
EXTENDING LEGACY AGENT KNOWLEDGE BASE SYSTEMS
WITH SEMANTIC WEB COMPATIBILITIES

Po-Chun Chen, Guruprasad Airy, Prasenjit Mitra and John Yen
College of Information Sciences and Technology, The Pennsylvania State University, University Park, PA, U.S.A.

Keywords: Knowledge base, Rule-based system, Semantic web, Agent.

Abstract: Knowledge bases with inference capabilities play a significant role in an intelligent agent system. Towards
the vision of the semantic Web, the compatibility of knowledge representation is critically important. How-
ever, a legacy system that was developed without this consideration would have compatibility gaps between
its own knowledge representation and the semantic Web standards. In order to solve this problem, we present
a systematical approach to extend a legacy agent knowledge base to be able to handle and reason informa-
tion encoded in standard semantic Web languages. The algorithms presented in this paper are applicable to
compatible rule-based systems, and the methodology can be applied to other knowledge systems.

1 INTRODUCTION

Knowledge base systems with inference capabilities
have been developed for decades. This kind of knowl-
edge bases plays an important role as the “brain” of an
intelligent agent system and is being widely leveraged
in many decision support systems and other kinds of
enterprise applications. These existing systems usu-
ally contain well-defined knowledge in terms of sets
of rules that are developed and tested by knowledge
engineers cooperating with domain experts. Each rule
set is theoretically well-defined and sophisticated for
the tasks it is designed to handle. However, due to
the domain expertise-driven development process and
potentially complex nature of rule-based systems, it
is usually challenging to make major revision to an
existing rule set. Moreover, it is even more difficult
to migrate an existing rule set to another knowledge
base system.

Just like other information systems, legacy knowl-
edge base systems are also subject to being left be-
hind as the world moves on. As the progress of re-
search in the semantic Web, efforts in standardiza-
tion of knowledge representation have made impor-
tant steps toward the goal of the vision. The approach
of using description logics to model concepts and re-
lationships had been well recognized and led to se-
mantic Web standards such as OWL (Web Ontology
Language), OWL 2, SWRL (Semantic Web Rule Lan-
guage), and RIF (Rule Interchange Format).

In order to process knowledge encoded in the se-

mantic Web languages, there have been efforts and
accomplishments in how to implement those seman-
tics in rule-based systems (Meditskos and Bassili-
ades, 2008). In addition, the interoperability between
SWRL and other rule-based systems has also been ex-
plored (O’Connor et al., 2005). However, little liter-
ature has demonstrated the detailed procedure of how
to migrate an existing rule-based system toward the
semantic Web environment without losing its origi-
nally designed functionalities.

To bridge the gap between legacy agent knowl-
edge base systems and the semantic Web standards,
we proposed an approach to extend existing knowl-
edge base systems with semantic Web compatibility
by facilitating knowledge exchangeability. With this
extension, any standard-conformed knowledge engi-
neering toolkit, ontology/rule editor, or other devel-
opment tool can be used to work with the legacy sys-
tem. Consequently, a wide range of supporting tools
and possible extensions to the existing system become
applicable and achievable, which also implies that the
legacy system can benefit from the improved knowl-
edge exchangeability.

2 TOWARDS SEMANTIC WEB
COMPATIBILITIES

Figure 1 illustrates the framework of how a legacy
knowledge base system can be extended with seman-

131
Chen P., Airy G., Mitra P. and Yen J. (2010).
EXTENDING LEGACY AGENT KNOWLEDGE BASE SYSTEMS WITH SEMANTIC WEB COMPATIBILITIES.
In Proceedings of the 12th International Conference on Enterprise Information Systems - Software Agents and Internet Computing, pages 131-134
DOI: 10.5220/0002868301310134
Copyright c© SciTePress

tic Web compatibilities. We assume there is a knowl-
edge base embedded in the agent, and the knowledge
is persistent in its legacy format. In order to be ex-
changeable with other semantic Web-compatible sys-
tems such as third-party editing tools, the knowledge
in legacy formats needs to be translated into repre-
sentations in semantic Web standards. The two core
components in this framework are 1) a translator for
converting knowledge in legacy formats into seman-
tic Web standards such as OWL and SWRL; and 2)
another translator’ that converts knowledge in the re-
verse direction. The two translators bridge the knowl-
edge representation gap between the legacy system
and semantic Web standards. The detailed design and
implementation of these two translators are assumed
to be system-specific and depend on the semantic Web
languages being used and the format of knowledge
representation of the legacy knowledge base system.

Knowledge Base
Inference Algorithms

Knowledge in Legacy Format

Knowledge in Semantic Web

Standards (OWL, SWRL, etc.)

Translator Translator’

Knowledge

Base

3rd Party

Editor 3rd Party

Editor 3rd Party

Editor

Agent

Figure 1: The framework.

In this paper, we will use the R-CAST multi-agent
system (Yen et al., 2006) as the subject to develop an
instance of this framework. The R-CAST system is a
multi-agent system that includes a forward-chaining
rule knowledge base called ”R-CAST knowledge
base” as its core/brain in each individual agent in-
stance. The specification of the R-CAST knowledge
base will be introduced next, followed by the detail of
how knowledge is translated between its legacy for-
mats and semantic Web standards.

2.1 The Legacy Knowledge Base System

The R-CAST knowledge base is a forward-chaining
rule-based system, which consists of elements of
FactTypes, Facts, and Rules. FactType is a decla-
ration a predicate. Based on a FactType definition, a
number of instances called Facts can be instantiated.

Definition. A FactType Pa1,..,an is an n-ary predicate
definition having a1, .., an as its arguments.

Definition. A Fact is an instantiation of a FactType
Pa1,..,an with a particular assignment Σ = {a1 = v1, ..,
an = vn}, where each of v1, .., vn is a constant value.

Below is an example FactType definition for the
predicate Person?name,?age,?gender, where each argu-
ment is denoted by a prefix question mark “?.” Two
example Facts instantiated according to the “Person”
FactType definition are listed as well.
(FactType Person (?name ?age ?gender))
(Fact Person (Alice 30 female))
(Fact Person (Bob 25 male))

A Rule is based on Horn logic and is composed of
a number of antecedents and a consequent. If all of
the antecedents are satisfied under some variable as-
signment, the rule will be fired to instantiate the con-
sequent as an ImpliedFact using the values from this
variable assignment.

Definition. A Rule R = {P,Q,X} is composed of
one or more ordered antecedents P = {P1, ..,Pn}, a
consequent Q, and a set of shared variable X = {x1,
.., xo} among P1, .., Pn, and Q. Each of P1, .., Pn,
and Q is a predicate with a particular assignment that
contains only constant values or shared variables from
X . All variables that appear in the consequent should
be bounded by being used in the antecedents. ∀xi ∈
X , (xi is used in Q)⇒ (xi is used in P). A rule is
said to be “fired” when there is an assignment Σ′ on X
that satisfies P1∩ ..∩Pn, and then a Fact of Q will be
instantiated based on this assignment Σ′.

Definition. An ImpliedFact is a Fact that is instanti-
ated due to firing a rule.

Below is an example of a rule R = {P,Q,X},
where P = {Person?var−name,?var−age,male,<?var−age,12
}, Q = Boy?var−name, X = {?var-name,?var-age}.
(Rule (Person (?var-name ?var-age male))

(< (?var-age 12))
->
(Boy (?var-name)))

The syntactic specification in Extended Backus-
Naur Form (EBNF) is outlined in Figure 2.

2.2 Translation Algorithms

2.2.1 OWL Elements and FactType/Fact

The three fundamental elements in an OWL ontol-
ogy are Classes, Properties, and Individuals. A
Property can be either a DatatypeProperty or an
Ob jectProperty associated with a Class, and Individ-
uals are the instantiations of a Class. Based on this
concept, our approach is to translate a Class with its
Properties into a FactType in the knowledge base and
Individuals of this Class into Facts of this FactType.

Due to performance consideration and inherited
restrictions of the R-CAST knowledge base, the cur-
rent design is focused on supporting knowledge rep-

ICEIS 2010 - 12th International Conference on Enterprise Information Systems

132

!"#$%&'(&)*+,&)-./01)

KBCONTENT ::= (FACTTYPE | FACT | RULE)+!

FACTTYPE ::= “(FactType ” TYPENAME ” (” PROPERTYNAME+ “))”!
FACT ::= “(Fact “ TYPENAME ” (” VALUE+ “))”!
RULE ::= “(Rule “ ANTECEDENTS ”->” CONSEQUENCE “)”!

TYPENAME ::= (character | digit)+!
PROPERTYNAME ::= “?”(character | digit)+!
VALUE ::= (character | digit)+!
ANTECEDENT ::= CONDITION+!
CONDITION ::= “(“ TYPENAME (PROPERTYNAME | VALUE)+ “)” | !
! ! ! ! “(“ FUN_PRED (PROPERTYNAME | VALUE)+ “)” !

CONSEQUENCE ::= “(“ TYPENAME (PROPERTYNAME | VALUE)+ “)”!
FUN_PRED ::= ”+” | ”-” | ”*” | ”/” | ”mod” | ”pow” |!
! ! ! ! !”=” | ”eq” | ”<” | ”<=” | ”>” | ”>=”!

Note: (...)+ Appear once or more!
! (...)? Optional element!

Figure 2: Knowledge base syntax in EBNF.

resented in OWL-Lite and SWRL rules with axioms
based on OWL-Lite. OWL-Lite is a computational
feasible sublanguage of OWL, which only supports
knowledge with cardinality being either 0 or 1.

Algorithm 1: Class/Property Definitions to FactTypes.

Require: A set of Class axioms C = {c1, ..,cm}, a set of
DatatypeProperty axioms DP = {d p1, ..,d pn}, and a
set of ObjectProperty axioms OP = {op1, ..,opo}.

1: function OWLtoFactTypes (C, DP, OP)
2: for all ci ∈C do
3: f actTypeName← the name of ci
4: Create a FactType f t named f actTypeName
5: AddPropertyToFactType (f t, “InternalID”)
6: for all {d p j|d p j ∈ DP∩d p j.domain = ci} do
7: propertyName← the name of d p j
8: AddPropertyToFactType (f t, propertyName)
9: end for

10: for all {op j|op j ∈ OP∩op j.domain = ci} do
11: propertyName← the name of op j
12: AddPropertyToFactType (f t, propertyName)
13: end for
14: end for

The algorithm for translating an OWL-Lite ontol-
ogy into knowledge base representation is shown in
Algorithm 1. Since every Class name in an OWL on-
tology is unique, each Class will be translated into
exactly one FactType. Similarly, since in an OWL
ontology every Property name is unique, each Prop-
erty will also be converted into exactly one property
within a FactType. Since each Class will be translated
into a unique FactType with its associated Properties,
the concepts in the OWL ontology will be preserved
in the legacy knowledge base.

Besides, in each of the resulting FactType, we
create an additional property named “InternalID” for
storing internally-generated identifiers of individuals
instantiated based on its corresponding Class. The In-
ternalID is used as an internal reference in the knowl-
edge base for a Fact to identify itself.

The algorithm for translating FactTypes to an
OWL-Lite ontology is illustrated in Algorithm 2.
Since the legacy system does not support cross ref-
erence from a FactType to another, every property of
a FactType is translated into a DatatypeProperty.

Algorithm 2: FactTypes to Class/Property Definitions.

Require: A set of FactType FT = { f t1, .., f tm}
1: function FactTypesToOWL (FT)
2: for all f ti ∈ FT do
3: className← the name of f ti
4: Create an OWL Class ci named className
5: Get the property list pi =< pi,1, .., pi,n > from f ti
6: for all pi,k ∈ pi do
7: propertyName← the name of pi,k
8: uniquePN← className.“ ”.propertyName
9: Make a DatatypeProperty d pi,k named uniquePN

10: (d pi,k.domain)← ci
11: (d pi,k.range)← String
12: end for
13: end for

For Individuals and Facts, we convert OWL-Lite
Individuals into Facts in the legacy knowledge base
by generating one Fact for each Individual. When cre-
ating a Fact, the URI (Uniform Resource Identifier) of
the Individual will be used as its InternalID since the
URI is unique in an OWL ontology. If there is no URI
designated to an Individual, a unique identifier will be
generated for it. To illustrate the usage of InternalIDs,
Figure 3 shows an example with two classes where
one is referred by the other through an ObjectProp-
erty. The two FactTypes listed below are generated
by the translation algorithm. In the Building Fact, its
hasLocation property is set to the reference, i.e., the
InternalID, of the Location Fact.

(FactType Building (?IID ?hasName ?hasLocation))
(FactType Location (?IID ?latitude ?longitude))
(Fact Building (id0001 BuildingA id0002))
(Fact Location (id0002 45 135))

For the translation from Facts to OWL-Lite Indi-
viduals, it is straightforward to create an OWL Indi-
vidual and then assign all the property values by using
its associated OWL Property definitions.

Class

Building

Class

Location

XSD Type

string

XSD Type

float

XSD Type

float

DatatypeProperty

hasName

ObjectProperty

hasLocation

domain
range

domain

DatatypeProperty

hasLatitude

DatatypeProperty

hasLongitude

domain
range

domain

range

range

Figure 3: An example ontology in OWL-Lite.

2.2.2 Rules

A SWRL rule is encoded in the Imp data struc-
ture, which is composed of a body element for

EXTENDING LEGACY AGENT KNOWLEDGE BASE SYSTEMS WITH SEMANTIC WEB COMPATIBILITIES

133

the antecedents and a head element for the con-
sequent. The content of a head or a body is
an AtomList, which is composed of a number of
Atoms. There are four primary types of Atoms in
SWRL: ClassAtom, DatavaluedPropertyAtom, Indi-
vidualPropertyAtom, and BuiltinAtom. ClassAtom is
a unary predicate for declaring the class of an ob-
ject, where the object can be either an identifier or
a variable. DatavaluedPropertyAtom and Individual-
PropertyAtom are binary predicates that are used to
associate an object with a value or another object. A
BuiltinAtom is an element embedded with a functional
predicate that supports a predefined operation.

According to the specification shown in Figure 2,
an antecedent can be either a predicate based on a
FactType definition or a functional predicate which
implements an operation. The translation consists of
three parts. The first part translates antecedent predi-
cates based on FactType definitions, or non-functional
predicates, into SWRL ClassAtoms and Property-
Atoms. For example, the first antecedent of the ex-
ample rule in 2.1 “(Person (?name ?age male))” will
be translated into four Atoms as follows.1

ClassAtom(#C1, #Person)
DatavaluedPropertyAtom(#C1, #name)
DatavaluedPropertyAtom(#C1, #age)
DatavaluedPropertyAtom(#C1, "male")

The second part translates functional predicates in
the antecedent such as arithmetic and comparison op-
erators. It creates a BuiltinAtom with its built-in ele-
ment referring to the URI of the corresponding SWRL
built-in ontology. The arguments to a BuiltinAtom is
a RDF List, and the sequence of the arguments should
be carefully organized if the parameters are defined
differently between the functional predicate and the
SWRL built-in. For example, the second antecedent
of the example rule in 2.1 “(< (?age 12))” will be
translated into a BuiltinAtom as follows.
BuiltinAtom(builtin=swrlb:lessThan,

arguments=(#age, 12))

The last part translates the consequent into a
SWRL ClassAtom and several PropertyAtoms. It is
necessary to identify whether this rule is designed to
update existing individuals or is designed to create
new individuals. If the rule is designed to create new
individuals, we need to declare a new SWRL variable
in the antecedents and use it in the consequent.

The translation from SWRL to legacy rules has
a similar structure. Due to the restriction of us-
ing OWL-Lite, each object declared with ClassAtom
should have non-duplicated PropertyAtoms in order
to satisfy the cardinality requirement of OWL-Lite.

1The “#” sign is for indicating that it is an URI in the
ontology file. The namespace part is ignored here.

3 EXPERIMENT AND RESULTS

In order to verify this approach, we applied the trans-
lators of both directions to two existing decision sup-
port systems (Airy et al., 2006), with 7 different
legacy knowledge sets in the first system and 9 for the
other one. The tasks of each system include reasoning
information based on its own rule set, generating the
values of predefined decision factors that describe the
situation, and providing recommendations.

We translated the legacy knowledge sets into
OWL and SWRL and then translated them back to the
legacy format. We also checked the consistency be-
tween the situation descriptions generated by the orig-
inal systems and those generated by systems based
on the forward-back translated knowledge given the
same information. All of the test sets show consistent
results, thus confirming that these translators preserve
the functionalities of the legacy systems.

4 CONCLUSIONS

In this paper, a framework for extending legacy
knowledge base systems with semantic Web compat-
ibilities is presented. Although the implementation is
assumed to be system-specific, the methodology can
be applicable to other knowledge base systems.

Future work will include moving forward to sup-
port OWL-DL. Since OWL-DL allows cardinality to
be larger than 1, the current data structure and the
translation algorithms would need to be redesigned.

REFERENCES

Airy, G., Chen, P.-C., Fan, X., Yen, J., Hall, D., Brogan, M.,
and Huynh, T. (2006). Collaborative RPD agents as-
sisting decision making in active decision spaces. In
Proc. of 2006 IEEE/WIC/ACM International Confer-
ence on Intelligent Agent Technology, pages 769–772.

Meditskos, G. and Bassiliades, N. (2008). A rule-based
object-oriented OWL reasoner. IEEE Transactions on
Knowledge and Data Engineering, 20(3):397–410.

O’Connor, M. J., Knublauch, H., Tu, S. W., Grosof, B. N.,
Dean, M., Grosso, W. E., and Musen, M. A. (2005).
Supporting rule system interoperability on the seman-
tic Web with SWRL. In International Semantic Web
Conference, pages 974–986.

Yen, J., Fan, X., Sun, S., Hanratty, T., and Dumer, J. (2006).
Agents with shared mental models for enhancing team
decision-makings. Journal of Decision Support Sys-
tems, 41(3):634–653.

ICEIS 2010 - 12th International Conference on Enterprise Information Systems

134

