ICDE* 2006.
- Meyerson, A., Williams, R. (2004). On the complexity of optimal k-anonymity, In PODS 2004.
- Pass, G., Chowdhury, A., and Torgeson, C. (2006). A picture of search, The *1st International Conference on Scalable Information Systems*, Hong Kong, 2006.
- Samarati, P. (2001). Protecting respondents' identities in microdata releases. In *TKDE*, vol. 13, no. 6, pp. 1010– 1027.
- Sweeney, L. (2002). Achieving k-anonymity privacy protection using generalization and suppression, *International Journal on Uncertainty, Fuzziness and Knowledge-based Systems 10 (5)*, 2002, p.p 571–588.
- Sweeney, L. (2000). Uniqueness of simple demographics in the U.S. population, LIDAP-WP4 CMU, Laboratory for International Data Privacy, 2000
- Terrovitis, M., Mamoulis, N., and Kalnis, P. (2008). Privacy preserving anonymization of set valued data. In *VLDB 2008*.
- Xu, Y., Wang, K., Fu, A., and Yu, P. (2008). Anonymizing transaction databases for publication, In *SIGKDD 2008*.
- Xu, J., Wang, W., Pei, J., Wang, X., Shi, B., and Fu, A. (2006). Utility-based anonymization using local recoding. In *SIGKDD 2006*.