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Abstract: Some studies have been recently carried out to investigate the use of search-based techniques in estimating 
software development effort and the results reported seem to be promising. Tabu Search is a meta-heuristic 
approach successfully used to address several optimization problems. In this paper, we report on an 
empirical analysis carried out exploiting Tabu Search on two publicly available datasets, i.e., Desharnais 
and NASA. On these datasets, the exploited Tabu Search settings provided estimates comparable with those 
achieved with some widely used estimation techniques, thus suggesting for further investigations on this 
topic.

1 INTRODUCTION 

Effort estimation is a critical basic activity for 
planning and monitoring software project 
development and for delivering the product on time 
and within budget. Several methods have been 
proposed in order to estimate software development 
effort. Many of them determine the prediction 
exploiting some relevant factors of the software 
project, named cost drivers. These methods, named 
data-driven, exploit data from past projects, 
consisting of both factor values that are related to 
effort and the actual effort to develop the projects, in 
order to estimate the effort for a new project under 
development (Shepperd and Schofield, 2000). In this 
class, we can find some widely used techniques, 
such as Linear and Stepwise Regression, 
Classification and Regression Tree, and Case-Based 
Reasoning (Briand and Wieczorek, 2002). 

In the last years, some attempts have been made 
to apply search-based approaches to estimate 
software development effort. Indeed, effort 
estimation can be formulated as an optimization 
problem (Harman, 2007), where we have to search 
for the most accurate estimate, i.e. the one that 
minimizes the difference with the actual effort. In 
particular, some researchers have analyzed the use 
of Genetic Programming in estimating software 
development effort (Burgess and Lefley, 2001) 
(Lefley and Shepperd, 2003), reporting results that 
encourage further investigations in this context. 

Genetic Programming is a search-based approach 
inspired by evolutionary biology to address 
optimization problems. There exist other search-
based techniques that have been found to be very 
effective and robust in solving numerous 
optimization problems. In particular, Tabu Search 
has been successfully applied for software testing 
(Diaz et al., 2008), for object replication in 
distributed web server (Mahmood and Homeed, 
2005) and for Software-Hardware Partitioning 
(Lanying and Shi, 2008). In this paper, we report on 
an empirical study carried out to analyze the 
effectiveness of Tabu Search for effort estimation. In 
particular, the specific contributions of the paper are: 

 the definition and the analysis of a Tabu Search 
algorithm for effort estimation; 

 the comparison of the proposed approach with 
widely used estimation methods. 
To this aim we employed two publicly available 

datasets, i.e., Desharnais (Desharnais, 1989) and 
NASA (Bailey and Basili, 1981), widely used in the 
context of effort estimation. 

The remainder of the paper is organized as 
follows. Section 2 provides a brief description of the 
Tabu Search algorithm conceived for estimating 
software development effort. Section 3 summarizes 
the empirical analysis we performed to assess the 
effectiveness of the algorithm. Related work is 
presented in Section 4. Final remarks and future 
work conclude the paper. 
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2 THE ESTIMATION METHOD 

Tabu Search (TS) is an optimization method 
proposed originally by Glover to overcome some 
limitations of Local Search (Glover and Laguna, 
1997). It is a meta-heuristic relying on adaptive 
memory and responsive exploration of the search 
space. To build a TS algorithm we have to perform 
the following steps: 

 define a representation of possible solutions; 

 define the neighbourhood; 

 choose an objective function to evaluate 
solutions; 

 define the Tabu list, the aspiration criteria, and 
the termination criteria. 

In the context of effort estimation, a solution 
consists of a model described by an equation that 
combines several factors: 

Effort = c1 op1 f1 op2 ... op2n−2 cn op2n−1 fn op2n C 

where fi and ci represent the values of the ith factor 
and its coefficient, respectively, C represents a 
constant, while opi represents the ith operator. 
Although a variety of operators could be considered, 
only the set { + , - , * } was took into account for our 
analysis. 

The search space of TS is represented by all the 
possible equations that can be generated assigning 
the values for ci, C, opi providing positive Effort 
values. The initial solution is randomly generated. 
Starting from the current solution, at each iteration 
the method applies local transformations (i.e., 
moves), defining a set of neighboring solutions in 
the search space. Each neighbour of a given solution 
S is defined as a solution obtained by a random 
variation of it. In particular, a move consists of three 
steps: 
1. change each coefficient ci of S with probability 

½. The new coefficient is calculated as follow: 

),( ricfic 
 

where  /,*,,f  and r is randomly chosen 
in the range ]0,1]; 

2. change the constant factor C of S with 
probability ½ in the same way coefficients are 
changed; 

3. change each arithmetic operator opi of S with 
probability ½. 

At each iteration the neighbouring solutions are 
compared to select the best one which will be used 
in the next iteration to explore a new neighbourhood. 
Moreover, if the best neighbouring solution is better 
than the current best solution, the latter is replaced. 

The comparison between solutions is performed by 
exploiting an objective function able to evaluate the 
accuracy of the estimation model. A number of 
accuracy measures are usually taken into account to 
compare effort estimation models. All are based on 
the residual, i.e. the difference between the predicted 
and actual effort. Among them we used as objective 
function the MMRE (Conte et al., 1986), whose 
definition is reported in the next section. In 
particular, the goal of TS is to minimize the MMRE 
value.  

To avoid loops and to guide the search far from 
already visited portions of the search space; the 
moves recently applied are marked as tabu and 
stored in a Tabu list. Since only a fixed and fairly 
limited quantity of information is usually recorded in 
the Tabu list (Gendreau, 2002), we prohibit the use 
of a tabu move for ten iterations. In order to allow 
one to revoke a tabu move, we employed the most 
commonly used aspiration criterion, namely we 
permit a tabu move if it results in a solution with an 
objective function value (i.e., the MMRE value) 
better than the one of the current best solution.  

The search is stopped after a fixed number of 
iterations or after some number of iterations that do 
not provide an improvement in the objective 
function value. 

3 EMPIRICAL ANALISYS 

The goals of our empirical analysis were: 

1) analyzing the effectiveness of TS in estimating 
software development effort; 

2) comparing the accuracy of TS with the one of 
widely and successfully employed estimation 
methods.  

To evaluate the accuracy of the estimates we 
employed some widely used summary measures 
(Conte et al., 1986), namely: the Mean and Median 
of Magnitude of Relative Error (MMRE and 
MdMRE), and Pred(25). According to (Conte, 
1986), a good effort prediction model should have a 
MMRE≤0.25 and Pred(25)≥0.75, meaning that at 
least 75% of the predicted values should fall within 
25% of their actual values. 

To address the second research goal, we 
compared TS with Manual Stepwise Regression 
(MSWR) (Kitchenham and Mendes, 2004) and 
Case-Based Reasoning (CBR) (Shepperd and 
Schofield, 2000), that are widely used estimation 
techniques. 
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SWR is a statistical technique that allows us to 
build a prediction model representing the 
relationship between independent and dependent 
variables. The estimation model is obtained by 
adding, at each stage, the independent variable with 
the highest association to the dependent variable, 
taking into account all variables currently in the 
model. SWR aims to find the set of independent 
variables that best explains the variation in the 
dependent variable. 

To select the variables to be added in the model a 
Manual SWR (MSWR) can be applied, using the 
technique proposed by Kitchenham (1998). The idea 
underlying this procedure is to select the important 
independent variables, and then to use linear 
regression to obtain the final model.   

CBR is a branch of Artificial Intelligence where 
knowledge of similar past cases is used to solve new 
cases. The idea is to predict the effort of a new 
project by considering similar projects previously 
developed. We applied CBR by employing ANGEL 
(Shepperd and Schofield, 2000). ANGEL 
implements the Euclidean distance as similarity 
function and uses features normalised between 0 and 
1. We used 1, 2, and 3 analogies employing as 
adaptation strategies the mean of k analogies (simple 
average), the inverse distance weighted mean and 
the inverse rank weighted mean (Shepperd and 
Schofield, 2000). We used the feature subset 
selection of ANGEL in order to let the tool to 
automatically choose, among all the variables, the 
ones to employ as set of key features in the analogy 
based estimation. 

To have a better visual insight on the 
effectiveness of the estimation models, we compared 
the prediction accuracies taking into account both 
the summary statistics and the boxplots of absolute 
residuals, where residuals are calculated as (EFreal – 
EFpred). Boxplots are widely employed in 
exploratory data analysis since they provide a quick 
visual representation to summarize the data, using 
five values: median, upper and lower quartiles, 
minimum and maximum values, and outliers 
(Kitchenham et al., 2001). In development effort 
estimation, boxplots are used to visually represent 
the amount of the error for a given prediction 
technique. In particular, we used boxplot to 
graphically render the spread of the absolute 
residuals. 

In order to verify whether the estimates obtained 
with TS are characterized by significantly better 
accuracy than the considered benchmarks we 
statistically analyzed the absolute residuals, as 
suggested in (Kitchenham et al., 2001). Since (i) the 

absolute residuals for all the analyzed estimation 
methods were not normally distributed, and (ii) the 
data was naturally paired, we decided to use the 
Wilcoxon test (Royston, 1982). The achieved results 
were intended as statistically significant at = 0.05.  

We performed the empirical analysis by 
exploiting two datasets: the Desharnais (Desharnais, 
1989) dataset, containing 81 observations, and the 
NASA (Bailey and Basili, 1981) dataset, with 18 
observations. Despite of these datasets are quite old, 
they have been widely and recently used to evaluate 
and compare estimation methods (see e.g., (Burgess 
and Lefley, 2001) (Shepperd and Schofield, 2000)). 
As for Desharnais dataset, in our analysis we did not 
consider the length of the code as made in (Burgess 
and Lefley, 2001), and categorical variables (i.e., 
Language and YearEnd). We excluded four projects 
that had missing values, as done by Shepperd and 
Schofield (2000). The NASA dataset consists of two 
independent variables, i.e. Developed Lines (DL) of 
code and Methodology (Me). The descriptive 
statistics of the selected factors for the two datasets 
are shown in Tables 1 and 2. 

Table 1: Descriptive statistics of Desharnais dataset. 

Variable Min Max Mean Std.Dev. 
TeamExp 0.00 4.00 2.30 1.33 

ManagerExp 0.00 7.00 2.65 1.52 
Entities 7.00 387.00 120.55 86.11 

Transactions 9.00 886.00 177.47 146.08 
AdjustedFPs 73.00 1127.00 298.01 182.26 

RawFPs 62.00 1116.00 282.39 186.36 
Envergue 5.00 52.00 27.45 10.53 

EFH (m/h) 546.00 23490.00 4903.95 4188.19 

Table 2: Descriptive statistics of NASA dataset. 

Variable Min Max Mean Std. Dev. 
Me 19.00 35.00 27.78 5.39 
DL 2.10 100.80 35.26 35.10 

EFH (m/m) 5.00   138.30 49.47   45.73 
 
We exploited some parameter settings to find 

suitable values for moves and iterations numbers. 
Concerning the number of moves, we executed TS 
using four different values, i.e. 100, 500, 1000, and 
2000. The best results in terms of MMRE and 
Pred(25) were achieved with 1000 moves for 
Desharnais dataset and 100 moves for NASA 
dataset. We also executed the algorithm with 
different numbers of iterations, and the best results 
were achieved using 3000 and 500 iterations on 
Desharnais and NASA, respectively. We did not 
consider number of moves greater than 2000 for 
Desharnais dataset and 100 for NASA dataset since 
we noted a decreasing in the performance. 
Moreover, note that for NASA dataset, having a 
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number of factors and observations less than the 
Desharnais dataset, the best results were obtained 
with fewer moves. This aspect should be further 
investigated in the future using other datasets to 
verify whether some thresholds could be identified 
in the choice of moves number. A similar 
consideration can be made for the number of 
iterations. 

The validation process was performed using a 
hold-out validation on Desharnais and a 3-fold cross 
validation for NASA, since it is quite small (Briand 
and Wieczorek, 2002). In particular, we randomly 
split the Desharnais dataset into a training set of 59 
observations and a test set of 18 observations. 
NASA dataset was partitioned into 3 randomly test 
sets of equal size and then for each test set we used 
the remaining 12 observations as training set.  

Table 3 and Table 4 provide the results for the 
summary measures MMRE, MdMRE, and Pred(25). 
As we can see the thresholds provided in (Conte, 
1986) are not satisfied for TS on Desharnais, since 
Pred(25) value is less than 0.75 and MMRE and 
MdMRE values are greater than 0.25. On the other 
hand, the estimates obtained on NASA provided 
MMRE and MdMRE values less than 0.25 and a 
Pred(25) value very close to 0.75. 

To have an insight on the results and understand 
the actual effectiveness of TS on these datasets, it is 
important to compare TS estimation accuracy with 
that of widely used techniques, such as MSWR and 
CBR (reported in Tables 3 and 4). Only the best 
results obtained for CBR are reported. 

Table 3: MMRE, MdMRE, and Pred(25) on Desharnais. 

 MMRE PRED(25) MdMRE 
TS 0.45 0.39 0.43 

CBR 0.48 0.55 0.22 
MSWR 0.39 0.22 0.38 

Table 4: MMRE, MdMRE, and Pred(25) on NASA. 

 MMRE PRED(25) MdMRE 
TS 0.21 0.72 0.19 

CBR 0.24 0.56 0.20 
MSWR 0.20 0.72 0.19 

Table 5: Results of Wilcoxon tests. 

 TS vs MSWR TS vs CBR 
Desharnais  p-value = 0.41 p-value = 0.16 

NASA p-value= 0.80 p-value = 0.17 

As for Desharnais, we can see that TS provided a 
better Pred(25) value and slightly worse MMRE and 
MdMRE values with respect to MSWR. As for 
CBR, TS achieved a slightly better MMRE value but 
worse MdMRE and Pred(25) values. Regarding the 

NASA dataset, the best results were achieved using 
MSWR and TS, while the worse results were 
obtained with CBR. In particular, TS and MSWR 
provided comparable results. 

The analysis of the boxplots in Figures 1 and 2 
suggests that TS has a median very close to the 
median of MSWR and CBR. With regards to 
Desharnais dataset, even if the boxplot of MSWR is 
less skewed than those of CBR and TS, it has more 
outliers. Furthermore, the boxes and the tails of TS 
and CBR are quite similar. As for NASA dataset, the 
tails of TS boxplot are less skewed and the outliers 
of TS are more close to the box. In the other cases, 
the box length and tails of boxplots are similar. 
Summarizing, we can deduce that boxplot of TS is 
slightly better than the boxplots of CBR and MSWR 
for NASA dataset. 

To get a better understanding, we also tested the 
statistical significance of the results by comparing 
paired absolute residuals with the Wilcoxon test (see 
Table 5). We can observe that for both datasets, 
there is no statistical significant difference between 
the absolute residuals obtained with TS and CBR 
and TS and MSWR (the results were intended as 
statistically significant at α = 0.05). Thus, we can 
conclude that for the performed analysis TS has 
comparable performances with respect to two widely 
used estimation techniques.  

However, further analysis could be carried out to 
identify a better setting of the features of the TS 
algorithm. Indeed, for example other operators could 
be used for the prediction model, as well as other 
measures could be exploited as objective function 
instead or together with MMRE. 

It is interesting to compare our results with the 
one of Burgess and Lefley (2001) that assessed the 
use of Genetic Programming (GP) for estimating 
software development effort exploiting on the 
Desharnais dataset. The settings they used were: an 
initial population of 1000, 500 generations, 10 
executions (i.e., run), and a fitness function designed 
to minimize MMRE. The proposed GP did not 
outperform Linear Regression (LR), CBR (with k=2 
and k=5 analogies), and Artificial Neural Networks 
(ANN) in terms of summary measures MMRE and 
Pred(25). However, no statistical tests were carried 
out by the authors to verify whether there was 
significant difference between the results. As for GP, 
they obtained an MMRE value which is close to the 
one we obtained with TS, and a Pred(25) value 
which is worse than the one obtained with TS. 

So, our analysis confirms their results on the 
potentially effectiveness of search-based techniques 
for effort estimation by suggesting also the 
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usefulness of TS. Moreover, it confirms the need for 
further investigations to verify if a better set up of 
the algorithms could improve the accuracy of the 
estimations. 

 

 

Figure 1: The boxplots of absolute residuals, Desharnais 
dataset. 

 

Figure 2: The boxplots of absolute residuals, NASA 
dataset. 

4 RELATED WORK 

Besides, the work of Burgess and Lefley (2001) 
whose results have been reported in Section 3, some 
empirical investigations have been performed to 
assess the effectiveness of genetic algorithms in 
estimating software development effort. In 
particular, Dolado (2000) employed an evolutionary 
approach in order to automatically derive equations 
alternative to multiple linear regression. The aim 
was to compare the linear equations with those 
obtained automatically. The proposed algorithm was 
run a minimum of 15 times and each run had an 
initial population of 25 equations. Even if in each 
run the number of generation varied, the best results 
were obtained with three to five generations (as 

reported in the literature, usually more generations 
are used) and by using the Mean Squared Error 
(MSE) (Conte et al., 1986), as fitness function. As 
dataset, 46 projects developed by academic students 
were exploited through a hold-out validation. It is 
worth noting that the main goal of Dolado work was 
not the assessment of evolutionary algorithms but 
the validation of the component-based method for 
software sizing. However, he observed that the 
investigated algorithm provided similar or better 
values than regression equations.  

Successively, Lefley and Shepperd (2003) also 
assessed the effectiveness of an evolutionary 
approach and compared it with several estimation 
techniques such as LR, ANN, and CBR. As for 
genetic algorithm setting, they applied the same 
choice of Burgess and Lefley (2001), while a 
different dataset was exploited. This dataset is 
refereed as “Finnish Dataset” and included 407 
observations and 90 features, obtained from many 
organizations. After a data analysis, a training set of 
149 observations and a test set of 15 observations 
were obtained applying a hold-out validation and 
used in the empirical analysis. Even if the results 
revealed that there was not a method that provides 
better estimations than the others, the evolutionary 
approach performed consistently well.  

An evolutionary computation method, named 
Grammar Guided Genetic Programming (GGGP), 
was proposed by Shan et al. (2002) to fit models, 
with the aim of improving the estimation of the 
software development effort. Data of software 
projects from ISBSG database was used to build the 
estimation models using GGGP and LR. The fitness 
function was designed to minimize the Mean 
Squared Error (MSE), an initial population of 1000 
was chosen, the maximum number of generations 
was 200, and the number of executions was 5. The 
results revealed that GPPP performed better than 
Linear Regression in terms of MMRE and Pred(25). 

5 CONCLUSIONS AND FUTURE 
WORKS 

Our analysis has shown that Tabu Search can be 
effective as other widely used estimation techniques. 
The study can be seen as a starting point for further 
investigations to be carried out (possibly with other 
datasets) by taking into account several different 
configuration settings of TS. These configurations 
could be based on: 
 several  objective  functions  possibly  not   em- 
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ployed in the previous works. Indeed, such a 
choice could influence the achieved results 
(Harman, 2007), particularly when the measure 
used by the algorithm to optimise the estimates is 
the same used to evaluate the accuracy of them 
(Burgess and Lefley, 2001). Moreover, we could 
consider a multi-objective optimisation given by 
a combination of Pred(25) and MMRE. 
 other operators and moves to better explore the 
solution space. 

We will also replicate the study employing data 
from other companies in order to mitigate possible 
external validity threats (Briand and Wust, 2001).  
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