
ONLINE SHARED EDITING
FOR INTRODUCTORY PROGRAMMING COURSES

Hosung Song
Department of Information and Computing Sciences (Computer Science)

University of Wisconsin-Green Bay
2420 Nicolet Drive, Green Bay, WI 54311, U.S.A.

Keywords: Shared editing, Intro-programming courses, Pair programming, Remote instruction, Online learning, Remote
collaboration.

Abstract: This paper argues how online shared editing can benefit teaching/learning intro-programming courses like
CS1 and CS2. Various available tools supporting online shared editing are surveyed. A simple but novel Java-
based online shared editing framework namedOlshed is also presented and demonstrated. Olshed is a suite of
Swing-based Java classes that supports easy development of online shared editing applications or extension of
existing applications for online shared editing. As a proof-of-concept example, DrJava (an educational Java
IDE) is extended with Olshed to provide real-time online shared editing facility.

1 INTRODUCTION

Real-time online collaboration has become very hot
and important in the ubiquitously networked environ-
ment these days. In a real-time online collaboration
environment, a group of users can edit a single docu-
ment simultaneously and remotely using online real-
time communication. This allows easier and more
seamless collaboration between colleagues when they
try to write a document collaboratively. Traditionally,
they exchanged their shared documents as email at-
tachments non-real-time, resulting in somewhat de-
graded collaboration performance. With the advent
of real-time online collaboration technology, they can
actually work on the same document at the same time
even regardless of their geographic locations. In sum-
mary, online shared document-editing and collabora-
tion service can be very beneficial and its future looks
very promising.

In software development (especially coding), it
is no longer a news that pair programming is one
of the important aspects of “Extreme Program-
ming” methodology (Beck, 2005), which is becom-
ing fairly popular in many modern software develop-
ment projects. In pair programming, two coworkers
always code together in person simultaneously. One
worker takes the role of “driver,” entering all code
through the keyboard. The other worker takes the role
of “navigator” or “observer,” reviewing each line of

code as it is typed in. Many benefits of pair program-
ming were identified and presented in (Cockburn and
Williams, 2000). Pair programming technique has
been suggested and tried for teaching/learning intro-
ductory programming courses too (Nagappan et al.,
2003). By letting two students solve a coding prob-
lem using pair programming technique, students can
even learn better from each other, on top of the orig-
inal benefits of pair programming. However, many
students these days have hard time to meet in per-
son and program in pair due to their busy schedules
and life styles. This makes the idea of “Remote Pair
Programming” more appealing especially with ubiq-
uitous availability of high-speed Internet access these
days. Remote pair programming with online real-time
shared editing can also be very useful in intro pro-
gramming courses for other reasons like remotely as-
sisting a student to identify simple syntax errors or
tutoring of programming skills. No matter what sit-
uation two collaborators are in, a good tool support
enabling remote pair programming is critical. One
of the most important features of such a tool support
is real-time online shared/collaborative editing of text
document files.

In this paper, a number of available such tools
are surveyed and compared in terms of their features
(available or lacking), usability, and suitability for
teaching intro-programming courses. Olshed (On-
Line SHared EDiting), a simple Swing-based Java li-

489
Song H. (2010).
ONLINE SHARED EDITING FOR INTRODUCTORY PROGRAMMING COURSES.
In Proceedings of the 2nd International Conference on Computer Supported Education, pages 489-492
DOI: 10.5220/0002860904890492
Copyright c© SciTePress

brary for online shared editing developed by the au-
thor, is also introduced for the first time. Olshed is
shown to be easily integrable with already existing
Java applications, by demonstrating Olshed-extended
DrJava (Allen et al., 2002), an educational Java IDE.
The paper progresses as follows: Section 2 surveys
select real-time online shared/collaborative editing
tools. Section 3 explains the author’s Olshed library
and Olshed-extended DrJava is presented. Finally,
section 4 concludes this paper by describing future
plans for Olshed.

2 SURVEY OF EXISTING
SHARED EDITING TOOLS

There have been quite many available existing real-
time online shared editing tools. Most of them can be
sorted into three categories: IDE-based, web-based,
or stand-alone desktop applications.

2.1 IDE-based Shared Editors

IDEs (Integrated Development Environments) are in-
dispensable these days for software development ac-
tivities. Therefore, it is no surprise to see quite a few
real-time online shared editing supports for widely
used IDEs such as Eclipse. Especially, there are quite
a few available Eclipse plugins supporting shared
editing. Some notable ones are listed here with ref-
erences:

• DocShare/Cola plugin in Eclipse Communication
Framework (Lewis, 2007)

• Saros (Lau, 2009)

• XPairtise (The XPairtise Team, 2008)

• Sangam (The Sangam Project Team, 2008)

Most Eclipse plugins for shared editing utilizes some
sort of central messaging server, especially a gen-
eral purpose one such as XMPP/Jabber server. Once
the plugin is installed, the first initiator can share her
source code editor with another participant. Depend-
ing on the implementations, only two participants can
share a document (ECF DocShare/Cola) or any num-
ber of participants can do so (Saros). Some Eclipse
plugin like Saros allows the participants to be as-
signed a specific role (e.g. exclusive driver, shared
driver, exclusive observer). Also plugins can differ
from the number of files that can be shared (only one
for ECF DocShare/Cola, an entire project with mul-
tiple source files for Saros). Overall, Eclipse plu-
gins supporting shared-editing can be very useful if
Eclipse is extensively used. However, the gravity of

the solution (the heavy-weight nature of Eclipse itself
and the need for a remote public messaging server or
a local private server) can be an inhibitor for this ap-
proach. Shared editing over a publicly available re-
mote messaging server can be pretty slow too.

2.2 Web-based Shared Editors

A web-based shared editing support can be viewed as
a shared editor embedded in a web browser. Because
a web browser cannot save and/or compile a source
code file yet, users need to copy-and-paste collabo-
ratively edited source code into an IDE and perform
required compilation and debugging there. This could
be a major inconvenience for intro-programming
course purposes, but the ubiquity of web browsers and
no need for installing anything are major attractions
to this category. The following are somewhat well-
known shared editing web applications/services:

• Etherpad1

• CollabEdit2

• MobWrite (Fraser, 2009)

All web-based shared editing applications heavily uti-
lizes Javascript technology to make it possible to do
real-time dynamic browser updates. All of them pro-
vide a very similar work flow. The first participant
connects to the web site providing the shared-editing
service, click a button for creating a public document
(also called a pad) that can be shared-edited, and the
returned URL is sent to other participants by email or
instant messages. The later participants just need to
browse the delivered URL to join the shared-editing
session. Etherpad provides probably most advanced
features such as displaying each individual partici-
pant’s entry in a different color (called Authorship
Colors) and the Time Slider feature allowing any par-
ticipant to navigate through all the revision history of
the shared document.

2.3 Stand-alone Desktop Shared Editors

Stand-alone desktop shared editor applications may
not have a firm ground these days due to the recent
proliferation of IDE and browser-based applications.
However, when a remote server for sharing is not de-
sired or a light-weight application is desired instead of
a heavy IDE, a simple stand-alone shared editor appli-
cation could be a good choice. Here are some select
stand-alone desktop shared editing applications.

1http://etherpad.com/
2http://collabedit.com/

CSEDU 2010 - 2nd International Conference on Computer Supported Education

490

• Notepad++ with NetNote plugin (The Notepad++
Project Team, 2009)

• ACE: A Collaborative Editor (ACE Project Team,
2006)

• Gobby (0x539 Dev Group, 2009)

• SubEthaEdit3

There are actually quite a lot more than the ones se-
lected above. For more complete list, readers are re-
fer to http://en.wikipedia.org/wiki/Collaborativereal-
time editor. Usage-wise, stand-alone desktop shared
editing applications are not too different from the
other two categories, except two points. Firstly, some
applications are not cross-platform (Notepad++ is
Windows-only and SubEthaEdit is Mac-only) due to
the adopted development frameworks. Secondly, net-
working can be just one-to-one (Notepad++) or many-
to-many with auto-client discovery protocols such as
Bonjour (SubEthaEdit and ACE). They are mostly
pretty light-weight, but their suitability for beginning
students in programming is not the best yet.

3 OLSHED: A SWING-BASED
JAVA LIBRARY FOR ONLINE
SHARED EDITING

As surveyed above, there are lots of available exist-
ing real-time online shared-editing applications (ei-
ther desktop or web-based). However, CS1/2 students
or instructors may have hard time to pick one suitable
for their needs. Eclipse plugins may not be feasible
if Eclipse is not used for a course due to its heavy
weight. Even though Eclipse is used, installing and
using additional plugins can be difficult for begin-
ning CS1/2 students. Light-weight desktop or web-
based shared editor applications lack the integration
with compiler and debugger. Therefore, it can be ar-
gued that enabling a light-weight IDE (e.g. DrJava
or BlueJ) with a simple shared-editing feature would
be highly desirable. Since most light-weight IDEs are
also written in Java with Swing GUI framework, it
is natural to develop a Swing-based Java Library for
shared editing.

Olshed (OnLine SHared EDiting)4, developed by
the author and presented here for the first time, is a
suite of Java classes to easily extend any Swing-based
Java applications with real-time online shared editing
feature. Communication is done by a simple multi-
threaded Java chat server with custom protocol mes-

3http://www.codingmonkeys.de/subethaedit/
4Available at http://icsa.uwgb.edu/ songh/olshed/ as

open source software.

Existing Java App.
- GUI hooks to Olshed features
 (e.g. buttons or menu items)
- Instance var. for Olshed obj.
- Document object w/ methods:
 insertString()
 remove()
- Event dispatching thread invokes
Olshed’s Doc. listener methods
whenever there’s a document change.

Olshed module (class)
- Instance var. for main GUI frame
- DocumentListener methods: creates and
 sends an Olshed msg. to chat server
 whenever it’s invoked.
 insertUpdate()
 changeUpdate()
 removeUpdate()
- Runnable method (sep. thread): receives
 incoming Olshed msgs. from chat server,
 decodes it and invokes corresponding
 Document methods in main frame.
 run(): runs in sep. listener thread

Olshed-extended Java app

Olshed Chat Server

thread

thread thread

TCP socket
streams

Olshed-extended Java app

Olshed-extended Java app

TCP socket
streams

TCP socket
streams

Figure 1: Olshed Architecture.

sage formats through standard Java I/O streams. Ol-
shed library utilizes Java’s Swing framework’s Docu-
mentListener5 and Document6 interfaces.The Olshed
main class implements DocumentListener interface
implementing three update methods (change, insert,
and remove) and an instance of the Olshed main class
is added as a DocumentListener to the associated
Document object of the target Swing Java application
that is extended for online shared editing. This way,
every document update on the target application’s
document model will be notified to the Olshed doc-
ument listener code. Upon being notified, the Olshed
document listener code creates and sends a message
to the Olshed chat server through the output stream of
the socket connection established earlier. The Olshed
chat server relays the message to all connected Olshed
clients. Incoming messages are handled by a separate
chat-listener thread through the input stream of the es-
tablished socket connection. The Olshed chat-listener
thread (in the client) then invokes the corresponding
update method (insertString(), remove(), or createPo-
sition()) on the registered Document object from the
target application. Figure 1 shows the overall archi-
tecture of Olshed.

Necessary modification of the target application’s
code is minimal thanks to the full utilization of Swing
framework. The target application’s code needs to be
extended with necessary GUI hook(s) to Olshed fea-
tures (like buttons or menu items) and an instance of
the Olshed main class, which just needs to be instanti-
ated in the constructor of the target application’s main
GUI class. The Olshed main class’s constructor also
initiates a socket connection to the Olshed chat server

5http://java.sun.com/docs/books/tutorial/uiswing/events/
documentlistener.html

6http://java.sun.com/j2se/1.5.0/docs/api/javax/swing/
text/Document.html

ONLINE SHARED EDITING FOR INTRODUCTORY PROGRAMMING COURSES

491

(the connection parameters should be passed to the
constructor) and starts a chat-listener thread. The in-
stantiated Olshed object should later be told about the
actual Document object on which shared editing will
be conducted. At that time, the Olshed main class’s
instance is also added to the Document object as a
DocumentListener object.

As a proof-of-concept realization of Olshed, Dr-
Java (Allen et al., 2002), a well-known educational
Java IDE, was extended with Olshed for real-time on-
line shared editing. It was easily done by follow-
ing the simple extension strategy described above,
without serious modification to DrJava’s original code
base. Any number of DrJava+Olshed application in-
stances can perform shared editing of a single Java
source code file document as long as they are all con-
nected to the same Olshed chat server. This is a strong
evidence that Olshed can be easily applicable to any
existing Swing-based Java applications.

The development of Olshed is still in its infant
stage. Currently, the document consistency mainte-
nance algorithm is yet to be implemented. The lack
of the feature can possibly result in out-of-sync doc-
uments across Olshed clients at this point. As long
as the current infantile Olshed is used in a purely
driver-and-observer model, this shouldn’t be a big is-
sue for the time being. Currently Olshed can share
only a single document among two or more partici-
pants. The current Olshed chat server implementation
allows only one group of shared editing participants.
Lifting these restrictions should not be difficult.

4 CONCLUSIONS

In this paper, it was informally argued that real-time
online shared editing can significantly benefit not only
general remote collaboration like pair programming
but also teaching and learning of introductory pro-
gramming courses. Available existing online shared
applications were surveyed. Hoping a light-weight
IDE-based shared editing environment for use by stu-
dents and instructors of intro-programming courses,
the author developed and presented Olshed, a simple
Swing-based Java library allowing an easy extension
of existing Swing Java applications with real-time on-
line shared editing. As a proof-of-conceptproject, Dr-
Java, a well-known Java IDE written in Java, was ex-
tended for shared editing with Olshed. The full source
code of Olshed and Olshed-extended DrJava is avail-
able as an open source project.

There are many needed future work topics for Ol-
shed. The most imminent feature that’s needed is
to maintain document consistency under concurrent

write access to a single document. An OT (Opera-
tional Transformation)-based algorithm (Sun and El-
lis, 1998) will be soon implemented and integrated.
Other desirable features would be related to the Ol-
shed chat server, such as supporting multiple con-
current editing groups and supporting multiple doc-
uments editing per each concurrent editing group.

REFERENCES

0x539 Dev Group (2009). Gobby. http://gobby.0x539.de/.

ACE Project Team (2006). Ace - a collaborative editor.
http://sourceforge.net/projects/ace/.

Allen, E., Cartwright, R., and Stoler, B. (2002). Drjava: A
lightweight pedagogic environment for java. InPro-
ceedings of ACM SIGCSE Symposium 2002.

Beck, K. (2005). Extreme Programming Explained - Em-
brace Change. Addison-Wesley, 2nd edition.

Cockburn, A. and Williams, L. (2000). The costs and
benefits of pair programming. InProceedings of the
1st International Conference on Extreme Program-
ming and Flexible Processes in Software Engineering
(XP2000).

Fraser, N. (2009). google-mobwrite.
http://code.google.com/p/google-mobwrite/.

Lau, S. (2009). Saros - Distributed Pair Programming for
Eclipse. https://www.inf.fu-berlin.de/w/SE/DPP.

Lewis, S. (2007). RT Shared Editing - Eclipsepedia.
http://wiki.eclipse.org/RTSharedEditing.

Nagappan, N., Williams, L., Ferzli, M., Wiebe, W., Yang,
K., Miller, C., and Balik, S. (2003). Improving the cs1
experience with pair programming. InProceedings of
ACM SIGCSE Symposium 2003.

Sun, C. and Ellis, C. (1998). Operational transformation
in real-time group editors: Issues, algorithms, and
achievements. InProceedings of the ACM Conference
on Computer-Supported Cooperative Work.

The Notepad++ Project Team (2009). Notepad++.
http://notepad-plus.sourceforget.net/.

The Sangam Project Team (2008). Sangam - Eclipse Plugin.
http://sangam.sourceforge.net/.

The XPairtise Team (2008). XPairtise - Pair Programming
for Eclipse. http://xpairtise.sourceforge.net/.

CSEDU 2010 - 2nd International Conference on Computer Supported Education

492

