
A MODEL-DRIVEN APPROACH TO MANAGING
AND CUSTOMIZING SOFTWARE PROCESS VARIABILITIES

Fellipe Araújo Aleixo1,2, Marília Aranha Freire1,2, Wanderson Câmara dos Santos1 and Uirá Kulesza1
1Federal University of Rio Grande do Norte (UFRN), Natal, Brazil

2Federal Institute of Education, Science and Technology of Rio Grande do Norte (IFRN), Natal, Brazil

Keywords: Software Process, Software Product Lines, Model-Driven Development.

Abstract: This paper presents a model-driven approach to managing and customizing software process variabilites. It
promotes the productivity increase through: (i) the process reuse; and (ii) the integration and automation of
the definition, customization, deployment and execution activities of software processes. Our approach is
founded on the principles and techniques of software product lines and model-driven engineering. In order
to evaluate the feasibility of our approach, we have designed and implemented it using existing and
available technologies.

1 INTRODUCTION

Nowadays, the importance of using software
processes is already consolidated and is considered
fundamental to the success of software development
projects. Large and medium software projects
demand the definition and continuous improvement
of a software process in order to promote the
productive development of high-quality software.
Customizing and evolving existing software
processes to address the variety of scenarios,
technologies, culture and scale is a recurrent
challenge required by the software industry. It
involves the adaptation of software process models
for the reality of their projects. Besides, it must
promote the reuse of past experiences in the
definition and development of software processes
for the new projects. The adequate management and
execution of software processes can bring a better
quality and productivity to the produced software
systems.

In this context, automated tools supporting the
definition, customization and deployment are
increasingly necessary. Although there are already
many existing tools to specify processes (IBM 2010)
(EPF Project 2009), there is a strong need to develop
tools, technologies and techniques that help: (i) the
management of components and variations of such
processes; and (ii) the automatic composition and
derivation of these elements to generate a

customized process for a project. Furthermore, we
know that the definition of a software process is a
complex activity that requires much experience and
knowledge of many areas and disciplines of software
engineering. Our main research question is thus
related to: how a software organization can reuse
existing software processes by rapidly and
automatically allowing their customization for new
projects?

In this paper, we propose an approach that
supports: (i) the variability management of software
processes; and (ii) the automatic product derivation
of customized specifications of software processes.
Besides, it also allows automatically transforming
these customized software processes to workflow
specifications, which can be deployed and executed
in existing workflow engines. Our approach is
founded on the principles and techniques of software
product lines (Pohl, Bockle and Van der Linden
2005) and model-driven engineering (Kleppe,
Warmer and Bast 2003). In order to evaluate the
approach feasibility, we have implemented it using
several model-driven technologies. The software
processes are specified using Eclipse Process
Framework (EPF). The variability management and
product derivation of software processes has been
implemented as an extension of an existing product
line tool, called GenArch (GenArch Plugin 2009).
Finally, ATL and Acceleo (OBEO 2009)
transformation languages are adopted to transform

92
Araújo Aleixo F., Aranha Freire M., Câmara dos Santos W. and Kulesza U. (2010).
A MODEL-DRIVEN APPROACH TO MANAGING AND CUSTOMIZING SOFTWARE PROCESS VARIABILITIES.
In Proceedings of the 12th International Conference on Enterprise Information Systems - Information Systems Analysis and Specification, pages 92-100
DOI: 10.5220/0002910300920100
Copyright c© SciTePress

EPF process to jPDL workflow language
specifications in order to enable the deployment and
execution of software processes in the JBoss BPM
workflow engine.

The remainder of this paper is organized as
follows. Section 2 presents existing research work
on software processes reuse by identifying several
challenges in the variability management of software
processes. Section 3 gives an overview of the main
elements and functionalities of our approach.
Section 4 describes the approach implementation
using existing model-driven technologies. Finally,
Section 5 presents the conclusions and points out
future work directions.

2 SOFTWARE PROCESS REUSE

Over the last years, several approaches have been
proposed that explore the development of software
product lines (SPLs) (Pohl, Bockle and Van der
Linden 2005). The main aim of these approaches is
to maximize reuse and minimize costs by promoting
the identification and management of commonalities
and variabilities (common and variable features) of
software families. Software product line engineering
promotes the effective reuse of software artifacts
based on the organization of similar artifacts
according to commonalities and variabilities
(Rombach 2005). A common and flexible
architecture is designed to address the
commonalities and variabilities of the SPL. Finally,
a set of reusable assets is implemented following the
SPL architecture. After the design and
implementation of the SPL architecture and code
assets, which is called domain engineering, new
applications (products) can be easily derived by
reusing and customizing the code assets developed
for the SPL architecture. Currently, there are some
existing tools, such as Gears (Gear/BigLever
Software 2009), pure::variants (Pure::Variants 2009)
and GenArch (GenArch Plugin 2009), which
automate the automatic derivation of new
applications/products from existing code assets.
They facilitate the streamline selection, composition
and configuration of code assets.

In the software development process scenario,
recent work has been developed to allow the reuse of
process assets, in the same way that code assets can
be reused. The Eclipse Process Framework (EPF
Project 2009) is one of these initiatives. It facilitates
the definition of software processes using: (i) the
UMA (Unified Method Architecture) metamodel;
(ii) a supporting tool (EPF Composer); and (iii)

content (process asset) that can be used as the basis
for a wide range of processes. The EPF Composer
allows authoring, configuring and publishing
methods. You can add, remove and change process
elements according to your team and project needs.
In other words, the EPF Composer allows software
development processes be extended and customized
in a simple way (Haumer 2007).

Although the EPF already provides some support
to specify and define software processes, it does not
allow the representation and automatic
customization of existing software processes. Next,
we present some recent research work that proposes
the adoption of SPL techniques to enable the
automatic management, reuse and customization of
software processes.

Rombach (Rombach 2005) presents the first
studies to describe the term Software Process Line.
His proposal suggests the organization of families of
similar processes. It has been applied in small
domains and points out the feasibility of applying
this approach in more general contexts. However,
his work does not define any approach or tools to
effectively promote the reuse of software processes.

Xu et al (Xu, et al. 2005) present a definition of a
standardized representation and retrieval of process
components. The focus is on: (i) the specific
components organization of a process and its
representation; and (ii) the recovery process
definition based on the reuse of existing
components. The main drawback of their approach
is that it requires high expertise for the
representation and retrieval of components.

Barreto et al (Barreto, Murta and Rocha 2009)
propose an approach to the componentization of
legacy software processes. Their strategy aims to
facilitate the achievement of expected results for
maturity models. This work states that make
processes reusable is a costly task, because many
different situations must be provided and addressed
by components, lines and features. The work is
restricted to the definition of reusable process
fragments, and it does not propose any automation
for the effective reuse.

3 A MODEL-DRIVEN
APPROACH FOR PROCESS
DEFINITION,
CUSTOMIZATION AND
EXECUTION

In this section, we present an overview of our

A MODEL-DRIVEN APPROACH TO MANAGING AND CUSTOMIZING SOFTWARE PROCESS VARIABILITIES

93

Figure 1: Approach Overview.

approach for process definition, customization and
execution. It is founded on the principles and
techniques of software product lines and model-
driven engineering. Figure 1 illustrates the main
elements of our approach and their respective

relationships. Next we briefly explain the activities
of the proposed approach.

The first stage of our approach is the software
process modelling and definition (steps 1 and 2 in
Figure 1). Existing tools such as EPF provides

ICEIS 2010 - 12th International Conference on Enterprise Information Systems

94

support to address it by using the UMA metamodel.
After that, our approach concentrates on the
variability management of software process
elements. This second stage consists on the creation
of a variability model (e.g. feature model) that
allows specifying the existing variabilities of a
software process (steps 3 and 4). A product
derivation tool can then be used to allow the
selection of relevant features from an existing
software process, thus enabling the automatic
derivation of customized specifications of the
software process addressing specific scenarios and
projects (steps 5 and 6). Finally, our approach
supports the automatic transformation of the
software process specification to a workflow
specification (steps 7 e 8) in order to make possible
their deployment and execution in a workflow
engine (steps 9 and 10). Through these
transformations, the sequence of activities of the
process is mapped to a workflow definition.

In order to evaluate the feasibility of our
approach, we have designed and implemented it
using existing and available technologies. Figure 1
also provides an overview of the implementation of
our approach. The process specification is supported
by EPF composer using the UMA metamodel (step 2
in Figure 1).The variability management of the EPF
specifications is addressed by GenArch product
derivation tool (Cirilo, Kulesza and Lucena, A
Product Derivation Tool Based on Model-Driven
Tecniques an Annotations 2008) (E. Cirilo, U.
Kulesza and R. Coelho, et al. 2008b) (Cirilo,
Kulesza and Lucena, Automatic Derivation of
Spring-OSGi based Web Enterprise Applications
2009). This tool was extended to explicitly
indicating which variabilities in a feature model are
related to different process fragments from an EPF
specification (step 4). The tool uses this information
to automatically derive customized versions of a
software process (step 6). Finally, we have
implemented model-to-model transformations
(M2M) codified in ATL/QVT (OMG 2009) to allow
the translation of the EPF specification of an
automatically customized process to JPDL model
elements (step 7). This JPDL specification is then
processed by a model-to-text (M2T) transformation
implemented using Acceleo language (OBEO 2009)
to promote the generation of Java Server Faces (JSF)
web forms from a JPDL workflow specification
(step 8). These web forms can then be deployed and
executed in the JBoss Business Process Management
(jBPM) workflow engine. Section 4 describes our
approach in action by detailing a customization
example of a software process.

Our approach brings several benefits when
compared to other existing research work (Barreto,
Murta and Rocha 2009) (Rombach 2005) (Xu, et al.
2005). First, it promotes the variability management
of existing software processes by allowing to
explicitly specifying which process fragments
(activities, guides, roles, tasks, etc) represent
variabilities (optional and alternative) to be chosen
and customized when considering specific projects.
Second, it allows automatically deriving, deploying
and executing software processes in workflow
engines by supporting the systematic transformation
of process specifications to workflow specifications.
Last but not least, the approach is flexible enough to
allow the adoption of process and workflow
specifications defined in different languages and
notations, as well as to promote the adoption of
different tools to process definition, automatic
derivation, deployment and execution.

4 IMPLEMENTING THE
MODEL-DRIVEN APPROACH

In this section, we present the approach
implementation by exploring the adopted techniques
to managing software process variabilities and
deploying software processes in workflows engines.

4.1 Managing Variabilities in Software
Processes

Figure 2 presents a fragment of a case study
developed in the context of research and
development projects of a technical educational
organization (Aleixo, et al. 2010). It illustrates three
projects of software development, which are: (i) an
integrated academic management information
system, called SIGA; (ii) a professional and
technological education information system, called
SIEP; and (iii) an enterprise system development
project, called PDSC. Each project used a
customized version of the OpenUP process (EPF
Project 2009). The detailed analysis of these
OpenUP customizations allowed us identifying and
modelling the commonalities and variabilities of this
process family. Due to restriction space, in this
paper we only focus on the project management
discipline.

Figure 2 presents the details of the plan project
task of the project management discipline. Some
steps of this task were performed in every project –
the commonalities, such as: (i) establish a cohesive
team; (ii) forecast project velocity and duration; (iii)

A MODEL-DRIVEN APPROACH TO MANAGING AND CUSTOMIZING SOFTWARE PROCESS VARIABILITIES

95

Figure 2: Fragment of Case Study Result.

outline project lifecycle; and (iv) plan deployment.
Some steps can be executed or not (optional
features), such as: (i) evaluate risks; (ii) estimate
project size; and (iii) establish costs and articulated
value. Some steps include the use of specific
artefacts, which should demand the change of
original document template provided by the OpenUP
(alternative features). Examples of such alternative
templates are: (i) risk list template – that can be top
10 or full list; and (ii) project plan template – that
can be specified using the Redmine or MS-Project
tools. Figure 3 shows the correspondent feature
model for this fragment of the project management
discipline.

The variability management in a software
process is based on the used representation notation.
One of most cited notation is the SPEM (OMG
2010), an initiative of the OMG. In our work, we
have adopted an evolution of SPEM, called Unified
Method Architecture – UMA (Eclipse Foundation
2010), which is supported by the Eclipse Process
Framework – EPF (Eclipse Foundation 2009). EPF
was used to specify a software process line that
models a family of processes that shares common
and variable features. The software process line
maintains all the process elements that can be found
in any process to be customized from it. It allows
systematically reusing common process content

elements and fragments of existing software
processes.

Figure 3: Feature Model Resultant for the Case Study.

Process 1: SIGA Process 2: SIEP Process 3: PDSC

ICEIS 2010 - 12th International Conference on Enterprise Information Systems

96

The variability management of the software
process line is supported by a product derivation
tool. This tool enables us to relate variability models
(e.g. feature models) to the process content
elements. This is a similar strategy adopted by
existing product derivation tools to manage the
variabilities of software product lines. In our
approach, we have adapted an existing product
derivation tool, called GenArch, to support the
variability management of software process lines.
The original implementation of GenArch provides
three models: (i) feature model – that represents the
commonalities and variabilities; (ii) architecture
model – that represents all the code assets
implemented for a software product line; and (iii)
configuration model – that defines the mapping
between features and code assets in order to enable
the automatic product derivation. To enable the
usage of GenArch in the software process line
context, we replaced our architecture model by the
EPF process model. It allows specifying how
specific variabilities (optional and alternative
features) from a feature model are mapped to
existing elements from a process specification.
Figure 5(A) shows an example of the variability
management of process lines for project
management process activities. As we can see, the
feature model is used to indicate the optional,
alternative and mandatory features of an existing
process line.

The configuration model defines the mapping of
these features to process elements. The complete
configuration model is automatically produced from
feature variabilities annotations that are inserted in
the EPF process specification.

Figure 4 shows an example of feature annotation
inside the Assess_Result activity from an EPF
specification. As we can see, each annotation defines
the name (Assess_Result), parent (tasks) and type
(optional) of the feature that the related artefact
represents.

Figure 4: Feature Annotation in an EPF specification.

The following process variabilities have been
found in the process line case study that we have
already modelled and specified: (i) optional and
alternative activities in process workflows; (ii)
optional and alternative steps from process
activities; (iii) optional and alternative specification
templates for any specific tool or activity; and (iv)
optional and alternative technology developer guides
that provides principles and guidelines to adopt
specific technologies (CASE tools, modelling and
programming languages, API libraries, components
and frameworks, and so on). Besides, we are
currently exploring fine-grained variabilities
(parameters, variables, text portions) that can occur
as part of the descriptions of process activities and
steps.

Due to restrictions space, this paper does not
present additional details about these variabilities.
Additional information about process line
variabilities modelling can be found in (Aleixo, et al.
2010). After specifying the mapping between
variabilities in the feature model to the process
elements from an EPF specification, GenArch tool
can automatically derive customized versions of a
software process line. This stage is similar to what is
called product derivation (Clements 2002) in
software product line approaches.

During the process derivation, the process
engineer chooses the desired variabilities (optional
and alternative features) in a feature model editor.
Next, the GenArch tool processes the mappings
specified in the configuration model to decide which
process elements will remain in the final customized
process according to the variabilities selection.
Resolution of feature constraints and process
component dependencies are also computed by the
tool during this step of process customization.
Finally, after all this processing, the tool is
responsible to produce the only EPF specification
that represents a customized process to be adopted
by a specific project. After the feature selection, the
Genarch can be used to generate a new process that
makes sense in the features selected in the feature
model. Figure 5(B) illustrates two examples of
feature selection (configuration1, configuration2)
that are processed by GenArch tool to produce two
different set of project management activities for
specific projects (SIGA, SIEP, and PDSC).

4.2 Deploying and Executing a
Software Process in a Workflow
Engine

Nowadays, organizations are investing in

<?xml version="1.0" encoding="UTF-8"?>

<!-- @Feature(name=Asses_Results, parent=tasks,
 type=optional) -->

<org.eclipse.epf.uma:TaskDescription xmi:version="2.0"
 xmlns:xmi="http://www.omg.org/XMI"
 xmlns:org.eclipse.epf.uma=
 "http://www.eclipse.org/epf/uma/1.0.5/uma.ecore"
 xmlns:epf="http://www.eclipse.org/epf" epf:version="1.5.0"
 xmi:id="_a3uz4LBYEdm7Eph_l9Cn9w"
 name="assess_results,_0l53cMlgEdmt3adZL5Dmdw"
 guid="_a3uz4LBYEdm7Eph_l9Cn9w"
 changeDate="2007-05-01T13:24:08.202-0300"
 version="1.0.0">

 ...

A MODEL-DRIVEN APPROACH TO MANAGING AND CUSTOMIZING SOFTWARE PROCESS VARIABILITIES

97

Figure 5: Approach Implementation.

information technology to support their processes.
With this increasing need to control and improve
processes, we include the concept of Business
Process Management (BPM), which in essence is the
union of resources in information technology to the

analysis of business management focused on
improving business processes.

Our approach allows automatically deploying
and executing a customized software process
automatically derived by GenArch in the jBPM

ICEIS 2010 - 12th International Conference on Enterprise Information Systems

98

workflow engine. jBPM (Hat 2009) is a framework
of JBoss that allows the creation of business
solutions based on business processes using
graphical notations and graph-oriented
programming. It also provides a workflow engine.
We use the jBPM engine to run and monitor
software process activities, which were previously
defined in EPF process specification and customized
by GenArch tool. In our approach, we have
implemented transformations that automatically
convert the EPF process to the jPDL workflow
specification language. This language is used to
specify business processes graphically in terms of
tasks, wait states, timers, automated actions, and so
on. This model-to-model transformation (EPF
process specification to jPDL specification) was
implemented using the ATLAS Transformation
Language (ATL) inside the Eclipse platform. ATL is
an implementation of the QVT (Query/Views
/Transformations) transformation language (OMG
2009), which is the OMG's standard language for
expressing queries, views and transformations on
MOF models. Figure 5(C) shows how an EPF
customized specification produced as result of the
variability management of the process line (Figure 5
A and B) can be automatically translated to jPDL
workflow specifications. It can observed that many
activities (“plan the project”, “request change” and
“assess result”) are present in both textual and
graphical jPDL specification.

The jBPM enables from a definition of a jPDL
workflow model, the creation of Java Server Faces
forms implementations to monitor the process flow.
This monitoring functionality is responsible to store
information about the tasks and or decisions taken
during the process execution. In order to generate a
process definition archive, in jPDL schema, and the
related JSF forms for the jPDL workflow
specification, we implemented a model-to-text
transformation using Acceleo (OBEO 2009). This is
a code generation tool that allows transforming
models to code. We also generated the “forms.xml”
file, which is a XML file that matches each specific
task node to a JSF form. All of these files were
generated in a jPDL Eclipse project. Through of
simple configurations, this project can be deployed
in the jBPM workflow engine.

After the deployment of the process workflow in
the jBPM engine, the user can request the start of a
new instance of the process. Figure 5(D) shows the
result of the deployment of the process previously
customized and generated by GenArch tool. When
starting the execution of a new instance of the
process, the user can visualize the actual state of the

specific process – that presents details of the activity
that have to be done. After the execution of each
activity, the user notifies the workflow engine that
requests the user to enter some information about the
activity in a specific JFS form. All the information is
stored in a specific database, related to the process
instance. Finally, the workflow engine shows that a
new activity is now required. All these steps are
repeated for each activity until the end of the
process, when the end state of the workflow was
reached.

5 CONCLUSIONS

In this paper, we presented a model-driven approach
to managing and customizing software processes
variabilities. Our approach also provides support to
the execution of the customized process in a
workflow engine. The approach has been
implemented and validated using existing model-
driven and software product line technologies. The
main benefits of our approach are: (i) the variability
management of software processes that directly
contributes to productivity improvement when
producing customized software processes to related
projects; and (ii) the integration and automation of
the process definition, customization, deployment
and execution. Additionally, our approach has been
designed in a flexible way that allows its easy
adaptation to deal with new technologies (e.g., new
process or workflow specification notations or
languages, new model-driven technologies).

As a future work, we intend to apply and
evaluate our approach to more extensive and
complex software process customization scenarios.
We are currently refining the approach to apply it in
an industrial scenario of a company that defines and
reuses its processes using the Rational Unified
Processes (RUP) framework. Additional details
about the approach and its implementation can be
found in (Aleixo, et al. 2010).

ACKNOWLEDGEMENTS

This work was supported partially by Brazilian
Research Council (CNPq) under grants: No.
313064/2009-1, No. 552010/2009-0, and No.
480978/2008-5.

A MODEL-DRIVEN APPROACH TO MANAGING AND CUSTOMIZING SOFTWARE PROCESS VARIABILITIES

99

REFERENCES

Aleixo, Fellipe A., Marília A. Freire, Wanderson C.
Santos, and Uirá Kulesza. 2010. http://
softwareprocesslines.blogspot.com/ (accessed 01
2010).

Barreto, A. S, L.G.P Murta, and A. R Rocha.
"Componentizando Processos Legados de Software
Visando a Reutilização de Processos." Ouro Preto:
Anais do VIII SBQS, 2009.

Cirilo, Elder, U. Kulesza, and C. Lucena. "Automatic
Derivation of Spring-OSGi based Web Enterprise
Applications." ICEIS, 2009.

Cirilo, Elder, U. Kulesza, and C. Lucena. "A Product
Derivation Tool Based on Model-Driven Tecniques an
Annotations." Journal of Universal Computer Science,
2008, nº 8 ed.

Cirilo, Elder, U. Kulesza, R. Coelho, C. J.P. Lucena, and
A. von Staa. "Integrating Component and Product
Lines." ICSR, 2008b.

Clements, Paul. Software Product Lines: Practices and
Patterns. Boston: Addison-Wesley, 2002.

Eclipse Foundation. Eclipse Process Framework (EPF)
Composer 1.0 Architecture Overview. 2010.
http://www.eclipse.org/epf/composer_architecture/
(accessed 01 2010).

Eclipse Process FrameWork. 2009. http://
www.eclipse.org/epf/ (accessed 08 2009).

EPF Project. EPF. 2009. http://www.eclipse.org/
epf/ (accessed November 2009).

Gear/BigLever Software. Gears. 2009.
http://www.biglever.com (accessed November 2009).

GenArch Plugin. Generative Architectures Plugin. 2009.
http://www.teccomm.les.inf.puc-rio.br/genarch/
(accessed November 2009).

Hat, J. JBPM. 2009. http://labs.jboss.com/jbossjbpm/
(accessed 09 2009).

Haumer, P. Eclipse Process Framework Composer:Part 1:
Key Concepts. http://www.eclipse.org/
epf/general/EPFComposerOverviewPart1.pdf, 2007.

IBM. Rational Method Composer. 2010. http://www-
01.ibm.com/software/awdtools/rmc (accessed 01
2010).

Kleppe, Anneke G., Jos B. Warmer, and W. Bast. MDA
Explained: The Model Driven Architecture: Pratice
and Promisse. Addison-Wesley, 2003.

OBEO. Acceleo: MDA generator. 2009. http://
www.acceleo.org/pages/home/en (accessed 10 2009).

OMG. OMG: QVT Specification. 2009. http://
www.omg.org/spec/QVT/1.0/ (accessed 10 2009).

Software & Systems Process Engineering Metamodel
Specification (SPEM). 2010. http://www.omg.org/
spec/SPEM/2.0/.

Pohl, Klaus, G. Bockle, and F. van der Linden. Software
Product Line Engineering: Foundations, Principles
and Techniques. New Yourk: Springer
Berlin/Heidelberg, 2005.

Pure::Variants. 2009. http://www.pure-systems.com
(accessed November 2009).

Rombach, Dieter. "Integrated Software Process and
Product Lines." In Unifying the Software Process
Spectrum, 83-90. Berlin / Heidelberg: Springer, 2005.

Xu, Ru-Zhi, H. Tao, C. Dong-Sheng, X. Yun-Jiao, and Q.
Le-Qiu. "Reuse-Oriented Process Component
Representation and Retrieval." The Fifth International
Conference on Computer and Information
Technology, 2005.

ICEIS 2010 - 12th International Conference on Enterprise Information Systems

100

