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Abstract: Service-oriented environments increasingly become the central point for enterprise-related workflows. This
also holds for data-intensive service applications, where such process types encounter performance and re-
source issues. To tackle these issues on a more conceptual level, we propose a stream-based process execution
that is inspired by the typical execution semantics in data management environments. More specifically, we
present a data and process model including a generalized concept for stream-based services. In our evaluation,
we show that our approach outperforms the execution model of current service-oriented process environments.

1 INTRODUCTION

In order to support analyses and managerial deci-
sions, business people extensively describe the struc-
tures and processes of their environment using busi-
ness process management (BPM) tools (Graml et al.,
2007). The area of business processes is well-
investigated and existing tools support the life-cycle
of business processes from their design, over their ex-
ecution, to their monitoring today. Business process
modeling enables business people to focus on busi-
ness semantic and to define process flows with graph-
ical support. Prominent business process languages to
express such workflows are WSBPEL (OASIS, 2007)
and BPMN (OMG, 2009).

The control flow semantic, on which BPM lan-
guages and their respective execution engines are
based on, has been proven to fit very well for tradi-
tional business processes with small-sized data flows.
Typical example processes are ”order processing” or
”travel booking”. However, the characteristics of
business processes are continuously changing and the
complexity grows. One observable trend is the adop-
tion of more application scenarios with more data-
intensive processes like business analytics or data in-
tegration. Thereby, the volume of data that is pro-
cessed within a single business process increases sig-
nificantly (Kouzes et al., 2009).

Figure 1 depicts an example process in the area of
business analytics that illustrates the trend to an in-
creased data volume. The process extracts data from
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Figure 1: Customer data integration scenario.

different sources and analyzes it in succeeding tasks.
First, the process receives a set of customer informa-
tion as input (getCustInfos) which may include cus-
tomer id, customer name and customer address. Sec-
ond, the customer ids are extracted and transformed
to fit the input structure of both succeeding activi-
ties (transform). In a third step, the customer ids
are enriched concurrently with invoice information
(getInvoices) and current open orders (getOrders)
from external services. All open orders are filtered
(filterOrders) to get only approved orders. Af-
terwards all information for invoices and orders are
joined for every customer id (joinIDs) and analyzed
(analyze). Further activities are executed for differ-
ent purposes. Since they are not essential for the re-
mainder of the paper, they are denoted by ellipses.
The activity type for every task is stated in square
brackets ([]) beneath the activity name. These types
are derived from BPEL as standard process execution
language for Web services.

As highlighted in Figure 1 by the dotted shaded
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rectangle, this part of the business process is very
similar to typical integration processes within the data
management domain with data extraction, data trans-
formation and data storage. In this domain, avail-
able modeling and execution concepts for data man-
agement tasks are aligned for massive data processing
(Habich et al., 2007). Considering the execution con-
cept, Data stream management systems (Abadi et al.,
2005) or Extract-Transform-Load (ETL) tools (Vas-
siliadis et al., 2009) as prominent examples incorpo-
rate a completely different execution paradigm. In-
stead of using a control flow semantic, they utilize
data flow concepts with a stream-based semantic that
is typically based on pipeline parallelism. Further-
more, large data sets are split into smaller subsets.
This execution has been proven very successfully for
processing large data sets.

Furthermore, many existing work, e.g. (Machado
and Ferraz, 2005; Habich et al., 2007; Suzumura
et al., 2005), has been demonstrated and evaluated
that the SOA execution model is not appropriate
for processes with large data sets. Therefore, the
changeover from the control flow-based execution
model to a stream-based execution model seams es-
sential to react on the changing data characteristics of
current business processes. Nevertheless, the key con-
cepts of SOA like flexible orchestration and loosely
coupled services have to be preserved. This paper
contributes to this restructuring by providing a first in-
tegrated approach of a stream-based extension to the
service and process level.

Contribution and Outline. Within this paper we
make the following contributions: First, we summa-
rize drawbacks of current concepts and present con-
ducted research in the direction of streaming exe-
cution in SOA (Section 2). Second, the data flow-
based process execution model is presented that al-
lows stream-based data processing (Section 3). Fur-
thermore, our approach for stream-based service invo-
cation in (Preissler et al., 2009) is extended to enable
orchestration and usage of web services as streaming
data operators (Section 4). Finally, we evaluate our
approach in terms of performance (Section 5), present
related work (Section 7) and conclude the paper (Sec-
tion 8).

2 PROBLEM DESCRIPTION

This section consists of two important parts in a sur-
vey style. While the first part reviews the current
control flow-based execution semantics of today’s
SOA environments and highlights shortcomings (Sec-

tion 2.1), the second part briefly describes already
conducted work in the direction of streaming seman-
tic in SOA (Section 2.2). There, we summarize open
issues which we address in the remainder of the paper.

2.1 Control-flow Semantics in SOAs

The area of business-oriented workflows in SOA is
based on the control flow execution of specified pro-
cess plans. Formally, a process plan P is defined as
P = (C,A,S), where C is the process context, A is
the set of activities that are connected as an acyclic,
directed graph and S is the set of services that the
process plan interacts with. Furthermore, the process
context C is defined as C =(SC,V ) where SC is a set of
system properties like runtime state or process id and
V is a set of variables with V = (v1, . . . ,vi, . . . ,vm).

In general, there are two major drawbacks for
data-intensive business processes with current SOA
concepts. Both are related to control flow-based pro-
cess execution: (1) on the process level with the step-
by-step execution model in conjunction with an im-
plicit data flow and (2) on the service level with the
inefficient, resource consuming communication over-
head for data exchange with external services based
on the request–response paradigm and XML as data
format.

Process Level. Existing process engines execute
process plans by applying the specified control flow to
every incoming message separately. For n messages,
this leads to single process instances Pi with 1≤ i≤ n
and Pi = (Ci,Ai,Si) that are executed serialized in the
order of message arrival to preserve data consistency.
Every instance is executed as a single thread and the
control flow is applied to the message in a step-by-
step fashion, where a task is invoked, the response is
received and then the next succeeding task is executed
in a similar way (Bioernstad et al., 2006).

This single-threaded step-by-step execution in
conjunction with the request–response paradigm for
service invocation prevents implicit chunking of large
data between activities. Thus it also prevents the low-
ering of peak resource requirements and an increased
throughput. In addition, it uses the set V of variables
that is located in the process context C for temporal
storage and that hides the explicit data flow. Every
activity a ∈ A in process plan P is connected to one
ore more variables in V to store outgoing or incoming
data for that activity. Figure 2 depicts the architecture
of the control flow-based execution with the variable-
based data flow between the activities. Thereby, all
data that is received, transformed and exchanged by
every Pi is stored in different variables v j of Vi.
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Figure 2: Control flow-based process execution.

Clearly, the implicit, variable-based data flow
leads to resource bottlenecks if data structures be-
come large. Considering our application scenario, the
efficient execution depends heavily on the number of
customer IDs and the number of invoices/orders that
are returned for every customer id.

Service Level. On service level, the message-based
request-response paradigm between service compo-
nents in conjunction with XML as data representation
poses already well investigated resource problems es-
pecially for large and complex structures (Kouzes
et al., 2009; Machado and Ferraz, 2005). Quite a lot
of research has been proposed that either deals with
efficient marshaling and unmarshaling of XML-based
content (Suzumura et al., 2005) to reduce communi-
cation costs or that considers the partitioning of large
messages into smaller chunks (Srivastava et al., 2006;
Gounaris et al., 2008) to work around the memory
consumption problem. While the former approaches
do not consider large message sizes and their in-
memory processing, the latter approaches introduce
correlation problems when all data that is distributed
over many chunks has to be processed in one common
context.

The Bottom Line. To conclude this part, the con-
trol flow-based execution is not appropriate for data-
intensive business processes. The implicit, variable-
based data flow and the step-by-step process execu-
tion lead to high peak requirements for data storage
and decreases throughput. Furthermore, communica-
tion overhead between services prevents an efficient
implementation and execution of data-intensive busi-
ness processes. Up to today, services are used as data
sources and data sinks in most cases, but the utiliza-
tion as distributed operators with arbitrary function-
ality that can be composed with common techniques
would extend the applicability of SOA infrastructures
to more application domains. Additionally, common
business orchestration languages focus on traditional
business processes and do not provide native activi-
ties for data-related operations like sort, aggregation
or join, as e.g. required in our running example.

2.2 Streaming Semantics in SOA

In (Preissler et al., 2009), we described the aspect of
changing the execution semantic in SOA and intro-
duced the concept of stream-based Web service invo-
cation to overcome the resource restriction with large
data sizes. We recall the core concept briefly and
point out limitations of this work.

The fundamental idea for the stream-based Web
service invocation is to describe the payload of a
message as finite stream of equally structured data
items. Figure 3(a) depicts the concept in more de-
tail. The message retains as the basic container that

time
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Figure 3: Stream-based service invocation.

wraps header and payload information for requests
and responses. However, the payload forms a stream
that consists of an arbitrary number n of stream buck-
ets bi with 1 ≤ i ≤ n. Every bucket bi is an equally
structured subset of the application data that usually
is an array of sibling elements. Inherently, one com-
mon context is defined for all data items that are trans-
ferred within the stream. The client controls the in-
sertion of data buckets into the stream and closes the
stream on its own behalf. Figure 3(b) depicts the in-
teraction between client and service. Since the con-
cept can be applied bidirectional, a request is defined
as input stream SI, j whereas a response is defined as
output stream SO, j with j denoting the corresponding
service instance. By adding bucket queues to the com-
munication partners, sending and receiving of stream
buckets are decoupled from each other (in contrast to
the traditional request–response paradigm) and inter-
mediate responses result.

It has been evaluated, that this concept reduces
communication overhead in comparison to message
chunking by no need for single message creation. In
addition, it provides a native common context for all
stream items and context sensitive data operations like
aggregation can be implemented straightforward. The
main drawback of the proposed concept is that it as-
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sumes all stream buckets to be application data and
equal in structure. This does not take dynamic ser-
vice parameterization into account. Hence it is not
applicable for a more sophisticated stream environ-
ment with generalized services operators.

To conclude this section, the stream-based service
invocation approach represents only one step in the
direction of streaming semantic in service-oriented
environments. While the proposed step considers the
service level to overcome resource limitations, the
process level is obviously an open issue. Therefore,
we are going to present a data flow-based process
approach for messages processing in the following
section. In Section 4, we are extending the service-
level streaming technique to cover new arising re-
quirements from the process perspective.

3 STREAM-BASED PROCESS
EXECUTION

Fundamentally, our concept for stream-based process
execution advances the process level with data flow
semantics and introduces a corresponding data and
process model for stream-based data processing.

3.1 Data Model

When processing large XML messages, available
main memory becomes the bottleneck in most cases.
One solution is to split the message payload into
smaller subsets and to process them consecutively.
This reduces memory peaks by not having to build the
whole message payload in memory. To allow native
subset processing, we introduce the notion of process-
ing buckets, that enclose single message subsets and
that are used transparently in the processing frame-
work. Let B be a process bucket with B = (d, t, pt),
where d denotes a bucket id, t denotes the bucket
type and pt denotes the XML payload in dependence
on the bucket type t. The basic bucket type is data,
that identifies buckets that contain actual data from
message subsets. Of course, a processing bucket can
also enclose the complete message payload pm with
pm == pt , as it is the case when the message payload
initially enters the process or if pm is small in size.
Nevertheless, for large message payloads it would be
beneficial to split them into a set of process buckets bi
with pt,i ⊆ pm.

Since buckets carry XML data, XPath and
XQuery expressions can be used to query, modify
and create the payload structure. As entry point for
such expressions, we define two different variables
$ bucket and $ system that define different access

split

for $cust in $_bucket/custInfos/customerInfo
return $cust

 bucket bi
<custInfos>
  <customerInfo>  
    <id>...</id>
    ... 
  </customerInfo>
  ...
</custInfos>

<customerInfo>  
  <id>...</id>
  ... 
</customerInfo>

<customerInfo>  
  <id>...</id>
  ... 
</customerInfo>

 bucket b'i,1
<customerInfo>  
  <id>...</id>
  ... 
</customerInfo>

Figure 4: Payload splitting.

paths. Variable $ bucket is used to access the bucket
payload while variable $ system allows access to
process-specific variables like process id or runtime
state.

Example 1. Payload Splitting. Consider the activ-
ity getCustInfos from our application scenario
in Figure 1. It receives the message with the pay-
load containing a set of customer information. Fig-
ure 4 depicts the splitting of this payload into several
smaller process buckets. The split is described by a
very simple XQuery expression with setting the re-
peating element to $ bucket/custInfos/customerInfos.
It creates one process bucket for every customer in-
formation in the resulting sequence that can be pro-
cessed consecutively by succeeding activities.

3.2 Process Model

Instead of using a control flow-based process execu-
tion, our process model uses a data flow-based pro-
cess execution that is based on the pipes-and-filters
execution model found in various systems like ETL
tools, database management systems or data stream
management systems. Using the pipes-and-filters ex-
ecution model all activities ai ∈ A of a control flow-
based process plan P are executed concurrently as
independent operators oi of a pipeline-based process
plan PS. All operators are connected to data queues qi
between the operators that buffer incoming and outgo-
ing data. Hence, a pipeline-based process plan PS can
be described via a directed, acyclic flow graph, where
the vertices are operators and the edges between oper-
ators are data queues. Figure 5 depicts the execution
model of the pipeline-based version of our scenario
process. Since the data flow is modeled explicitly, the
implicit, variable-based data flow from Figure 2 has
been removed. This requires the usage of the addi-
tional operator copy that copies the incoming bucket
for every outgoing data flow.

We define our stream-based process plan PS as
PS = (C,O,Q,S) with C denoting the process context,
O with O = (o1, . . . ,oi, . . . ,ol) denoting the set of op-
erators oi, Q with Q = (q1, . . . ,q j, . . . ,qm) denoting
the set of data queues between the operators and S de-
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noting the set of services the process interacts with.
An operator o is defined as o = (i,o, f , p) with i de-
noting the set of incoming data queues, o denoting the
set of outgoing data queues, f denoting the function
(or activity type, in reference to traditional workflow
languages) that is applied to all incoming data and p
denoting the set of parameters that is used to config-
ure f and the operator, respectively.

Figure 6 depicts two succeeding operators o j and
o j+1 that are connected by a data queue and that are
configured by their parameters p j and p j+1. Since
the operator o j+1 processes the data of its predeces-
sor o j, the payload structure of buckets in queue qi
must match the structure that is expected by opera-
tor o j+1. Queues are not conceptually bound to any
specific XML structure. This increases the flexibil-
ity of data that flows between the operators and can
simplify data flow graphs by allowing operators with
multiple output structures. Nevertheless, for model-
ing purposes a set of different XML schemas can be
registered to every operator’s output that can be used
for input validation for the succeeding operators.

Example 2 . Schema-free bucket queues. Consider
an XML file containing books and authors as sib-
ling element types. The receive operator produces
buckets with either the schema of books or authors.
Since the bucket queues between operators are not
conceptually schema-bound, both types can be for-
warded directly and, e.g., processed by a routing op-
erator that distributes the buckets to different process-
ing flows.

For parameter set p, we use the respective query
languages that where defined with our data model to
configure the operator or to retrieve and modify the
payload. Clearly, a concrete parameter set of an op-
erator o is solely defined by function f . For f , we
define a set of predefined algorithms that are needed
for sophisticated data processing. Inspired by (Böhm
et al., 2009), we define three classes of basic functions
that semantically provide a foundation for data pro-
cessing: These classes are interaction-oriented func-
tions including invoke, receive and reply, control-
flow-oriented functions including route, copy, and
signal and data-flow-oriented functions including
assign, split, join, union, orderby, groupby,
sort and filter. All functions work on the gran-
ularity of process bucket B and are implemented as

Process Engine
Pipes-and-Filter-based Process Plan PS,i

data flow

receive assign invokeassign
invoke assign

invoke
data queues

copy

Figure 5: Pipeline-based execution of process plan PS.

oj+1oj

queue qi

parameter pj parameter pj+1

bucket bk

Figure 6: Operators and Processing Bucket queue.

operators.
Now, we discuss the semantics of example opera-

tors for every function class in more detail. In partic-
ular, this will be receive, for the class of interaction-
oriented functions, copy, for the class of control-flow-
oriented functions, and join, for the class of data-flow-
oriented functions.

Receive Operator. The most important operator for
preparing incoming messages is the receive opera-
tor. This operator gets one bucket with the payload of
the incoming message to process. As parameter p, a
split expression in XPath or XQuery must be specified
to create new buckets for every item in the resulting
sequence. It is closely related to the split operator.
While split is used within the data flow to subdivide
buckets, receive is linked to the incoming messages
and usually starts the process. Please, refer to Exam-
ple 1 for the usage of the receive operator.

Copy Operator. The copy operator, as it is used
in our application scenario, has one input queue and
multiple output queues. It is used to execute con-
current data flows with the same data. For l output
queues it creates l − 1 copies of every input bucket
and feeds them all output queues.

Join Operator. The join operator can have different
semantics and usually joins two incoming streams of
buckets. For this paper, we describe an equi-join that
is implemented as a sort-merge join. This requires the
join keys to be ordered. In our application scenario,
this ordering is given inherently by the data set. Al-
ternatively, the receive operator can be parameterized
to order all items by a certain key. If this requirement
cannot be fulfilled, another join algorithm has to be
chosen. The set of parameters for a join operator in-
cludes (1) paths to both input bucket stream elements,
(2) the paths to both key values that have to be equal
and (3) the paths to the target destination in the output
structures of the join operator.

Example 3. Merge Join Operator. Figure 7 de-
picts the join operator joinIDs that joins the pay-
load of order buckets and invoice buckets into one
bucket for each customer id. Thus, the customer
id attribute is the join key in both input streams.
The join key paths are denoted by $left key and
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$left_source := $_bucket/invoice
$left_key:=$_bucket/invoice/@custId
$right_source: $_bucket/order
$left_key:=$_bucket/orders/@custId

$left_target:=$_bucket//invoices
$right_target:=$_bucket//orders

<invoice custId="3" ...>
  <lineitem>...</lineitem>
  ...
</invoice>

<order custId="3" ...>
  <lineitem>...</lineitem>
  ...
</order>

  

  

<customer ...>
  <invoices>
    <invoice custId="3">
      ...
    </invoice>
    ...
  </invoices>
  <orders>
    <order custId="3" ...>
      ...
    </order>  
    ...
  </orders>
</customer>

Figure 7: Join operator.

$right key. Although the invocation of stream-
based services will be discussed in the next section,
assume that the getInvoices operator produces
one bucket for every invoice per customer id. Thus,
buckets with equal customer id arrive in a grouped
fashion due to the preceding invoke operators. The
join algorithm takes every incoming bucket from both
input streams and compares the id that is currently
joined. In our example, the current id is 3. If
the bucket ids equal the current id, the payloads
according $left source and $right source
are extracted from that buckets and inserted into
the new output bucket according the target paths
$right target and $right target. If the ids
of both streams become unequal, the created bucket
is passed to the succeeding operator as it is already
done for id 2.

4 GENERALIZED
STREAM-BASED SERVICES

Taking the presented process execution as our founda-
tion, we address the communication between process
and services in this section. The general idea is to
develop stream-based services that operate 1) as ef-
ficient, stream-based services for traditional service
operations like data extraction and data storage and 2)
as stream operators for data-oriented functionalities
and for data analysis. This enables our stream-based
process model to integrate and orchestrate such ser-
vices natively as remote operators. Thus, the process
can decide whether to execute an operator locally or
in distributed fashion on a different network node.

4.1 Service Invocation Extension

The main drawback of the presented stream-based
service invocation approach from Section 2.2 is the
missing support for service parameterization. Only

raw application data and thus only one data struc-
ture without metadata is supported. Parameters are
not considered specifically and the only way to pass
parameters to the service is to incorporate them into
the application data structure (see Figure 8a). This
blurs the semantics of both distinct structure types and
creates overhead if the parameter only initializes the
service instance. Furthermore, a mapping between
stream buckets with its blurred structure on the ser-
vice level and our processing buckets on the process
level has to be applied.

Example 4. Drawback of Single Bucket Structure. In
our application scenario, the parameter for the ser-
vice getInvoices would be a time frame defini-
tion, in which all returned invoices had to be cre-
ated. Although this one time frame is valid for all
customer ids that are processed by the service, it has
to be transmitted with every stream bucket.

We extend the stream item definition by deploy-
ing the proposed process bucket definition B from our
data model directly into the invocation stream. Re-
member, a process bucket is described by its type t
and the payload pt that depends on t. Hence, we de-
note buckets that carry application data with t = data.
We introduce parameter buckets for service initializa-
tion or reconfiguration by adding a new type t with
t = param. Thus, parameters are separate buckets
that have their own payload and that are processed by
the service differently. Figure 8b depicts the concept
of parameter separation. Besides a more clear sepa-
ration, this concept generalizes stream-based service
implementations by allowing to deploy parameteriz-
able functions as Web services that are executed on
stream buckets.

Furthermore, it enables us to incorporate these ser-
vices as remote operators into our process model. A
parameter set p that is currently used to configure a
local operator oi can be transferred to the service via
dedicated parameter buckets. Hence, this service can
act as a remote operator, if it implements the same
function f . The conceptual distinction between re-
mote service and local operator becomes almost neg-
ligible.

Example 5. Generalized Filter Service. Consider the
filterOrders operator in our application sce-
nario. It filters incoming order buckets according to
the order’s status. The filter expression is described

Client Service

Client Service

data parameter

b)

a)

Figure 8: Extended bucket concept.
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as XPath statement in its parameter set p. If the fil-
ter algorithm f is deployed as a Web service, it is
configured with p using the parameter bucket struc-
ture. Thus, a service instance can filter arbitrary XML
content according to the currently configured filter ex-
pression.

Of course, central execution will certainly domi-
nate the communication overhead compared to a dis-
tributed execution. But further research should inves-
tigate this in more detail.

4.2 Classification and Applicability

In order to integrate stream-based services as data
sources and as remote operators into our process ex-
ecution, we first have to classify our defined pro-
cess operators according incoming and outgoing data
flows. In a second step, we investigate how to map
these operator classes to stream-based services. Fol-
lowing (Vassiliadis et al., 2009), we can classify most
operators into unary operators (one input edge, one
output edge, e.g.: invoke, signal and groupby) and
binary operators (two input edges, one output edge,
e.g.: join and union). Furthermore, unary operators
can have an input–output relationship of 1:1, 1:N and
N:1.

Applicability as unary operator: Naturally, a
stream-based service has one input stream and one
output stream. Therefore, it can be directly mapped
to an unary operator. Since the receiving and send-
ing of process buckets within a service instance are
decoupled, the input–output relationships of 1:1, 1:N
and N:1 are supported in straightforward fashion.

Example 6 . 1 : N Relationship. Consider our
data source getInvoices. The corresponding
invoke operator is depicted in Figure 9.First, the
service is configured using the parameter set with
$valid year=2009 as predicate, so that only in-
voices that were created in 2009 will be returned. Sec-
ond, since the service directly accepts process buck-
ets, input buckets containing single customer ids are
streamed to the service. These customer id buckets are
the result of the split in the getCustInfos opera-
tor and the succeeding transform operator. The
service retrieves all invoices and returns every in-
voice for every customer id in one separate response
bucket. Hence, the presented service realizes a 1 : N
input-output relationship. Since the service returns
process buckets, they can be directly forwarded to the
joinIDs operator.

Applicability as binary operator: Since a stream-
based service typically provides only one input

 bucket bj
invoke 
operator

send receive

bi bj

bi-1

bi-2

bj+1

bj+2

<invoice custId="3" ...>
  <lineitem>...</lineitem>
  ...
</invoice>

 bucket bi
<customer>
  <id> 3 </id>
</customerId> 1 N

parameter $valid_year=2009

Figure 9: Invoke operator.

stream, it cannot be mapped directly to binary oper-
ators. A simple approach to map the stream-based
service to the type of a binary operator is to place
all buckets from both input queues to the one request
stream to the service and to let the service validate
which bucket belongs to which operator input. As
a first step, we focus on this approach and also im-
plemented it for our evaluation in Section 5. Further
research should investigate if a more sophisticated
approach, e.g., one that implements two concurrent
streams for one service instance, would be more ap-
plicable.

5 EVALUATION

In this section, we provide performance measure-
ments for our stream-based process execution. In gen-
eral, it can be stated that the stream-based message
processing leads to significant performance improve-
ments and scales for different data sizes.

5.1 Experimental Setup

We implemented our concept using Java 1.6 and the
Web service framework Axis21, and we ran our pro-
cess instances on a standard blade with 3 GB Ram and
four cores at 2 GHz. The data sources were hosted on
a dual core workstation with 2 GB Ram connected in
a LAN environment. Both nodes were assigned 1.5
GB Ram as Java Heap Size. All experiments were ex-
ecuted on synthetically generated XML data and were
repeated 30 times for statistical correctness.

We used our running process example. For the
traditional process execution, the process graph con-
sists of seven nodes: one receive activity, three assign
activities (transform, filterOrders and joinIds),
and three invoke activities (getInvoices, getOrders
and analyze). For our stream-based process execu-
tion the process graph consists of eight nodes. We ad-
ditionally have the copy operator that distributes the
customer ids to both invoke operators. Furthermore,

1http://ws.apache.org/axis2/
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we replace the assign operators filterOrders and
joinIds with the respective filter and join operator.

We use n as the number of customer information
that enter the process. In addition, we fix the number
f n of invoices and orders returned for each customer
id from the services getInvoices and getOrders
to 10 for all conducted experiments. This leads to
20 invoices/orders for every processed customer id.
The textual representation of one customer informa-
tion item that enters the process is about 1kb in size.
It gets transformed, enriched and joined to about 64kb
throughout the process. Although real-world scenar-
ios for data integration often exhibit larger message
sizes, these sizes are sufficient for comparing the pre-
sented approaches.

5.2 Performance Measurements

For scalability over n, we measured the process-
ing time for the traditional control-flow-based pro-
cess execution (CPE) and our stream-based process
execution (SPE) in Figure 10(a) with a logarith-
mic scale. Thereby, CPE denotes the control-flow-
based execution which processes all customer infor-
mation n in one process instance. CPE chunk10 and
CPE chunk100 uses the CPE but distribute n items
over n/chunkSize service calls with chunkSize =
{10,100}. SPE local represents our stream-
based process execution with only getInvoices,
getOrders and analyze being stream-based invoke
operations to external Web services. In contrast, SPE
distributed replaces the join operator joinIDs with a
binary invoke operator described in Section 4.2 and
implements the join as stream-based service instance.
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Figure 10: Experimental performance evaluation results.

We can observe, that CPE does not scale over 1.000
customer ids with its 20.000 invoices/orders due to
main memory limit of 1.5 GB and its variable-based
data flow which stores all data. In contrast, CPE
chunk10 and CPE chunk100 scale for arbitrary data
sizes whereas a chunk size of 10 customer informa-
tion per process call offers the shortest processing
time. Nevertheless, this data chunking leads to mul-
tiple process calls for a specific n and alters the pro-
cessing semantic by executing each process call in an
isolated context and thus assuming independency be-
tween all n items. Furthermore, it also exhibits a more
worse runtime behavior than SPE local and SPE dis-
tributed Since chunking scales for arbitrary data sizes,
we will focus on these approaches in our following
experiments.

Figure 10(b) depicts the variance of runtimes for
CPE chunk10, CPE chunk100 and SPE local. While
the variance of both chunk-based control-flow execu-
tion concepts offers a higher variance for larger n, the
variance of our stream-based execution shows signif-
icantly lower. This is due to the fact, that with higher
n the number of service calls increases for the CPE
approaches, which also involves service instance cre-
ation and the all new routing of the message the ser-
vice endpoint. In contrast, our stream-based service
invocation only creates one service instance per in-
voke operator and the established streams are kept
open for all n that flow through the process.

In Figure 10(c) we measured the runtime perfor-
mance with different numbers of dedicated CPU cores
to the process instances. We can observe, that the
number of cores does not affect the CPE approaches
significantly. This is due to the fact that at most 2
threads are executed concurrently (both concurrent in-
vokes for getInvoices and getOrders in the pro-
cess graph). Furthermore, waiting times for the return
of the service calls (processing, creation and trans-
mission of invoices and orders) does even not fully
utilize one core and makes the presence of the re-
maining three cores obsolete. For the SPE approach,
we have 12 threads (8 operator nodes with one thread
per operator plus an additional thread for every invoke
(+3) and join (+1) operator). The execution time for
different n is significantly higher with only using one
CPU core. Nevertheless, the SPE also outperforms
the CPE with one single CPU core. Again this points
to the fact of dominating waiting times for service
calls in CPE-based processes. The assignment of two
CPU cores speeds up the SPE significantly whereas 4
CPU cores do not increase performance that may jus-
tify its dedicated usage.

As a last experiment, Figure 10(d) depicts ex-
ecution times for different operators of CPE, CPE
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chunk10 and SPE local in a logarithmic scale. Here
we fix n = 500 and measured the time the operators
finish to process all items. In general, the execution of
SPE operators takes more time than the correspond-
ing activities in the CPE environment. This is due to
overhead for operator scheduling, queue synchroniza-
tion and bucket handling. Furthermore, the operator
getOrders has nearly the same execution time like
its succeeding operator joinIDs for SPE local. This
points to the fact, that the getOrders operator is the
most time consuming operator and joinIDs operator
has to wait for buckets. As for the joinIDs activity
in the CPE, is the most time and resource consuming
step. We used a standard Java XPath library to imple-
ment the join for the CPE. Thereby, all invoices and
orders for every customer id are retrieved from vari-
able v3 and v5 (see Figure 2) and stored in variable
v6. For our SPE implementation, we used the same
library and algorithm but process only small message
subsets. This seemed to speed up the whole data pro-
cessing significantly.

6 DISCUSSION

In general, the evaluation in Section 5 has shown, that
the pipeline-based execution in conjunction with the
stream-based Web service invocation yields signif-
icant performance and scalability improvements for
our application scenario. In the following section we
discuss implications and challenges for our process-
based data streaming approach. In particular, there
are three topics that consider different aspects of our
approach:

Applicability and Application Scenarios. In our
presented application scenario, we considered equally
structured items.This is a typical data characteristic in
data-intensive processes. However, if items are not
equally-structured, our process model supports this
by schema-less data queues (see Example 2). Another
quite interesting application domain is the process-
based inter-message processing in the area of message
stream analysis. It has to be investigated, how deci-
sion rules can be mapped to process graph and how
Complex Event Processing (CEP) can be embedded
in this context.

Intra-process Optimization. Since our approach
allows for data splitting, it scales for arbitrary data
sizes. However, the scalability depends on the bucket
payload size and the number of buckets within the
process. Since all data queues block access if they be-
come empty or full, the maximum number of buckets

within the process is implicitly defined by the sum of
slots in all data queues. Furthermore, if a customer id
and its invoices/orders are processed completely, their
buckets are consumed by the analyze operator and
discarded afterwards. Another implication in terms
of bucket payload sizes is that the receive operator
does not build the incoming message payload in mem-
ory completely. Instead, it reads the message payload
from an internal storage and parses the XML file step
by step, according the split path in the receive op-
erator. Of course, this may restrict the expressiveness
of XQuery statements.

Inter-process Optimization. Currently, the
pipeline-based execution is only deployed on an
intra-process-based level. Thereby, every incoming
message is processed in a pipeline-based, but dif-
ferent incoming messages are executed in separate
instances in a serialized fashion. One optimization
would be to allow new messages to be processed in
the same instance as the previous messages. This
leads to the processing of a new message while the
previous message is still be processed. However, the
process has to distinguish between single messages to
maintain separate contexts. To mark the end of an old
message and the start of new message, respectively,
we can use punctuation buckets as described in
(Tucker et al., 2003) that are injected into the stream
between two messages. In these bucket types, mes-
sage meta data like request id or response endpoints
are included. Additionally, the process model has
to be extended to allow punctuations to reconfigure
operators via parameter sets for every message.
If punctuations are not used at all, payloads from
different messages can be processed in one shared
context which allows new application scenarios in
the area of message stream analysis.

7 RELATED WORK

In general, there exist several papers addressing the
optimization of business processes. The closest
related work to ours is (Bioernstad et al., 2006).
They investigate runtime states of activities and their
pipelined execution semantics. However, their pro-
posal is more a theoretical consideration with regard
to single activities. They describe how activities have
to be adjusted to enable pipelined processing, whereas
they do not consider 1) message splitting for efficient
message processing and 2) communication with ex-
ternal systems. Furthermore, (Böhm et al., 2009)
addresses the transparent rewriting of instance-based
processes to pipeline-based processes by consider-
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ing cost-based rewriting rules. Similar to (Bioernstad
et al., 2006), they do not address the optimization of
data-intensive processes.

The optimization of data-intensive business pro-
cesses is investigated in (Maier et al., 2005; Vrhovnik
et al., 2007) and (Habich et al., 2007). While
(Maier et al., 2005) proposes to extend WSBPEL
with explicit database activities (SQL-statements),
(Vrhovnik et al., 2007) describes optimization tech-
niques for such SQL-aware business processes. In
contrast to our work, their focus is on database oper-
ations in tight combination with business processes.
(Habich et al., 2007) presents an overall service-
oriented solution for data-intensive applications that
handles the data flow separately from process ex-
ecution and uses database systems and specialized
data propagation tools for data exchange. However,
the execution semantics of business processes is not
touched and only the data flow is optimized with spe-
cial concepts – restricting the general usability of this
approach in a wider range.

8 CONCLUSIONS

In this paper we presented the concept of stream-
based XML data processing in SOA using common
service-oriented concepts and techniques. There, we
used pipeline parallelism to process data in smaller
chunks. In addition, we addressed the communication
between process and services and introduced the con-
cept of generalized stream-based services that allows
the process to execute services as distributed opera-
tors. In experiments we showed the applicability of
these concepts in terms of performance. Future work
should address 1) the modeling aspects of such pro-
cesses in more detail and 2) a cost model that con-
siders communication overhead, complexity of func-
tions, and complexity and size of data structures to
determine the remote or local execution of operators.
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