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Abstract: The wind climate measured in a point is usually described as the result of a regional wind climate forced by 
local effects derived from topography, roughness and obstacles in the surrounding area. This paper presents 
a method that allows to use fuzzy logic to generate the local wind conditions caused by these geographic 
elements. The fuzzy systems proposed in this work are specifically designed to modify a regional wind 
frequency rose attending to the terrain slopes in each direction. In order to optimize these fuzzy systems, 
Genetic Algorithms will act improving an initial population and, eventually, selecting the one which 
produce the best aproximation to the real measurements. 

1 INTRODUCTION 

The knowledge of the wind resources available in a 
selected area is fundamental to evaluate the possible 
installation of wind turbines destinied to produce 
electrical energy. The models used in these 
evaluations needs high requirements to work and 
vagueness in terrain descriptions or errors in 
measurements affect considerably the reliability of 
the simulation. Hence the majority of information 
registered in a studied area, from stations destinied 
to agriculture, fire detection or pollution, will be 
rejected to be used in these estimations because of 
their low quality.  A fuzzy wind model could be able 
to use all these excluded data reducing the 
requirements (and therefore the time and the costs) 
of the wind resource prospections.  

The most of the numerous works that describe a 
mesoscalar wind potential evaluation in different 
areas of the world summarize the wind measured at 
the stations giving a general view of the wind 
conditions (Boehme, 2008). When a higher 
reliability is needed,  the study is normally based on 
Computational Fluid Dynamics (CFD) (Palma, 
2008) (Gastón, 2008) . CFD solves the fluid 
mechanic equations over a terrain with high 
computational cost (especially in this scale), and 
losing certainity when complex geography and 
chaotic dynamic arises. So, these estimations are 
slow and expensive. 
Fuzzy Logic, Artificial Neural Networks and other 
adaptative tools are statistical structures able to work 

with low requirements and high tolerance to possible 
errors (Gutiérrez, 2006). Thus, using these 
techniques in the wind resource assessment, the data 
quality could be replaced with data quantity and the 
deterministic prediction with a probabilistic one, 
more inline with the atmospheric dynamic (Louka, 
2008) (Cellura, 2008). 

In this paper, Genetic Fuzzy Learning will be 
used to develope a fuzzy system able to transform a 
regional wind climate into a local one attending to 
basic aspects of the surrounding topography. 

2 AREA AND WINDDATA 

To illustrate this paper, measurements from a net of 
meteorological stations have been acquired. These 
stations are focused on agricultural parameters, so 
their locations and instruments are not optimized to 
the wind resource estimation. As it is shown in 
figure 2, the selected station is located at Jimena 
(Andalucia, Spain), inmersed in a complex terrain. 
The other three neighbor stations, with similar 
characteristics, have been collected to build a 
regional wind climate. 

3 REGIONAL WIND CLIMATE 

The regional wind climate, which will be forced by 
the terrain conditions, is generated as a linear 
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combination of real data registered at the stations 
around Jimena. This combination is based in 
interpolation functions for geostatistics variables 
(defined by G. Matheron (1963)), and its application 
to Atmospheric Sciences suggested by Thiebaux and 
Pedder (Thiebaux, 1987). Zekay Sen (Sen, 1998) 
have used these works to calculate the monthly 
mean wind speed in different areas in Turkye 
obtaining good results.  

In this paper these techniques are used to 
generate a wind frequency rose calculating wind 
vectors in a point (vjimena) as linear combination of 
real wind vectors recorded at the three stations 
mentioned before (v1, v2, v3): 
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The coefficients ai are normalized and indicate the 
contribution of each station to the final result. This 
coefficients will be calculated using studied 
geostatistic weighting functions and normalizing: 
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Where ri represents the distance between Jimena and 
the ith station, and W(ri) is the weight function 
which adopts this form (Thiebaux and Pedder): 
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The parameter α can be changed in order to 
modulate the distribution, and R is the radius of 
action beyond that the evaluated point does not 
contribute. The values of  this paramaters (R=50 
Km, α=2) have been selected according with 
(Agüera, 2009). In this last work, it is possible to 
find detailed information of the interpolation system 
used here. 

The result of this process is a temporal serie of 
wind vectors created with real information of the 
area. This serie can be analyzed in order to test the 
accuracy of the prediction. In figure 1 the real wind 
frequency rose at Jimena is compared with the rose 
of the regional wind climate generated by linear 
combinations of data from stations of the area.  

As it is possible to see, the regional wind rose 
builded with this method gives an important 
aproximation of the real wind measured at the 
meteorological station of Jimena. But, in spite of this 
general similarity, there is an important difference 
when the expected incoming direction is E and the  
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Figure 1: Real and Regional wind frequency roses. 

station measures SE. This is due to the linear 
interpolation predicts a theoretical wind whithout 
information of topography, roughness, obstacles, etc. 
However, the wind measured in a point is affected 
by local conditions and these effects may be 
evaluated in order to get a better prediction. So 
fuzzy systems will be used to transform the regional 
wind distribution into the real one evaluating relief  
parameters. To achieve this objective, the 
geographical information must be processed and 
inserted in a matrix builded as it is shown in the 
following section. 

4 TERRAIN 

In figure 2 is represented the process through which 
an altimetric map image is transformed in the matrix 
used as terrain input in this model. In the altimetric 
image each colour is associated to a height above sea 
level. Then, reading the RGB components of each 
pixel, a height matrix of the area can be  created and 
represented (figure 2a).  

The wind measured in a point could be defined 
as a vector whith module and direction equal to wind 
speed and wind direction.  Hence, the simmetry of 
this problem is radial and input arguments should be 
expressed in polar coordinates.  

Figure 2b shows the mean heights of the digitized 
area, fractioned in sectors (Mij) depending on the 
polar coordinates relatives to the central point 
(Jimena).  
Each Mij is obtained as the mean height of the n 
pixels inside the ij-sector (1): 
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Figure 2: Area of Jimena and transformations to obtain the model terrain input from a map image. 
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Figure 3: Possible description of the input and output domains using the proposed fuzzy sets. 

The matrix M, composed of Mij, is represented  in 
Figure 2c. As it is shown in the graphic explanation 
below, each column contains information of one 
direction. So a turn in the wind direction will be 
interpreted as a displacement in x-axis. M gives an 
usefull representation of the physical geography 
around the calculation point, adapted to the 
simmetry of the problem, and it is easily applied as 
input of fuzzy systems. 

5 GENETIC FUZZY SYSTEM 

The fuzzy system used in this problem pretends to 
connect the local wind conditions with terrain 
characteristics of the area. The vagueness in the 
terrain description in this scale, the quality of data 
recorded at the used stations, and the chaotic 
dynamics inherent to atmospheric events demand a 
fuzzy treatment of these elements. The proposed 
system will calculate the probability of possible 
changes in the direction of the wind analyzing the 
terrain in those directions. In order to simplify the 
problem only two inputs parameters will be 
proposed: the terrain will be described considering 
the “slope” and the wind behavior will be represented 
by a “deviation” in the incoming direction. In the 
same way, the output parameter will be represented 

by “probability”. References (Zadeh, 1997) 
(Sanchez, 1997) are fundamental bibliography to 
understand and study in depth the concepts used in 
this section. 

5.1 Fuzzy Sets 

Fuzzy Logic is based on the fuzzification of crisp 
variables obtaining fuzzy sets, so linguistic terms are 
generally used to build the new description. Each 
fuzzy set is defined in a domain and it is 
characterized by a membership function with values 
between 0 and 1 which indicates de degree of 
membership of an element to the concerned fuzzy 
set. For example, a fuzzyfication of the parameter 
“slope”, defined as the difference of heights between 
two relief elements in the range [-500m, 500m], 
could be done using these fuzzy sets [down, plain, 
up].  So the parameter “slope” could be fuzzyficated 
as it is shown in Figure 3.  

In this figure is also represented a possible election of 
fuzzy sets for the parameter “deviation” ,[low, 
medium, high], defined between 0 and 22.5 degrees. 
“Probability”, whith range [0, 1] will be divided with 
three sets [low, medium, high]. 
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5.2 Fuzzy Rules 

Using these fuzzy sets it is possible to to build “IF-
THEN” rules connecting the inputs with the output 
generating a knowledge base. For example: IF 
“deviation” is high and “slope” is up THEN 
“probability” is low. 

Now it is possible to map crisp input values into 
output ones by using the processes of fuzzyfication, 
fuzzy inference and defuzzyfication. So, the fuzzy 
systems used in this work can be represented as 
follow: 

),( dsfuzzp =  (5) 
Where s and d are the input values, p is the output 
and fuzz represents the processes of fuzzyfication and 
inference. 

5.3 Genetic Algorithm 

The membership functions, and fuzzy rules could be 
defined and adjusted by a human expert or founded 
using adaptatives tools. In this paper we will try to 
optimize the fuzzy system with Genetic Algorithms 
(GA).  

So, we must encode the fuzzy system characteristics 
into a string of values which will be considered a 
genome of this system. Mutation and Crossover 
operators can act on these strings generating new 
fuzzy systems; and a selection operator can select 
individuals according to the values obtained from a 
fitness function or objective. The action of these 
operators brings an iterative process through which 
an initial population of fuzzy systems could be 
improved in order to obtain the best fitness value. We 
have chosen 22 parameters (genes) to characterize 
each fuzzy system. Eight of them are relationed with 
the position and shape of the memberships functions; 
so, they are continous. The other ones are discrete 
variables used to build the fuzzy rules of the system 
(Table 1). 

5.4 Fitness Function 

The prove suggested to rank the fuzzy systems 
involves the modification of the regional frequency 
rose by interaction with M, the matrix which contains 
the processed information of the map (Figure 4 c). 
This correction of the regional rose will be done 
using an iterative process which simulates the wind 
flowing over the matrix M from the bottom up. In 
each step the fuzzy system has to distribute the wind 
frequency in a selected direction (F) over the five 
upper elements attending to the slopes and possible 
deviations as figure 4 shows. The iteration of this 

Table 1: Genes. 

Gen Values Parameter 
1 [0, 1] Width Slope / down 
2 [0, 1] Width Slope / plain 
3 [0, 1] Width Slope / up 
4 [0, 1] Position Slope / down 
5 [0, 1] Position Slope / plain 
6 [0, 1] Position Slope / up 
7 [0, 1] Width Deviation / low-medium-high 
8 [0, 1] Width Probability / low 
9 [0, 1] Width Probability / medium 
10 [0, 1] Width Probability / high 
11 0, 1, 2 Fuzzy rule 1 / input 1 
12 0, 1, 2 Fuzzy rule 2 / input 1 
13 0, 1, 2 Fuzzy rule 3 / input 1 
14 0, 1, 2 Fuzzy rule 4 / input 1 
15 0, 1, 2 Fuzzy rule 1 / input 2 
16 0, 1, 2 Fuzzy rule 2 / input 2 
17 0, 1, 2 Fuzzy rule 3 / input 2 
18 0, 1, 2 Fuzzy rule 4 / input 2 
19 0, 1, 2 Fuzzy rule 1 / output 1 
20 0, 1, 2 Fuzzy rule 2 / output 1 
21 0, 1, 2 Fuzzy rule 3 / output 1 
22 0, 1, 2 Fuzzy rule 4 / output 1 

 
process generates diagrams, like the one shown in 
figure 7, where probabilistic trajectories induced by 
the fuzzy system are represented, and the output 
distribution could be considered a corrected rose 
obtained from the regional one after the interaction 
with the topographic elements. 

 
Figure 4: Corrections of directions using the fuzzy system, 
where “Inc” indicates the incoming direction, si and pi the 
slope and probability in each direction. The  deviations 
affect the five upper elements because, according to the 
fuzzy sets defined before, deviations are limited to 22.5º, 
and consecutive elements in a row represent deviations of 
11.25º.
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Figure 7: Optimized Fuzzy Sets. 

Once the corrected rose is obtained, it will be 
compared with the real one evaluating the mean 
absolute error (MAE) in each direction: 
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Where FR represents the real frequencies measured 
at Jimena, FS the simulated ones and j is a parameter 
that covers the 16 sectors of the roses.  MAE value 
will be used as a fitness value to rank the fuzzy 
systems. 
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Figure 5: Real, Regional and corrected roses. 

6 RESULTS 

After the action of Genetic Algorithms, an optimized 
fuzzy system have been obtained. The correction of 
the probability distribution given by this fuzzy 
system is shown in figure 5. The MAE value 
obtained with this distribution is 2.35% that improve 
the 4.29% associated to the regional rose. As it was 
expected, the probabilistic trajectories simulated by 
the trained fuzzy system (Figure 6) describe a strong  
modification in the winds from E displaced to the S, 
in opposition to the ones from the W which are 
smoothly modified. These corrections are derived 
from the action of fuzzy rules and fuzzy sets 
summarized in table 2 and figure 8. 

N E S W
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Figure 6: Density of trajectories. 

Table 2: Fuzzy Rules. 

IF 

Slope Deviation 

THEN 

Probability 
Plain Medium Medium 
Up Medium Low 
Down High Low 
Plain High Low 

The inference surface builded with this information 
is showed in figure 8, where slope and deviation are 
connected to the output (probability, gray scale). The 
fuzzy system associates the highest probability to 
medium deviations when the slope is smoothly 
negative. Turns higher than 20º and positive and 
strongly negative slopes are not favored. Another 
minor effect observed is that wind tolerates a wider 
range of slopes while flowing in the same direction, 
that is, deviation 0º. 
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Figure 8: Inference surface. 
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7 CONCLUSIONS AND FUTURE 
WORK 

The fundamental conclusion of this work is that the 
described process presents a way to train fuzzy 
systems in wind parameters downscaling. It is 
clearly visible the improvement of the obtained wind 
frequency distribution with regard to the regional 
one. This fact implies that the optimized fuzzy 
system contains information about how to correct 
the wind direction over Jimena using the terrain 
slopes. This acquired knowledge is the best 
statistical solution founded through Genetic Fuzzy 
Learning according to the variables and conditions 
imposed to solve this particular problem in this 
location. But the ultimate objective of this technique 
should be the development of a generalized fuzzy 
system able to work in many enviroments and 
expanded to correct the wind speed, the most 
important variable in wind resource evaluation. In 
order to get the best agreement, this system should 
evaluate more terrain characteristics as roughness, 
heights and distances from obstacles to the target 
point, topographic complexity, etc. Despite this 
parameter inclusion, this new extended problem is 
essentially similar to the one described in this paper. 
The differences are related to the number of inputs 
and outputs of the fuzzy system and the number and 
characteristics of the terrains used in the training 
process.  

Since fuzzy logic is able to work with vague data, an 
interesting application of this technique lies in 
training fuzzy systems to work with low quality 
stations. In fact, the stations used in this study can be 
considered poor, because wind vanes and 
anemometers are placed at 2 meters above ground 
level and reported data could be affected by 
obstacles and roughness. Another problem is that the 
frequency of the provided mean wind speed and 
direction is daily, far from the recommended ten-
minutes interval. In opposition to these 
inconvenients, the use of this information allows to 
acquire easily a considerable quantity of long term 
time series of real measurements of the area. So, 
once this general fuzzy system is obtained, the 
duration and requirements of the wind resource 
evaluation of large areas could be strongly reduced. 

Finally, the technique exposed could be also applied 
to all that processes in which wind and terrain are 
closely relationed as fire propagation or erosion. 
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