
INTEGRATION OF REPOSITORIES IN ELEARNING SYSTEMS

José Paulo Leal1 and Ricardo Queirós2
1CRACS/INESC & DCC/FCUP, University of Porto, Porto, Portugal

2CRACS/INESC & DI/ESEIG/IPP, Porto, Portugal

Keywords: eLearning, Repositories, Learning Objects, LMS, Interoperability.

Abstract: The wide acceptance of digital repositories today in the eLearning field raises several interoperability issues.
In this paper we present the interoperability features of a service oriented repository of learning objects
called crimsonHex. These features are compliant with the existing standards and we propose extensions to
the IMS interoperability recommendation, adding new functions, formalizing message interchange and
providing also a REST interface. To validate the proposed extensions and its implementation in crimsonHex
we developed a repository plugin for Moodle 2.0 that is expected to be included in the next release of this
popular learning management system.

1 INTRODUCTION

In recent years several initiatives to integrate
eLearning systems have emerged. The goal of these
initiatives, such as specifications and frameworks, is
to facilitate the integration between heterogeneous
systems. Learning objects (LO) are the corner stone
of interoperability in pedagogical eLearning
systems, thus the integration of repositories of LOs
is particular important in this context.

This paper builds upon previous work (Leal,
2009) on the design and implementation of
crimsonHex - a service oriented repository of LOs.
The repository provides standard compliant
repository services to a broad range of eLearning
systems, exposing its functions using two alternative
web services flavours. In this paper we highlight the
interoperability features of crimsonHex. For sake of
standard compliance these features are based on IMS
Digital Repositories Interoperability (DRI)
specification (DRI, 2003). Our experience in using
these recommendations lead us to propose
extensions to its set of functions and to the XML
binding that currently lacks a formal definition. To
evaluate the proposed extensions to the IMS DRI
specification and its implementation in the
crimsonHex repository, we developed a crimsonHex
plugin for the 2.0 release of the popular Moodle
LMS. Moodle 2.0 users will be able to download
LOs from crimsonHex repositories since this LMS is
expected to include the plugin described in this pa-

per in its distribution.
The remainder of this paper is organized as

follows: Section 2 traces the evolution of eLearning
systems with emphasis on the existing repositories.
In the following section we introduce the
crimsonHex repository and its application interfaces.
Then, we provide basic implementation details of a
crimsonHex plugin for Moodle 2.0 using the
proposed IMS DRI extensions. Finally, we conclude
with a summary of the main contributions of this
work and a perspective of future research.

2 LEARNING OBJECTS
REPOSITORIES

A learning object is a digital, self-contained,
reusable unit to support learning (Beck, 2008). A
learning object can be as small as a single image or
as large as a complete online course and usually
comes in the form of HTML/PDF files, Flash,
QuickTime movies and others (Casey, 2007).
Usually, they are described with standard metadata,
packaged and stored in digital repositories to be
easily searchable. The need for this kind of
repositories is growing as more educators are eager
to (re)use digital educational contents and more of it
is available.

A repository of LOs can be defined as a ‘system
that stores electronic objects and meta-data about
those objects’ (Holden, 2004). There are several

127Leal J. and Queirós R. (2010).
INTEGRATION OF REPOSITORIES IN ELEARNING SYSTEMS.
In Proceedings of the 12th International Conference on Enterprise Information Systems - Databases and Information Systems Integration, pages
127-132
DOI: 10.5220/0002875001270132
Copyright c© SciTePress

online repositories or collections of LOs worldwide
(e.g. MERLOT, Wisc-Online). The Jorum Team
made a comprehensive survey (JORUM, 2006) of
the existing repositories and noticed that most of
these systems do not store actual LOs. They just
store metadata describing LOs, including pointers to
their locations on the Web, and sometimes these
pointers are dangling.

The repositories usually offer several features
including upload/download, single/federated search,
comment/review and collection management.
Despite these features, existent repositories present
integration and interoperability issues. For example,
the LOs in the previously cited repositories must be
manually imported into an LMS. An evaluation
engine (EE) cannot query the repository and
automatically import the LOs it needs. In summary,
most of the current repositories are specialized
search engines of LOs and not adequate for
interoperating with other eLearning systems, such as
an automatic evaluation engine.

Surveys (Holden, 2004) show that users are very
concerned with interoperability issues. Some major
interoperability efforts (Hatala, 2004) were made in
eLearning, such as NSDL, POOL, EduSource and
IMS DRI. The IMS DRI specification was created
by the IMS Global Learning Consortium (IMS GLC)
and provides a functional architecture and reference
model for repository interoperability. The IMS DRI
provides recommendations for common repository
functions, namely the submission, search and
download of LOs. It recommends the use of web
services to expose the repository functions based on
the Simple Object Access Protocol (SOAP, 2007).

3 CRIMSONHEX REPOSITORY

In this section we introduce the crimsonHex
repository and we present its application interface
(API) used both internally and externally. Internally
the API links the main components of the repository.
Externally the API exposes the functions of the
repository to third party systems. To promote the
integration with other eLearning systems, the API of
the repository adheres to the IMS DRI specification.
The IMS DRI specifies a set of core functions and
an XML binding for these functions. In the
definition of API of crimsonHex we needed to create
new functions and to extend the XML binding with a
Response Specification language. The complete set
of functions of the API and the extension to the
XML binding are both detailed in this section.

3.1 Architecture

The architecture of the crimsonHex repository relies
on an API where the repository exposes a set of
functions implemented by a core component that
was designed for efficiency and reliability. All other
features are relegated to auxiliary components,
connected to the central component using this API.
Other eLearning systems can be plugged into the
repository using also this API. Thus, the architecture
of crimsonHex repository is based on the Core
component that exposes the main features of the
repository, both to external services, such as the
LMS and the EE, and to internal components - the
Web Manager and the Importer. In the remainder we
focus on the Core component, more precisely, its
API and we introduce a new language for message
interchange.

3.2 Applications Interface

The IMS DRI recommends exposing the functions
as SOAP web services. Although not explicitly
recommended, other web service interfaces may be
used, such as the Representational State Transfer
(REST) (Fielding, 2000). We chose to expose the
repository functions in these two distinct flavours.
SOAP web services are usually action oriented,
especially when used in Remote Procedure Call
(RPC) mode and implemented by an off-the-shelf
SOAP engine such as Axis. REST web services are
object (resource) oriented and implemented directly
over the HTTP protocol, mostly to put and get
resources. The reason to provide two distinct web
service flavours is to encourage the use of the
repository by developers with different
interoperability requirements. A system requiring a
formal an explicit definition of the API in Web
Services Description Language, to use automated
tools to create stubs, will select the SOAP flavour. A
lightweight system seeking a small memory
footprint at the expense of a less formal definition of
the API will select the REST flavour. The repository
functions exposed by the Core are summarized in
Table 1.
Each function is associated with the corresponding
operations in both SOAP and REST. The lines
formatted in italics correspond to the new functions
added to the DRI specification, to improve the
repository communication with other eLearning
systems.
To describe the responses generated by the
repository we defined a Response Specification as a
new XML document type formalized in XML Sche-

ICEIS 2010 - 12th International Conference on Enterprise Information Systems

128

Table 1: Core functions of the repository.

Function SOAP REST
Reserve XML getNextId(URL colectionl) GET URL?nextId > URL
Submit XML submit(URL loid, LO lo) PUT URL < LO
Request LO retrieve(URL loid) GET URL > LO
Search XML search(XQuery query) POST URL < XQUERY > XML

GET URL?name1=value1&…> XML
Alert RSS getUpdates() GET URL?alert+seconds > RSS
Report XML Report(URL loid,Report rp) PUT URL < LOREPORT
Create XML Create(URL collection) PUT URL
Remove XML Remove(URL collection) DELETE URL
Status XML getStatus() GET URL?status > XML

ma. The advantage of this approach is to enable
client systems to achieve more information from the
server and be able to standardize the parsing and
validation of the HTTP responses. Figure 1 depicts
the elements of the new language and their types.

The schema defines two top level elements:
result and rss. The former will be used by all the
functions except the Alert function that returns a
feed compliant with the Really Simple Syndication
(RSS) 2.0 specification. The result element
contains the following child components:

 base-url attribute, defining a base URL for
the relative URLs in the response;

 request element, containing the full request
URL and an human readable request message;

 error element, containing an error message -
client systems will search for this element to verify
the existence of errors;

 response element, describing a successful
execution of the function - it’s composed by an
human readable response message and, for some
functions, by a resources element that groups a set
of resources defined individually in resource
elements.

A resource element contains an identification
of the collection absolute path (attribute idCol) and
an identification of the LO itself (attribute idLo).

In the remainder of this section we enumerate the
Core functions of the repository, describing both the
request and response data. For sake of simplicity we
illustrate the requests using the REST interface since
these can be used as command lines in a Linux
system shell.

The Register/Reserve function requests a unique
ID from the repository. We separated this function
from Submit/Store in order to allow the inclusion of
the ID in the meta-data of the LO itself. This ID is
an URL that must be used for submitting or
retrieving an LO. The producer may use this URL as
an ID with the guarantee of its uniqueness and with

the advantage of being a network location from
where the LO can be downloaded.

This action is performed by sending a GET
HTTP request to the server, as in the next example.

GET http://server/ch/lo?nextId > URL

The HTTP response includes an XML file
complying with the Response Specification and
containing all the details of the response generated
by the Core. Nevertheless, in this particular function
and for convenience of programmers using REST,
the HTTP Location header contains the URL
returned by the server.

Location: http://server/ch/lo/3

The Submit/Store function uploads an LO to a
repository and makes it available for future access.
This operation receives as argument an IMS CP
compliant file and an URL generated by the Reserve
function. This operation validates the LO conformity
to the IMS Package Conformance and stores the LO
in the internal database. To send the LO to the server
we could use, in the REST flavour, the PUT or the
POST HTTP methods. An example using the POST
syntax is the following.

POST http://server/ch/lo/3 < LO

The repository responds with submission status
data compliant with the Response Specification.

The Search/Expose function enables the eLearning
systems to query the repository using the XQuery
language, as recommended by the IMS DRI. This
approach gives more flexibility to the client systems
to perform any queries supported by the repository's
data. To write queries in XQuery the programmers
of the client systems need to know the repository's
database schema. These queries are based on both
the LO manifest and its usage reports, and can
combine the two document types.

INTEGRATION OF REPOSITORIES IN ELEARNING SYSTEMS

129

Figure 1: Response specification schema.

The client developer needs also to know that the
database is structured in collections. A collection is a
kind of a folder containing several resources and
sub-folders. From the XQuery point of view the
database is a collection of manifest files. For each
manifest file there is a nested collection containing
the usage reports. As an example of a simple search,
suppose you want to find all the titles of LOs in the
root collection whose author is Manzoor. The
XQuery file would contain the data.

declare namespace imsmd = “http://...”;
for $p in //imsmd:lom
where contains($p//imsmd:author,’Manzoor’)
return $p//imsmd:title//text()

After creating the XQuery file you can use the
following POST request.

POST http://server/ch/lo < XQUERY

Alternatively, you can use a GET request with
the searched fields and respective values as part of
the URL query string, as in the following example.

GET http://server/ch/lo?author=Manzoor

Queries using the GET method are convenient
for simple cases but for complex queries the
programmer must resort to the use of XQuery and
the POST method. In both approaches the result is a
valid XML document such as the following.

<result base-url="http://server/ch/lo/">
 <request
 source="http://server/ch/lo/"
 message="Querying repository" />
 <response message="3 LOs found...">

<resources>
 <resource idCol="" idLo="5">
 Hashmat the Brave Warrior
 </resource>
 <resource idCol="" idLo="123">

 Summation of Four Primes
</resource>

 <resource idCol="graphs/" idLo="2">
 InCircle
</resource>

</resources>
 </response>
</result>

The Report/Store function associates a usage
report to an existing LO. This function is invoked by
the LMS to submit a final report, summarizing the
use of an LO by a single student. This report
includes both general data on the student's attempt to
solve the programming exercise (e.g. data, number
of evaluations, success) and particular data on the
student’s characteristics (e.g. gender, age,
instructional level). With this data, the LMS will be
able to dynamically generate presentation orders
based on previous uses of LO, instead of fixed
presentation orders. This function is an extension of
the IMS DRI.

The Alert/Expose function notifies users of
changes in the state of the repository using a RSS
feed. With this option a user can have up-to-date
information through a feed reader. Next, we present
an example of a GET HTTP request.

GET http://server/ch/lo?alert+seconds > RSS

The repository responds with an RSS document.
The Create function adds new collections to the

repository. To invoke this function in the REST
interface the programmer must use the PUT request
method of HTTP. The only parameter is the URL of
the collection.

PUT http://server/ch/lo/newCol

The following is an example of the repository
response to a create function.

<result base-url="http://server/ch/lo/" ...>
 <request
 source="http://server/ch/lo/newCol"
 message="Creating new collection" />
 <response message="Collection created">

 <resource idCol="newCol" idLo=""/>
 </response>
</result>

ICEIS 2010 - 12th International Conference on Enterprise Information Systems

130

The Remove function removes an existent
collection or learning object. This function uses the
DELETE request method of HTTP. The only
parameter is an URL identifying the collection or
LO, as in the following example.

DELETE http://server/ch/lo/123

The following is an example of the repository
response to a remove function.

<result base-url="http://server/ch/lo/" ...>
 <request
 source="http://server/ch/lo/123"
 message="Deleting a LO" />
 <response message="LO deleted">

 <resource idCol="" idLo="123" />
 </response>
</result>

The Status function returns a general status of the
repository, including versions of the components,
their capabilities and statistics. This function uses
the GET request method of HTTP, as in the
following example.

GET http://server/ch/lo?status

The repository responds with status data
compliant with the Response Schema Specification.

4 INTEGRATION WITH
MOODLE

To validate the interoperability features of the
crimsonHex repository we integrated it with
Moodle, arguably the most popular LMS nowadays.
In this section we present the new APIs for Moodle
2.0 plugins and we provide basic implementation
details of a plugin for crimsonHex repositories.

The development of this plugin was
straightforward. In terms of programming effort we
spent half a day to produce approximately 100 new
lines of code. This quick and simple integration
benefited from the new interoperability features of
the repository.

The beta version of Moodle 2.0 is due in
February 2010 and will include support for different
types of repositories. Several API are already
available to enable the development of plugins by
third parties, including:
File API for managing internal repositories;

Repository API for browsing and retrieving files
from external repositories;

Portfolio API for exporting Moodle content to
external repositories.

We chose the Repository API for testing the
integration features of the crimsonHex repository in
Moodle. The goal of this particular API is to support
the development of plugins to import content from
external repositories. The Repository API is
organized in two parts: Administration, for
administrators to configure their repositories, and;
File picker, for teachers to interact with the available
repositories. Each with its own graphical user
interface (GUI). In Figure 2 we present the file
picker GUI of the crimsonHex plugin. On the left
panel are listed the available repositories as defined
by the administrator. Two crimsonHex repository
instances are marked with label 1. Label 2 marks the
default listing of the selected repository. Pressing the
“Preview” link marked with 3 presents a preview of
the respective LO. Pressing the “Search” link pops-
up a simple search form, marked as 4 in Figure 2.
For federated search in all available crimsonHex
repositories is used the text box marked as 5.











Figure 2: crimsonHex plugin interface.

5 CONCLUSIONS AND FUTURE
WORK

In this paper we present the interoperability features
of crimsonHex - a repository of learning objects.
These features were designed based on the IMS
Digital Repository Interoperability and we propose
several extensions to this specification. These
extensions include new functions and a formal
definition of a response specification for the
complete function set. To evaluate the proposed
extensions we implemented a plugin for 2.0 release

INTEGRATION OF REPOSITORIES IN ELEARNING SYSTEMS

131

of Moodle that uses the new interoperability features
of crimsonHex.

The main contributions of this work are the
proposed extensions to the IMS DRI specification,
the improved interoperability features and a plugin
to be included in the Moodle 2.0 distribution. The
improved interoperability of crimsonHex is expected
to support the development of new eLearning tools
requiring greater interoperability with repositories.
The repository plugin will facilitate the use of
crimsonHex by Moodle users. In its current status
crimsonHex is available for test and download at the
site of the project (crimsonHex, 2009).

Adding authoring features to the crimsonHex is
the next step in this research. Creating LOs with
metadata of good quality is a challenge since the
typical author of eLearning content usually lacks the
knowledge of metadata standards. This is also an
interoperability issue since the LMS is where
eLearning content is tested and used in first place
but repositories are the appropriate place to promote
content reuse as LOs. We plan to continue using
Moodle's repository APIs for that purpose, in
particular the Portfolio API. A plugin using this API
will enable the content author to upload learning
content to crimsonHex and create a new LO with the
essential metadata. Them, using the authoring
features of crimsonHex, the content author will be
assisted in refining the LO metadata.

REFERENCES

Leal, J. P., Queirós, R., 2009. CrimsonHex: a Service
Oriented Repository of Specialised Learning Objects.
In: ICEIS 2009: 11th International Conference on
Enterprise Information Systems, Milan.

IMS DRI - IMS Digital Repositories Interoperability,
2003. Core Functions Information Model, URL:
http://www.imsglobal.org/digitalrepositories.

Beck, Robert J., 2008. What Are Learning Objects?
Learning Objects, Center for International Education,
University of Wisconsin-Milwaukee.

Casey, J., McAlpine, M., 2007. Writing and Using
Reusable Educational Materials - A Beginners Guide.
CETIS Educational Content Special Interest Group.
URL: http://zope.cetis.ac.uk/educational-content/.

Holden, C., 2004. What We Mean When We Say
“Repositories” User Expectations of Repository
Systems. In: Academic ADL Co-Lab.

JORUM team, 2006. E-Learning Repository Systems
Research Watch. Technical report.

Hatala, M., Richards, G., Eap, T., Willms, J., 2004. The
EduSource Communication Language: Implementing
Open Network for Learning Repositories and Services.
In: ACM symposium on Applied computing.

SOAP (Simple Object Access Protocol), Version 1.2,
2007. Part 0: Primer, 2nd edition. URL:
http://www.w3.org/TR/2007/REC-soap12-part0-
20070427/.

Fielding, R., 2000. Architectural Styles and the Design of
Network-based Software Architectures, Phd
dissertation. URL: http://www.ics.uci.edu/~fielding
/pubs/dissertation/rest_arch_style.htm.

crimsonHex – project web site, 2009. URL:
http://www.dcc.fc.up.pt/crimsonHex.

ICEIS 2010 - 12th International Conference on Enterprise Information Systems

132

