
ASPECTFX
A Framework for Supporting Collaborative Works in RIA by Aspect Oriented

Approach

Hiroaki Fukuda and Yoshikazu Yamamoto
Graduate School of Science and Technology, Keio University

3-14-1, Hiyoshi, Kohoku-ku, Yokohama Kanagawa 223-8522, Japan

Keywords: Framework, Rich internet application, Software engineering, Aspect oriented programming.

Abstract: This paper presents AspectFX, a novel approach to enabling developers and designers to collaborate effectively
in RIA development. Unlike traditional web applications, RIAs are implemented by a number of developers
and designers; therefore it is reasonable to divide an application into modules and assign them to developers
and designers, and collaborative works among them have been important. MVC architecture and OOP helps to
divide an application into functional units as modules and bring efficiency to development processes. To play
these modules as a single application, developers have to describe method invocations to utilize functionalities
implemented in modules, however, developers need to describe additional method invocations that are not
primary tasks for them. These additional method invocations make the dependencies among modules strong
and these dependencies make it inefficient/difficult to implement and maintain an application.
This paper describes the design and implementation of AspectFX that introduces aspect-oriented concept and
considers the additional method invocations as cross-cutting concerns. AspectFX provides methods to separate
the cross-cutting concerns from primary concerns and weaves them for playing them as an application.

1 INTRODUCTION

Rich Internet Application (RIA) introduces the user
experience of desktop applications. RIAs provide so-
phisticated user interfaces including attractive objects
and animations for users to understand their status
and results of the operations. In this way, compared
to traditional web applications, it requires a number
of developers and designers to implement an RIAs;
therefore it is reasonable to divide an application into
modules and assign them to developers and design-
ers, and collaborative works among them have been
important. However, dependencies among each mod-
ule make it inefficient and difficult to implement and
maintain an application even if we introduce MVC
architecture and OOP. For example, although it is
suitable for designers to create and manage anima-
tions including when animations should be started and
stopped, developers usually manage them on behalf of
designers because functionalities for these animations
are provided as APIs.

Aspect-oriented programming (AOP)(Kiczales
et al., 1997) is a new programming paradigm that
separates cross-cutting concerns from primary con-

cerns. The notion of AOP is suitable for the prob-
lems described above. Because the management of
animations is not mainstream but cross-cutting con-
cerns for for developers. Also, event handling is not
mainstream but cross-cutting concerns for designers.

This paper describes a framework called As-
pectFX that makes it possible to rule out dependencies
among modules and combine them to play a single ap-
plication at runtime. AspectFX extends and leverages
Flex framework(Adobe Systems Inc., 2009). In Flex,
we can import and utilize animated objects created by
Flash as components. AspectFX leverages this event
model(Meier and Cahill, 2005) and dependency in-
jection(Fowler, 2008) in order to weave cross-cutting
concerns to mainstream at runtime. AspectFX also
introduces name based conventions for detecting the
points where cross-cutting concerns should be woven.

This paper is organized as follows. We first de-
scribe the background in section 2. We then explain
the design and implementation in section 3 and be-
havior in section 4. In section 5, we conclude by pro-
viding summary and discussing future issues.

398 Fukuda H. and Yamamoto Y. (2010).
ASPECTFX - A Framework for Supporting Collaborative Works in RIA by Aspect Oriented Approach.
In Proceedings of the 12th International Conference on Enterprise Information Systems - Databases and Information Systems Integration, pages
398-402
DOI: 10.5220/0002906903980402
Copyright c© SciTePress

2 BACKGROUND

Almost all web applications are implemented based
on MVC architecture nowadays. Therefore it is rea-
sonable to implement RIAs based on the same archi-
tecture. In this section, we firstly explain MVC ar-
chitecture in Flex. Then, we describe dependencies
among modules in Flex applications.

���������� �	
��
�����������
����� �������� ��� !"�#$%&'(&) �*���+,���#&-&.()#%&/&%) �	,��0,	1�

Figure 1: MVC architecture in Flex.

2.1 Flex Programming Model and MVC

Flex applications works by event-driven architecture.
Therefore developers have to prepare event handlers
and associate them with events dispatched from visi-
ble components. As shown in Figure 1, in general, it
is reasonable to prepare a class called Handler that in-
cludes handler methods and correspond to an MXML
that includes visible components. In the context of
MVC architecture, as shown in Figure 1, MXML cor-
responds toView and Handler corresponds toCon-
troller. In a handler method, developers implement
business logics and createModel in order to reflect
the result to MXML. In addition, it is recommended
to prepare classes independent from this architecture
and delegate business logics to them (we call these
classes as Logic).

On the other hand, the triggers to start and stop an-
imations embedded in a Flash component can be right
before and after event handling. Consequently, we
start and stop an embedded animation at the beggin-
ing and at the end of the handler method by invoking
methods as Figure 2(a)-(i) and (iii). In addition, we
also delegate business logics to another class by creat-
ing an instance and invoking a method in Figure2(a)-
(ii).

2.2 Dependencies among Modules

It is also reasonable to assign developers and de-
signers to each module for efficient RIA develop-
ment; however dependencies among modules still
make it inefficient and difficult. For example, design-
ers mainly create MXML files for the design of an ap-

234567 8397:6;9 <=9>5?@A?9:B?C@A?9:DCA;6> E?F73GG?9:H=GI?:FJ:=G:K96L=:6;9BDMNN >; J;L?:<69I5;I67F>?5?I=:?O?:<;>BDMNN >; J;L?:<69I?F73GG?9:H=GI?:FJ:;2K96L=:6;9BDMP234567 8397:6;9 <=9>5?@A?9:KJQ97B?C@A?9:DCA;6> E?F73GG?9:H=GI?:FJ:=G:K96L=:6;9BDMJ?:H=GI?:B?F73GG?9:H=GI?:DM5;I67FJ?:R=554=7SB:<6JF7=554=7SDM5;I67F>?5?I=:?O?:<;>BDMNN >; J;L?:<69IP234567 8397:6;9 7=554=7SB?C@A?9:DCA;6> ENN >; J;L?:<69II?:H=GI?:BDFJ:;2K96L=:6;9BDMP
TUV WXYWXXXY

Z[\]^T_V
WXY
WXXY

WXXY `abc
Figure 2: Pieces of code as cross-cutting concerns.

plication and developers have to modify the MXML
files to make associations between events and event
handlers. Likewise, designers may modify event han-
dlers implemented by developers to manage anima-
tions as shown in Figure 2(a).

Besides, there will be more complicated depen-
dencies between Handler and Logic. As we described
in section 2.1, Logic is usually introduced for in-
dependent processes, especially RPCs, from specific
architectures. As well as other components, RPC
components adopt event-driven architecture. That
is, when developers leverage RPC components, they
have to prepare event handlers and add them to the
RPC components. The handlers will be invoked by
RPC components to notify the result of operations. If
developers try to delegate a task to Logic that lever-
ages RPCs, they have to prepare a callback method to
create/modify Model that reflect the result of the task
because the task is processed asynchronously. More-
over, if developers or designers try to apply an anima-
tion for the task, they have to specify method invoca-
tions for the animation in different methods as shown
in Figure 2(b)-(i) and (ii).

3 SYSTEM IMPLEMENTATION

In AspectFX, we consider events in Flex as JoinPoint
and leverage name based conventions as Pointcut. Be-
sides, we also consider event handlers and methods
to manage animations as Advice. AspectFX prepares
two advice types such as “beforeAdvice” and “after-
Advice” to manage animations. These advice types
need to be embedded in animated obejects as meth-

ASPECTFX - A Framework for Supporting Collaborative Works in RIA by Aspect Oriented Approach

399

defghijkhilmnhop qnhrlifslt uivkolimnlw mihxlkviyzvx{v|l|} ~h|h�liqv�|}��}~h|h�li ����������������j���l~h|h�liqhiolislh�li��������
���� �������� ��� � ¡¢£¤¥¦§ ©̈ ª«¨¬®¨¯°¤±§«¦§°���²³�´�³µ¶ ¤· ¹̧ ¹«°º»
¼½ º¾�¿À�»�ÁÂÂ��Ã�Â��¾��ÀÄ À��Á��¾ Á� �Å��¿Æ�Ã�Â��¾��ÀÄ ÇÂ�À¿È¿�¾ ¿� Ç�Å�À� À�¾�

Figure 3: An architecture of AspectFX.

ods. In addition, AspectFX adopt event model to dele-
gate tasks from Handler to Logic(we call this event as
an application specific evnet). We show the architec-
ture of AspectFX in Figure 3 and explain name based
conventions.

3.1 Name based Conventions

AspectFX leverages convention over configuration
concept to identify events and event handlers to be
woven. Therefore AspectFX has several name based
conventions for weaving. In addition, we assume
Flash components are imported and utilized as visible
components in MXML. Based on this assumption, we
explain the conventions as follows.

1. Every component including Flash component de-
fined as MXML tag must have “id” attribute and
the value that can identify each component.

2. MXML and corresponded Handler have to be de-
fined as MXML tag(Figure 4(a)). In addition,
these modules must have the same parent in the
composition of components(Figure 4(a)(b)).

3. MXML and corresponded Handler must have id
attribute and the value of each. In addition, the
prefix of each value must be the same to show they
are relevant. Moreover the suffix of each must be
“View” and “Handler” characters. For example,
developers and designers should name each mod-
ule with prefix “main” as “mainView” and “main-
Handler”(Figure 4(a)).

4. In order to weave events and event handlers, the
name of event handlers must be defined as “com-
ponent id” + “event name” + “Handler” characters

ÉÊËÌÍÎÏÐÎÑÒÉÐÓÔÕÌÖÎÓÏ×ÓÔÕ ÓØÙÚÊÎÓÏ×ÓÔÕÛÜÒÉÝØÌÖÎÓÏÞÎÏØßÔà ÓØÙÚÊÎÓÏÞÎÏØßÔàÛÜÒÉÜÊËÌÍÎÏÐÎÑÒáâã äåæçèé êæçèëì áíã îïðñòæóôõöè÷ìøçèèùúûüúýþúÿû�ÿ�� þúÿû�úû������	ßÓ

ßÎÑÑÖÎÓÏÞÎÏØßÔà ���	ßÓ
 ��Ï
Ó�Ï �ß���ÏÍßÓ
�ÞÎÏØßÔà�ÔÌ�ÐÔÏ�ÌÐ�ÓØ �ÜÜ Ø� ÔÐÔÏ ÝÎÏØßÓÏ����	ßÓ
 ��Ï
Ó�Ï
Îßß	Î
��ÔÌ����ÐÔÏ�ÌÐ�ÓØ ���� ����	ßÓ

ßÎÑÑ���ÓÏ���Ó
 ���	ßÓ
ÐÎà Î�ÝÑÔàÐÌ�ÔÊ�Ô�	�Ô
���	ßÓ
 ��Ï
Ó�Ï ß��ÓÏ�ÐÔÏÞÎÏØßÔà�ÎÔÌ����ÐÔÏ�ÌÐ�ÓØ �Î�ÝÑÔàÐ��Ô�ÑÔà�������	ßÓ

ßÎÑÑ���Í�Ïà�ßßÔàÔËÔÏØÑ�ÐÔÏÍ�Ïà�ßßÔà ���	ßÓ
 ��Ï
Ó�Ï �ÐÔÏÍ�Ïà�ßßÔà �ÎØØ�ÐÔÏ�Úß��ÓÏÛ���ÓÏ���Ó
���� á�ã ! " á#ã$æëéòèçá%ã &'èëì ()ëìç)òòèç á*ã ")+ï÷
ÉÊËÌÍÎÏÐÎÑÒ,,,,,,,,,,,,,,,,,,,,,,,,,,É�ß
�Ê� Ì�ÏÓÊ���Ï ÓØÙÚ�ß���ÏÛÜÒ,,,,,,,,,,,,,,,,,,,,,,,,,,ÉÜÊËÌÍÎÏÐÎÑÒ

Figure 4: Name based conventions in AspectFX.

and “event name” must be capitalized. For ex-
ample, to handler “click” event dispatched from
a component named “flButton”, developers have
to define “flButtonClickHandler” method in Han-
dler(Figure 4(d)).

5. For leveraging animations, designer have to em-
bed two types of advices in a Flash component
as callback methods such as “beforeAdvice” and
“afterAdvice”. “beforeAdvice” will be invoked
before the event handling and “afterAdvice” is
done after the event handling.

6. Developers need to prepare a class that extends
Event Controller in order to leverage event model.
They can use “addLogic” method to register a
set of application specific event and Logic(Figure
4(e)). In addition, the name of event handlers de-
fined in Logic that will handle application specific
events must be defined as “event type” + “Even-
tHandler” characters as shown in Figure 4(f)).

4 APPLICATION BEHAVIOR

In this section, we describe application’s behavior
and also explain how to manage application specific
events by introducing classes depicted in Figure 4.

4.1 Application Behavior

1. When an application starts, AspectFX confirms
“id” attribute of each component and then if the
suffix of the value is “View” characters, AspectFX
get the reference of MainView and corresponded
MainHandler by way of Canvas.

ICEIS 2010 - 12th International Conference on Enterprise Information Systems

400

public class AdviceWrapper {

 public var target:Object;

 public var callBack:Function;

 public var async:Boolean;

public function processAdvice(e:Event):void {

 target[“beforeAdvice”].apply(null);

 callBack.apply(null,[e]);

 if(!async) target[“afterAdvice”].apply(null,[e]);

 }

 public function processAdviceAsync(e:Event):void {

 if(async) target[“afterAdvice”].apply(null);

 }

Figure 5: Implementation of Advice Wrapper.

2. Parser serializes MainView and MainHandler to
XML expressions and parses them. Parser dele-
gates Weaver to weave an event handler named
“flButtonClickHandler” into “flButton”.

3. If the visible component is a Flash component,
Weaver creates an Advice Wrapper and sets the
component (flButton) and corresponding event
handler (flButtonClickHandler) into the Advice
Wrapper. As shown in Figure 5, Advice Wrap-
per prepares event handler called “processAd-
vice” and Weaver injects the “processAdvice”
into “flButton” to hook “click” event.

4. When a user clicks the flButton , the dispatched
“click” event is caught by the processAdvice in
Advice Wrapper. As shown in Figure 5, Advice
Wrapper invokes “beforeAdvice” embedded the
flButton first. Then the Advice Wrapper also in-
vokes “flButtonClickHandler” that is set to a vari-
able named “callBack”. Finally, if “async” vari-
able in Advice Wrapper is false, the Advice Wrap-
per invokes “afterAdvice”. 4.2.

4.2 Application Specific Event
Processing

To leverage application specific events, developers
have to specify an extension class of Event Controller
as an MXML tag as shown in Figure 6(a). Also,
AspectFX provides “AppEvent” and “AppEventDis-
patcher” classes for application specific events.

We explain these processes as follows.

1. A “click” event is dispatched by user’s opera-
tions. As described step 4 in section 4.1, Ad-
vice Wrapper invokes “beforeAdvice” and then
invokes “flButtonClickHandler” defined in Main-
Handler. After that, if developers do not dis-
patch an event or do not specify a notified method
in AppEvent, Advice Wrapper invokes “afterAd-
vice”.

Figure 6: Source code for application specific event.

2. An application specific event is dispatched with
an event type as “login” in flButtonClickHandler
as shown in Figure 6(b).

3. Event Controller catches the “login” event and
creates its corresponded LoginLogic. Then, Event
Controller invokes “loginEventHanler” defined in
LoginLogic.

4. An consume event is dispatched to notify the com-
plete of the event. Event Controller invokes the
notified method (“callback”).

5. Event Controller sends a message to Advice
Wrapper to notify the end of “login” event. Ad-
vice Wrapper invokes “afterAdvice” and then
users can understand the process is completed.

5 CONCLUSIONS

In this paper, we have presented a framework called
AspectFX for collaborative works in RIA develop-
ment. We have also explained the design and im-
plementation of AspectFX and confirm its availabil-
ity via performance evaluations. AspectFX not only
provides MVC based development process but also
rules out pieces of code that make associations among
modules from each source code by introducing AOP
concept and event model. As a result, developers and
designers are able to concentrate on their tasks. We
believe these features of AspectFX help not only de-
velopers but also designers to develop and maintain
an RIA application.

ASPECTFX - A Framework for Supporting Collaborative Works in RIA by Aspect Oriented Approach

401

REFERENCES

Adobe Systems Inc. (2009). Adobe flex3. http://www.
adobe.com/products/flex/.

Fowler, M. (2008). Inversion of Control Con-
tainers and the Dependency Injection pattern.
http://www.martinfowler.com/articles/injection.html.

Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C.,
Lopes, C., Loingtier, J., and Irwin, J. (1997). As-
pect oriented programming. InIn Proceedings of Eu-
ropean Conference on Object-Oriented Programming
(ECOOP).

Meier, R. and Cahill, V. (2005). Taxonomy of distributed
event-based programming systems.The Computer
Journal, 48(5):602–626.

ICEIS 2010 - 12th International Conference on Enterprise Information Systems

402

