
ESTIMATING SOFTWARE DEVELOPMENT EFFORT USING
TABU SEARCH

Filomena Ferrucci, Carmine Gravino, Rocco Oliveto and Federica Sarro
Dipartimento di Matematica e Informatica, Università di Salerno, Via Ponte Don Melillo, Fisciano (SA), Italy

Keywords: Development Effort Estimation, Empirical Studies, Tabu Search.

Abstract: Some studies have been recently carried out to investigate the use of search-based techniques in estimating
software development effort and the results reported seem to be promising. Tabu Search is a meta-heuristic
approach successfully used to address several optimization problems. In this paper, we report on an
empirical analysis carried out exploiting Tabu Search on two publicly available datasets, i.e., Desharnais
and NASA. On these datasets, the exploited Tabu Search settings provided estimates comparable with those
achieved with some widely used estimation techniques, thus suggesting for further investigations on this
topic.

1 INTRODUCTION

Effort estimation is a critical basic activity for
planning and monitoring software project
development and for delivering the product on time
and within budget. Several methods have been
proposed in order to estimate software development
effort. Many of them determine the prediction
exploiting some relevant factors of the software
project, named cost drivers. These methods, named
data-driven, exploit data from past projects,
consisting of both factor values that are related to
effort and the actual effort to develop the projects, in
order to estimate the effort for a new project under
development (Shepperd and Schofield, 2000). In this
class, we can find some widely used techniques,
such as Linear and Stepwise Regression,
Classification and Regression Tree, and Case-Based
Reasoning (Briand and Wieczorek, 2002).

In the last years, some attempts have been made
to apply search-based approaches to estimate
software development effort. Indeed, effort
estimation can be formulated as an optimization
problem (Harman, 2007), where we have to search
for the most accurate estimate, i.e. the one that
minimizes the difference with the actual effort. In
particular, some researchers have analyzed the use
of Genetic Programming in estimating software
development effort (Burgess and Lefley, 2001)
(Lefley and Shepperd, 2003), reporting results that
encourage further investigations in this context.

Genetic Programming is a search-based approach
inspired by evolutionary biology to address
optimization problems. There exist other search-
based techniques that have been found to be very
effective and robust in solving numerous
optimization problems. In particular, Tabu Search
has been successfully applied for software testing
(Diaz et al., 2008), for object replication in
distributed web server (Mahmood and Homeed,
2005) and for Software-Hardware Partitioning
(Lanying and Shi, 2008). In this paper, we report on
an empirical study carried out to analyze the
effectiveness of Tabu Search for effort estimation. In
particular, the specific contributions of the paper are:

 the definition and the analysis of a Tabu Search
algorithm for effort estimation;

 the comparison of the proposed approach with
widely used estimation methods.
To this aim we employed two publicly available

datasets, i.e., Desharnais (Desharnais, 1989) and
NASA (Bailey and Basili, 1981), widely used in the
context of effort estimation.

The remainder of the paper is organized as
follows. Section 2 provides a brief description of the
Tabu Search algorithm conceived for estimating
software development effort. Section 3 summarizes
the empirical analysis we performed to assess the
effectiveness of the algorithm. Related work is
presented in Section 4. Final remarks and future
work conclude the paper.

236 Ferrucci F., Gravino C., Oliveto R. and Sarro F. (2010).
ESTIMATING SOFTWARE DEVELOPMENT EFFORT USING TABU SEARCH.
In Proceedings of the 12th International Conference on Enterprise Information Systems - Databases and Information Systems Integration, pages
236-241
DOI: 10.5220/0002901002360241
Copyright c© SciTePress

2 THE ESTIMATION METHOD

Tabu Search (TS) is an optimization method
proposed originally by Glover to overcome some
limitations of Local Search (Glover and Laguna,
1997). It is a meta-heuristic relying on adaptive
memory and responsive exploration of the search
space. To build a TS algorithm we have to perform
the following steps:

 define a representation of possible solutions;

 define the neighbourhood;

 choose an objective function to evaluate
solutions;

 define the Tabu list, the aspiration criteria, and
the termination criteria.

In the context of effort estimation, a solution
consists of a model described by an equation that
combines several factors:

Effort = c1 op1 f1 op2 ... op2n−2 cn op2n−1 fn op2n C

where fi and ci represent the values of the ith factor
and its coefficient, respectively, C represents a
constant, while opi represents the ith operator.
Although a variety of operators could be considered,
only the set { + , - , * } was took into account for our
analysis.

The search space of TS is represented by all the
possible equations that can be generated assigning
the values for ci, C, opi providing positive Effort
values. The initial solution is randomly generated.
Starting from the current solution, at each iteration
the method applies local transformations (i.e.,
moves), defining a set of neighboring solutions in
the search space. Each neighbour of a given solution
S is defined as a solution obtained by a random
variation of it. In particular, a move consists of three
steps:
1. change each coefficient ci of S with probability

½. The new coefficient is calculated as follow:

),(ricfic 

where  /,*,,f and r is randomly chosen
in the range]0,1];

2. change the constant factor C of S with
probability ½ in the same way coefficients are
changed;

3. change each arithmetic operator opi of S with
probability ½.

At each iteration the neighbouring solutions are
compared to select the best one which will be used
in the next iteration to explore a new neighbourhood.
Moreover, if the best neighbouring solution is better
than the current best solution, the latter is replaced.

The comparison between solutions is performed by
exploiting an objective function able to evaluate the
accuracy of the estimation model. A number of
accuracy measures are usually taken into account to
compare effort estimation models. All are based on
the residual, i.e. the difference between the predicted
and actual effort. Among them we used as objective
function the MMRE (Conte et al., 1986), whose
definition is reported in the next section. In
particular, the goal of TS is to minimize the MMRE
value.

To avoid loops and to guide the search far from
already visited portions of the search space; the
moves recently applied are marked as tabu and
stored in a Tabu list. Since only a fixed and fairly
limited quantity of information is usually recorded in
the Tabu list (Gendreau, 2002), we prohibit the use
of a tabu move for ten iterations. In order to allow
one to revoke a tabu move, we employed the most
commonly used aspiration criterion, namely we
permit a tabu move if it results in a solution with an
objective function value (i.e., the MMRE value)
better than the one of the current best solution.

The search is stopped after a fixed number of
iterations or after some number of iterations that do
not provide an improvement in the objective
function value.

3 EMPIRICAL ANALISYS

The goals of our empirical analysis were:

1) analyzing the effectiveness of TS in estimating
software development effort;

2) comparing the accuracy of TS with the one of
widely and successfully employed estimation
methods.

To evaluate the accuracy of the estimates we
employed some widely used summary measures
(Conte et al., 1986), namely: the Mean and Median
of Magnitude of Relative Error (MMRE and
MdMRE), and Pred(25). According to (Conte,
1986), a good effort prediction model should have a
MMRE≤0.25 and Pred(25)≥0.75, meaning that at
least 75% of the predicted values should fall within
25% of their actual values.

To address the second research goal, we
compared TS with Manual Stepwise Regression
(MSWR) (Kitchenham and Mendes, 2004) and
Case-Based Reasoning (CBR) (Shepperd and
Schofield, 2000), that are widely used estimation
techniques.

ESTIMATING SOFTWARE DEVELOPMENT EFFORT USING TABU SEARCH

237

SWR is a statistical technique that allows us to
build a prediction model representing the
relationship between independent and dependent
variables. The estimation model is obtained by
adding, at each stage, the independent variable with
the highest association to the dependent variable,
taking into account all variables currently in the
model. SWR aims to find the set of independent
variables that best explains the variation in the
dependent variable.

To select the variables to be added in the model a
Manual SWR (MSWR) can be applied, using the
technique proposed by Kitchenham (1998). The idea
underlying this procedure is to select the important
independent variables, and then to use linear
regression to obtain the final model.

CBR is a branch of Artificial Intelligence where
knowledge of similar past cases is used to solve new
cases. The idea is to predict the effort of a new
project by considering similar projects previously
developed. We applied CBR by employing ANGEL
(Shepperd and Schofield, 2000). ANGEL
implements the Euclidean distance as similarity
function and uses features normalised between 0 and
1. We used 1, 2, and 3 analogies employing as
adaptation strategies the mean of k analogies (simple
average), the inverse distance weighted mean and
the inverse rank weighted mean (Shepperd and
Schofield, 2000). We used the feature subset
selection of ANGEL in order to let the tool to
automatically choose, among all the variables, the
ones to employ as set of key features in the analogy
based estimation.

To have a better visual insight on the
effectiveness of the estimation models, we compared
the prediction accuracies taking into account both
the summary statistics and the boxplots of absolute
residuals, where residuals are calculated as (EFreal –
EFpred). Boxplots are widely employed in
exploratory data analysis since they provide a quick
visual representation to summarize the data, using
five values: median, upper and lower quartiles,
minimum and maximum values, and outliers
(Kitchenham et al., 2001). In development effort
estimation, boxplots are used to visually represent
the amount of the error for a given prediction
technique. In particular, we used boxplot to
graphically render the spread of the absolute
residuals.

In order to verify whether the estimates obtained
with TS are characterized by significantly better
accuracy than the considered benchmarks we
statistically analyzed the absolute residuals, as
suggested in (Kitchenham et al., 2001). Since (i) the

absolute residuals for all the analyzed estimation
methods were not normally distributed, and (ii) the
data was naturally paired, we decided to use the
Wilcoxon test (Royston, 1982). The achieved results
were intended as statistically significant at = 0.05.

We performed the empirical analysis by
exploiting two datasets: the Desharnais (Desharnais,
1989) dataset, containing 81 observations, and the
NASA (Bailey and Basili, 1981) dataset, with 18
observations. Despite of these datasets are quite old,
they have been widely and recently used to evaluate
and compare estimation methods (see e.g., (Burgess
and Lefley, 2001) (Shepperd and Schofield, 2000)).
As for Desharnais dataset, in our analysis we did not
consider the length of the code as made in (Burgess
and Lefley, 2001), and categorical variables (i.e.,
Language and YearEnd). We excluded four projects
that had missing values, as done by Shepperd and
Schofield (2000). The NASA dataset consists of two
independent variables, i.e. Developed Lines (DL) of
code and Methodology (Me). The descriptive
statistics of the selected factors for the two datasets
are shown in Tables 1 and 2.

Table 1: Descriptive statistics of Desharnais dataset.

Variable Min Max Mean Std.Dev.
TeamExp 0.00 4.00 2.30 1.33

ManagerExp 0.00 7.00 2.65 1.52
Entities 7.00 387.00 120.55 86.11

Transactions 9.00 886.00 177.47 146.08
AdjustedFPs 73.00 1127.00 298.01 182.26

RawFPs 62.00 1116.00 282.39 186.36
Envergue 5.00 52.00 27.45 10.53

EFH (m/h) 546.00 23490.00 4903.95 4188.19

Table 2: Descriptive statistics of NASA dataset.

Variable Min Max Mean Std. Dev.
Me 19.00 35.00 27.78 5.39
DL 2.10 100.80 35.26 35.10

EFH (m/m) 5.00 138.30 49.47 45.73

We exploited some parameter settings to find

suitable values for moves and iterations numbers.
Concerning the number of moves, we executed TS
using four different values, i.e. 100, 500, 1000, and
2000. The best results in terms of MMRE and
Pred(25) were achieved with 1000 moves for
Desharnais dataset and 100 moves for NASA
dataset. We also executed the algorithm with
different numbers of iterations, and the best results
were achieved using 3000 and 500 iterations on
Desharnais and NASA, respectively. We did not
consider number of moves greater than 2000 for
Desharnais dataset and 100 for NASA dataset since
we noted a decreasing in the performance.
Moreover, note that for NASA dataset, having a

ICEIS 2010 - 12th International Conference on Enterprise Information Systems

238

number of factors and observations less than the
Desharnais dataset, the best results were obtained
with fewer moves. This aspect should be further
investigated in the future using other datasets to
verify whether some thresholds could be identified
in the choice of moves number. A similar
consideration can be made for the number of
iterations.

The validation process was performed using a
hold-out validation on Desharnais and a 3-fold cross
validation for NASA, since it is quite small (Briand
and Wieczorek, 2002). In particular, we randomly
split the Desharnais dataset into a training set of 59
observations and a test set of 18 observations.
NASA dataset was partitioned into 3 randomly test
sets of equal size and then for each test set we used
the remaining 12 observations as training set.

Table 3 and Table 4 provide the results for the
summary measures MMRE, MdMRE, and Pred(25).
As we can see the thresholds provided in (Conte,
1986) are not satisfied for TS on Desharnais, since
Pred(25) value is less than 0.75 and MMRE and
MdMRE values are greater than 0.25. On the other
hand, the estimates obtained on NASA provided
MMRE and MdMRE values less than 0.25 and a
Pred(25) value very close to 0.75.

To have an insight on the results and understand
the actual effectiveness of TS on these datasets, it is
important to compare TS estimation accuracy with
that of widely used techniques, such as MSWR and
CBR (reported in Tables 3 and 4). Only the best
results obtained for CBR are reported.

Table 3: MMRE, MdMRE, and Pred(25) on Desharnais.

 MMRE PRED(25) MdMRE
TS 0.45 0.39 0.43

CBR 0.48 0.55 0.22
MSWR 0.39 0.22 0.38

Table 4: MMRE, MdMRE, and Pred(25) on NASA.

 MMRE PRED(25) MdMRE
TS 0.21 0.72 0.19

CBR 0.24 0.56 0.20
MSWR 0.20 0.72 0.19

Table 5: Results of Wilcoxon tests.

 TS vs MSWR TS vs CBR
Desharnais p-value = 0.41 p-value = 0.16

NASA p-value= 0.80 p-value = 0.17

As for Desharnais, we can see that TS provided a
better Pred(25) value and slightly worse MMRE and
MdMRE values with respect to MSWR. As for
CBR, TS achieved a slightly better MMRE value but
worse MdMRE and Pred(25) values. Regarding the

NASA dataset, the best results were achieved using
MSWR and TS, while the worse results were
obtained with CBR. In particular, TS and MSWR
provided comparable results.

The analysis of the boxplots in Figures 1 and 2
suggests that TS has a median very close to the
median of MSWR and CBR. With regards to
Desharnais dataset, even if the boxplot of MSWR is
less skewed than those of CBR and TS, it has more
outliers. Furthermore, the boxes and the tails of TS
and CBR are quite similar. As for NASA dataset, the
tails of TS boxplot are less skewed and the outliers
of TS are more close to the box. In the other cases,
the box length and tails of boxplots are similar.
Summarizing, we can deduce that boxplot of TS is
slightly better than the boxplots of CBR and MSWR
for NASA dataset.

To get a better understanding, we also tested the
statistical significance of the results by comparing
paired absolute residuals with the Wilcoxon test (see
Table 5). We can observe that for both datasets,
there is no statistical significant difference between
the absolute residuals obtained with TS and CBR
and TS and MSWR (the results were intended as
statistically significant at α = 0.05). Thus, we can
conclude that for the performed analysis TS has
comparable performances with respect to two widely
used estimation techniques.

However, further analysis could be carried out to
identify a better setting of the features of the TS
algorithm. Indeed, for example other operators could
be used for the prediction model, as well as other
measures could be exploited as objective function
instead or together with MMRE.

It is interesting to compare our results with the
one of Burgess and Lefley (2001) that assessed the
use of Genetic Programming (GP) for estimating
software development effort exploiting on the
Desharnais dataset. The settings they used were: an
initial population of 1000, 500 generations, 10
executions (i.e., run), and a fitness function designed
to minimize MMRE. The proposed GP did not
outperform Linear Regression (LR), CBR (with k=2
and k=5 analogies), and Artificial Neural Networks
(ANN) in terms of summary measures MMRE and
Pred(25). However, no statistical tests were carried
out by the authors to verify whether there was
significant difference between the results. As for GP,
they obtained an MMRE value which is close to the
one we obtained with TS, and a Pred(25) value
which is worse than the one obtained with TS.

So, our analysis confirms their results on the
potentially effectiveness of search-based techniques
for effort estimation by suggesting also the

ESTIMATING SOFTWARE DEVELOPMENT EFFORT USING TABU SEARCH

239

usefulness of TS. Moreover, it confirms the need for
further investigations to verify if a better set up of
the algorithms could improve the accuracy of the
estimations.

Figure 1: The boxplots of absolute residuals, Desharnais
dataset.

Figure 2: The boxplots of absolute residuals, NASA
dataset.

4 RELATED WORK

Besides, the work of Burgess and Lefley (2001)
whose results have been reported in Section 3, some
empirical investigations have been performed to
assess the effectiveness of genetic algorithms in
estimating software development effort. In
particular, Dolado (2000) employed an evolutionary
approach in order to automatically derive equations
alternative to multiple linear regression. The aim
was to compare the linear equations with those
obtained automatically. The proposed algorithm was
run a minimum of 15 times and each run had an
initial population of 25 equations. Even if in each
run the number of generation varied, the best results
were obtained with three to five generations (as

reported in the literature, usually more generations
are used) and by using the Mean Squared Error
(MSE) (Conte et al., 1986), as fitness function. As
dataset, 46 projects developed by academic students
were exploited through a hold-out validation. It is
worth noting that the main goal of Dolado work was
not the assessment of evolutionary algorithms but
the validation of the component-based method for
software sizing. However, he observed that the
investigated algorithm provided similar or better
values than regression equations.

Successively, Lefley and Shepperd (2003) also
assessed the effectiveness of an evolutionary
approach and compared it with several estimation
techniques such as LR, ANN, and CBR. As for
genetic algorithm setting, they applied the same
choice of Burgess and Lefley (2001), while a
different dataset was exploited. This dataset is
refereed as “Finnish Dataset” and included 407
observations and 90 features, obtained from many
organizations. After a data analysis, a training set of
149 observations and a test set of 15 observations
were obtained applying a hold-out validation and
used in the empirical analysis. Even if the results
revealed that there was not a method that provides
better estimations than the others, the evolutionary
approach performed consistently well.

An evolutionary computation method, named
Grammar Guided Genetic Programming (GGGP),
was proposed by Shan et al. (2002) to fit models,
with the aim of improving the estimation of the
software development effort. Data of software
projects from ISBSG database was used to build the
estimation models using GGGP and LR. The fitness
function was designed to minimize the Mean
Squared Error (MSE), an initial population of 1000
was chosen, the maximum number of generations
was 200, and the number of executions was 5. The
results revealed that GPPP performed better than
Linear Regression in terms of MMRE and Pred(25).

5 CONCLUSIONS AND FUTURE
WORKS

Our analysis has shown that Tabu Search can be
effective as other widely used estimation techniques.
The study can be seen as a starting point for further
investigations to be carried out (possibly with other
datasets) by taking into account several different
configuration settings of TS. These configurations
could be based on:
 several objective functions possibly not em-

ICEIS 2010 - 12th International Conference on Enterprise Information Systems

240

ployed in the previous works. Indeed, such a
choice could influence the achieved results
(Harman, 2007), particularly when the measure
used by the algorithm to optimise the estimates is
the same used to evaluate the accuracy of them
(Burgess and Lefley, 2001). Moreover, we could
consider a multi-objective optimisation given by
a combination of Pred(25) and MMRE.
 other operators and moves to better explore the
solution space.

We will also replicate the study employing data
from other companies in order to mitigate possible
external validity threats (Briand and Wust, 2001).

ACKNOWLEDGEMENTS

The research has also been carried out exploiting the
computer systems funded by University of Salerno’s
Finanziamento Medie e Grandi Attrezzature (2005)
for the Web Technologies Research Laboratory.

REFERENCES

J. W. Bailey, V. R. Basili, 1981. A Meta Model for
Software Development Resource Expenditure. Procs.
of Conference on Software Engineering, pp. 107-115.

L. Briand, I. Wieczorek, 2002. Software Resource
Estimation. Encyclopedia of Software Engineering.
Volume 2. P-Z (2nd ed.), Marciniak, John J. (ed.) New
York: John Wiley & Sons, pp. 1160-1196.

L. C. Briand, J. Wust, 2001. Modeling Development
Effort in Object-Oriented Systems Using Design
Properties. IEEE TSE, 27(11), pp. 963–986.

L. Briand, K. El. Emam, D. Surmann, I. Wiekzorek, K.
Maxwell, 1999. An assessment and comparison of
common software cost estimation modeling
techniques. Procs. Conf. on Software Engineering, pp.
313–322.

C. Burgess, M. Lefley, 2001. Can Genetic Programming
Improve Software Effort Estimation: a Comparative
Evaluation. Inform. Softw. Technology, 43(14), pp.
863–873.

D. Conte, H. Dunsmore, V. Shen, 1986. Software
engineering metrics and models. The
Benjamin/Cummings Publishing Company, Inc..

J. M. Desharnais, 1989. Analyse statistique de la
productivitie des projets informatique a partie de la
technique des point des function. Unpublished Masters
Thesis, University of Montreal.

E. Diaz, J. Tuya, R. Bianco, J. J. Dolado, 2008. A tabu
search algorithm for structural software testing. Comp.
and Oper. Research, 35(10), pp. 3052-3072.

J. J. Dolado, 2000. A validation of the component-based
method for software size estimation. Transactions on
Software Engineering, 26(10), pp. 1006–1021.

M. Gendreau, 2002. An introduction to Tabu Search.
Inter’l Series in Operations Research & Management,
Science Handbook of Metaheuristics, 57, Springer, pp.
37-54.

F. Glover, M. Laguna, 1997. Tabu Search. Kluwer
Academic Publishers, Boston.

M. Harman, 2007. The Current State and Future of Search
Based Software Engineering. Workshop on the Future
of Software Engineering (ICSE’07), pp. 342-357.

B. A. Kitchenham, 1998. A procedure for analyzing
unbalanced datasets. Transactions on Software
Engineering, 24 (4), pp. 278-301.

B. Kitchenham, L. M. Pickard, S. G. MacDonell, M. J.
Shepperd, 2001. What accuracy statistics really
measure. IEEE Procs. Software 148(3), pp. 81–85.

L. Lanying, M. Shi, 2008. Software-Hardware Partitioning
Strategy Using Hybrid Genetic and Tabu Search.
Procs. Conf. Computer Science and Software
Engineering, Vol. 04, pp. 83-86.

M. Lefley, M. J. Shepperd, 2003. Using genetic
programming to improve software effort estimation
based on general data sets. Procs. of Genetic and
Evolutionary Computation Conf., pp. 2477–2487.

A. Mahmood, T. Homeed, 2005. A Tabu Search
Algorithm for Object Replication in Distributed Web
Server System. Studies in Informatics and Control,
14(2), pp. 85-98.

P. Royston, 1982. An extension of Shapiro and Wilks Test
for Normality to Large Samples. Applied Statistics
31(2), pp. 115–124.

Y. Shan, R. I. Mckay, C. J. Lokan, D. L. Essam, 2002.
Software project effort estimation using genetic
programming. Procs. of Conf. on Communications
Circuits and Systems, pp. 1108–1112.

M. Shepperd, C. Schofield, 2000. Estimating software
project effort using analogies. IEEE TSE, 23(11), pp.
736–743.

L. J. White, 2002. Editorial: The importance of empirical
work for software engineering papers. Software
Testing, Verification and Reliability, 12 (4), pp. 195-
196.

ESTIMATING SOFTWARE DEVELOPMENT EFFORT USING TABU SEARCH

241

