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Abstract: In this paper we address the issue of joint estimation of head pose and facial actions. We propose a method that
can robustly track both subtle and extreme movements by combining two types of features: structural features
observed at characteristic points of the face, and intensity features sampled from the facial texture. To handle
the processing of extreme poses, we propose two innovations. The first one is to extend the deformable 3D face
model Candide so that we can collect appearance information from the head sides as well as from the face. The
second and main one is to exploit a set of view-based templates learned online to model the head appearance.
This allows us to handle the appearance variation problem, inherent to intensity features and accentuated by
the coarse geometry of our 3D head model. Experiments on the Boston University Face Tracking dataset show
that the method can track common head movements with an accuracy of 3.2◦, outperforming some state-of-
the-art methods. More importantly, the ability of the system to robustly track natural/faked facial actions and
challenging head movements is demonstrated on several long video sequences.

1 INTRODUCTION

The many applications of face tracking, in domains
ranging from Human Computer Interaction to surveil-
lance, urged researchers to investigate the problem
for the last twenty years. Still some issues remain;
the difficulties come from the variability of appear-
ance created by 3D rigid movements (especially self
occlusions due to the head pose), non-rigid move-
ments (due to facial expressions), variability of 3D
head shape and appearance, and illumination varia-
tions.

An important contribution to the problem of near-
frontal face tracking was made by Cootes et al. The
idea was to use Principal Component Analysis to
model the 2D variations of the face shape (Active
Shape Model (ASM) (Cootes et al., 1995)), or of both
shape and appearance (Active Appearance Model
(AAM) (Cootes et al., 1998)). Later, some works have
extended the use of AAMs to more challenging poses
(Gross et al., 2006), but the lack of robustness when
confronted to large head pose variations is still a typi-
cal limitation of these models. Besides, extracting the
3D pose from the 2D fit is possible but not straight-
forward; it requires further computation (Xiao et al.,
2004).

Face tracking can also be formulated as an image

registration problem, and several approaches were de-
veloped to robustly track faces under large pose vari-
ations. They usually rely on a rigid 3D face/head
model, which can be a cylinder (Cascia et al., 2000;
Xiao et al., 2003), an ellipsoid (Morency et al., 2008),
or a mesh (Vacchetti et al., 2004). The model is fit to
the image by matching either local features (Vacchetti
et al., 2004) or a facial texture (Cascia et al., 2000;
Xiao et al., 2003; Morency et al., 2008). However,
they are limited to rigid movements. In the best case
the tracking is robust to facial actions; in the worst
case they will cause the system to lose track; in any
case they are not estimated.

To track both the head pose and the facial ac-
tions, an appropriate solution is to use a deformable
3D face/head model. Approaches using optical flow
(DeCarlo and Metaxas, 2000), local structural fea-
tures (Chen and Davoine, 2006; Lefèvre and Odobez,
2009), or facial texture (Dornaika and Davoine, 2006)
to fit the 3D model to a face have been tried in the past.
However, the tracking success is highly dependent on
the recording conditions. Optical flow methods can
be very accurate but are not robust to fast motions.
Structural features computed at a small set of charac-
teristic points provide useful information about both
the pose and the facial actions. However, due to the
set sparsity and the locality of the information, the
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(a) (b)

Figure 1: (a) Set of locations where observations are collected (red squares for structural features and green dots for intensity
features). (b) Samples of the training set for the structural feature located on the right corner of the right eye, before removing
the patch mean.

model will not be constraining enough if too many
features are hidden (e.g. when reaching a near profile
view). Facial texture provides rich and precise infor-
mation for tracking but is very sensitive to appearance
changes. The latter is a serious problem; unless the
lighting is coming uniformly from every direction, the
appearance of the face will vary a lot as the head pose
changes.

The approach in (Lefèvre and Odobez, 2009)
showed the advantages of combining both types of
cues: it relied on both structural features similar to
(Chen and Davoine, 2006) and on intensity values
computed at a sparse set of face points. The appear-
ance model was continuously adapted to deal with ap-
pearance changes. However this approach suffered
from two main problems: first, because the majority
of observations are located in the face region, there
is very few information when the pose reaches pro-
file view. This issue is common to many models. To
our knowledge, models for head tracking which cover
the head sides are either coarse rigid models (cylinder,
ellipse) or person-specific rigid models (3D model ac-
quired with a scanner). Secondly, the system is mem-
oryless: the appearance model of the intensity fea-
tures always needs to adapt in the same way when
coming back to the same pose.

In this paper, our contribution is to propose a mod-
eling that addresses these two issues.

First, we propose to extend the Candide face
model to cover head sides. Although collecting fea-
tures from the head sides would allow to track chal-
lenging poses that face models cannot, the vast major-
ity of face tracking approaches do not consider such
information. Indeed, such an extension brings in ad-
ditional difficulties. The appearance changes issue
is even more present than before, since, most of the
time, between near frontal view and profile view the
intensity of points located on the head sides varies
drastically. These variations are accentuated by the
fact that the mesh extension is very coarse, in the
sense that the approximation of the depth of the points
on the head surface is usually inaccurate. In fact, it is

quite difficult to built a precise person specific head
model, and this is a reason why many approaches do
not consider such head side extensions (AAM, Can-
dide, etc.).

Secondly, to add memory in the appearance mod-
eling, we propose to represent the head using a set of
view-based template learned online. This is in con-
trast with the majority of approaches that propose to
handle the appearance variation problem using either
template adaptation of all sorts (e.g. doing recursive
adaptation (Lefèvre and Odobez, 2009; Dornaika and
Davoine, 2006), combining current observations with
the initial template (Matthews et al., 2004), or using
short and long term adaptation models (Jepson et al.,
2003)) or incremental model learning techniques (e.g.
incremental PCA (Li, 2004) or an EM algorithm (Tu
et al., 2009)). None of these methods consider the
fact that in most applications the appearance of the
face mainly depends on the pose, since the location
of the camera and of the illumination sources are usu-
ally fixed. The approach we propose that relies on
templates learned online and representing appearance
under different poses addresses this issue. Further-
more, it is well adapted to handle the coarse depth
modeling of the additional head side mesh elements.
The main difficulty of our approach lies in the build-
ing of the template set, as the risk is to learn an incor-
rect combination pose/template when the head motion
is heading towards a region of the pose space that was
not visited before. This issue is dealt with to a large
extent by exploiting a fixed (i.e. not subject to adap-
tation) likelihood term relying on structural features.
The fact that this likelihood model is learned off-line
and is built on illumination-invariant cues reduces the
risk of drift.

The performances of our approach are evalu-
ated on the Boston University Face Tracking (BUFT)
database (on both Uniform-light and Varying-light
datasets) and on several long video sequences of peo-
ple involved in natural conversation. They show that
the combination of head-side and view-based model-
ing allows us to outperform some recent state-of-the-
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art techniques (Cascia et al., 2000; Morency et al.,
2008) and to robustly track challenging head move-
ments and facial actions.

2 CANDIDE, A DEFORMABLE 3D
MODEL

In this work we use an extended version of the Can-
dide (Ahlberg, 2001) face model. The original model
consists in a deformable 3D mesh defined by the 3D
coordinates of 113 vertices (facial feature points) and
by the edges linking them. By displacing the ver-
tices of a standard face mesh M according to some
shape and action units, one can reshape the wire-
frame to the most common face shapes and expres-
sions. The transformation of a point Mi of the stan-
dard face mesh into a new point Mi can be expressed
as follows: Mi(α,σ) = Mi+Si.σ+Ai.α, where Si and
Ai are respectively the 3× 14 shape unit matrix and
the 3× 6 action unit matrix that contain the effect of
each shape (respectively action) unit on point Mi. The
14×1 shape parameters vector σ and the 6×1 action
parameters vector α contain values between -1 and 1
that express the magnitude of the displacement. In our
case, σ is learned once for all for a given person be-
fore tracking using a reference image (a frontal view
of the person) by manually or automatically annotat-
ing several points on reference image and by finding
the shape parameters σ that best fit the Candide model
to the data points.

Extending the Model. A limitation of the Candide
model is that it only covers the face region. In our
experiments we have to deal with some challenging
head poses under which the face is half-hidden (e.g.
self-occlusion at profile view). In that case it is use-
ful to collect some information on the sides of the
head. Indeed the texture and contrast in this region,
and especially around the ears, is a strong indicator
of the head movement. For this reason we extended
the Candide model so that the mesh reaches the ears.
Twenty vertices forming a unique planar region (for
each head side) in the continuity of the original mesh
were added to the standard mesh as well as a ”Head
width” shape unit vector. None of these new points
are displaced by the action units. Note that the part of
the mesh that covers the sides is very coarse; however
it will bring useful information during the tracking.
An illustration of the extended Candide model can be
found in Fig. 1.

State Space. In the Candide model, the points of
the mesh are expressed in the (local) object coordinate

system. They need to be transformed into the camera
coordinate system and then to be projected on the im-
age. The first step involves a scale factor s (the Can-
dide model is defined up to a scale factor), a rotation
matrix (represented by three Euler angles θx, θy and
θz) and a translation matrix T = (tx ty tz)T . The cam-
era is not calibrated and we adopt the weak perspec-
tive projection model (i.e. we neglect the perspective
effect) to map a 3D point Mi to an image point mi.
Thus the vector of the head pose parameters to es-
timate can be expressed as Θ = [θx θy θz λtx λty s]
where λ is a constant. The whole state (head pose
and facial actions parameters) at time t is defined as
follows:

Xt = [Θt αt ] . (1)

3 TRACKING FACES

We set the problem as a Bayesian optimization prob-
lem. The objective is to maximize the posterior prob-
ability p(Xt |Z1:t) of the state Xt at time t given ob-
servations Z1:t from time 1 to time t. Under standard
assumptions, and assuming that the distribution of the
posterior p(Xt−1|Z1:t−1) is a dirac δ(Xt−1− X̂t−1) (we
only exploit a point estimate of the state at the previ-
ous time step), X̂t−1 being the previous estimate of the
state, this probability can be approximated by:

p(Xt |Z1:t) ∝ p(Zt |Xt) · p(Xt |X̂t−1) . (2)

This expression is characterized by two terms: the
likelihood p(Zt |Xt), which expresses how good are
observations given a state value, and p(Xt |X̂t−1)
which represents the dynamics, i.e. the state evolu-
tion. Our observations are composed of structural fea-
tures and intensity features, i.e. Zt = (Zstr

t ,Zint
t ). As-

suming that they are conditionally independent given
the state, Eq. (2) can be rewritten as:

p(Xt |Z1:t) ∝ p(Zstr
t |Xt) · p(Zint

t |Xt) · p(Xt |X̂t−1) . (3)

Each component is detailed below.

3.1 Likelihood Model of Structural
Features

Our goal is to learn a fixed appearance model valid
under variations of head pose and illumination for
patches located around characteristic points of the
face. The advantage of these features is that, when
they are visible, they give useful information about
both the head pose and the facial actions. By learn-
ing a robust likelihood model, we aim at constraining
the tracking strongly enough under any illumination
condition for near-frontal to mid-profile poses.
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Figure 2: Building Ssel
t (Xt) based on the poses: example case (for simplicity we represent only two dimensions). Selection

with the k nearest neighbors approach, k = 4 v.s. selection with the approach described in Section 3.2.

Observations. We call Sstr the index set of 22 struc-
tural features. Given the state Xt , observations Zstr

will be 9× 9 zero-mean patches collected around
the projected points {mi(Xt)}i∈Sstr , i.e. Zstr

t (Xt) =
{Zstr

i,t (Xt)}i∈Sstr = {patch(mi(Xt))}i∈Sstr . The loca-
tions of the observations are illustrated in Fig. 1.

Likelihood Modeling. Assuming conditional inde-
pendence between the features given the state1:

p(Zstr
t |Xt) = ∏

i∈Sstr
p(Zstr

i,t |Xt) . (4)

This model is learned off-line using a reference image
of the face. For each feature we extract a patch in the
reference image, subtract the mean value to make it
invariant to illumination changes, and simulate what
it would look like under different head poses. This is
done by applying a set of affine transformations to it,
assuming the patch is planar. More precisely, for each
of the three rotation parameters we sample uniformly
seven values from −45◦ to 45◦. This is illustrated in
Fig. 1 (b). From this training set we compute the 1×
81 mean vector µi and the 81× 81 covariance matrix
Σi, and define the likelihood model for a normalized
9×9 image patch Zstr

i,t as:

p(Zstr
i,t |Xt) ∝ e−ρ(

√
(Zstr

i,t −µi)T Σ
−1
i (Zstr

i,t −µi),τstr) (5)

where ρ is a robust function (we used the truncated
linear function) and τstr is the threshold above which
a measurement is assumed to be an outlier.

3.2 Likelihood Model of Intensity
Features using a Set of View-based
Templates

The intensity features are located on both the face and
the head sides, and their location distribution is much

1Note that such assumption would not be valid if patches
would overlap.

denser than the locations of the structural features.
Therefore the intensity features bring precise and rich
information about the appearance of the whole face.
In many cases, however, although the illumination
conditions are fixed the lighting is not uniform over
the face (e.g. the light might be coming from the
side). Thus the intensity of a face point is highly pose-
dependent and can vary quite fast depending on the
head movements. In order to handle this problem, we
define a likelihood model that relies on a set of view-
based templates.

Observations. The observations Zint are defined
by the intensity values at the projected points
{mi(Xt)}i∈Sint , i.e. Zint

t (Xt) = {Zint
i,t (Xt)}i∈Sint =

{intensity(mi(Xt))}i∈Sint , where Sint denotes the index
set of intensity features. The locations of the observa-
tions are illustrated in Fig. 1.

Likelihood Modeling. The likelihood of the obser-
vations Zint

t (Xt) is evaluated by comparing them to a
set of view-based templates. This set is built online by
adding a new template each time a new region of the
head pose space is reached, as described later. We call
Stem

t the complete set of view-based templates learned
so far at time t. A template Tk = (µk,Θk),k ∈ Stem

t is
defined by a vector of intensities µk and a pose Θk.
The observations Zint

t (Xt) will be compared to a set
of selected templates Ssel

t (Xt), with Ssel
t ⊆ Stem

t . From
this set of selected templates we create a mixed tem-
plate whose appearance µmix

t is defined as: µmix
t =

∑k∈Ssel
t

wk,t ·µk,
where wk,t is the weight associated to the selected

template Tk. The methodology to select Ssel
t and the

weights is described below.
Assuming conditional independence between the fea-
tures given the state, we have:

p(Zint
t |Xt) = ∏

i∈Sint

p(Zint
i,t |Xt) (6)
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where the likelihood model for a single intensity value
can be expressed as:

p(Zint
i,t |Xt) ∝ e

−wk,t ·ρ(
(Zint

i,t −µmix
i,t )2

σ2
int

,τint )
(7)

where ρ is a robust function (we used the truncated
linear function), τint is the threshold above which a
measurement is assumed to be an outlier, and σint is a
constant.

Selection of the Subset Ssel
t (Xt). The set of tem-

plates Ssel
t (Xt) plays an important role, as it defines the

mixed appearance µmix
t . The main idea for our method

to build Ssel
t (Xt) follows the principle that, whenever

possible, to synthesize a view it is usually much bet-
ter to interpolate it than to extrapolate it. This is illus-
trated in Fig. 2. A classical approach would use the k
nearest neighbors to build µmix

t . However, this is not
always a good solution because the set of templates is
learned online, and therefore the learned templates do
not uniformly populate the pose space. Most of the
views selected in this manner may be located on one
side only of the current pose (see Fig. 2), leading to
the extrapolation of the view from Ssel

t (Xt) rather than
its interpolation. If instead we select poses not only
based on their distance to Θt but also based on their
spread in the pose space, we might increase the ac-
curacy of the view synthesis. Thus the proposed so-
lution consists of defining Ssel

t (Xt) = {T1,T2} where
T1 is the template whose pose Θ1 is the closest to the
current pose Θt , and T2 is the template whose pose
Θ2 is the closest to the pose symmetrical to pose Θ1
with respect to Θt . This way we make sure that the
two selected poses will draw the current pose towards
two opposite directions, as much as possible given the
current set of templates. This is illustrated in Fig. 2.
This simple approach provides a good compromise
between the distance to Θt and repartition in the pose
space. Finally, each of the two selected poses is as-
sociated a weight defined as wk,t =

1
d(Θk,Θt )

,k ∈ Ssel
t ,

where d(Θ,Θ′) is defined as the euclidean distance
between two poses Θ and Θ′ in the pose space. That
way the contribution of a template varies with the dis-
tance of its pose to the current pose. The weights are
normalized so that their sum is equal to 1.

Addition of a Template to the set of View-based
Templates. Stem

t+1 is built from the set of templates
Stem

t and the estimated pose Θ̂t by adding a new tem-
plate only if it models a new region of the pose space,
i.e. only if its pose is far enough from the poses of the
templates already learned. That is, when the follow-
ing condition is verified:

∀k ∈ Stem
t ,d(Θ̂t ,Θk)> τ (8)

the template T = (Ẑint
t ,Θ̂t) is added to the set Stem

t .
Otherwise Stem

t+1 = Stem
t . As a value for τ we used 10◦, a

good compromise between appearance modeling and
pose densities.

Updating the Set of View-based Templates. There
is always a risk that a bad template is learned, for ex-
ample if one part of the mesh is temporarily not well
fit on the face when a new template is added to the
list. For this reason, it is useful to have an adaptation
mechanism that allows the appearance of a learned
template to be updated when the same pose is vis-
ited again. Under some specific conditions, we up-
date the appearance of the closest template Tk in the
following way: µk,t+1 = β · Ẑint

t +(1− β) · µk,t , with

β = 0.5−0.5 · d(Θ̂t ,Θk)
τ

, i.e. β will vary between 0 and
0.5 depending on the distance d. The conditions to
perform this update are 1) No template has just been
created from the current pair pose/observations (see
description in the above paragraph) and 2) The same
template cannot be updated twice in a row. This last
criterion drastically reduces the risk of drift that oc-
curs when appearance is adapted continuously.

Dealing with Global Illumination Changes. The
appearance model as we described it so far is not ro-
bust to global illumination changes. We deal with this
issue in a coarse way, so that the tracking is not per-
turbed by a sudden change of camera gain or by a
long-term change in the lighting. Before processing
any frame, all intensities are corrected by a constant
value so that the average intensity of the image is the
same as the one in the first frame.

3.3 Dynamical Model

This term defines how large we assume the difference
in the state between two successive frames can be.
The Np components of the states are assumed to be
independent and to follow a constant position model:

p(Xt |X̂t−1) = ∏
i=1:Np

N (Xi,t ; X̂i,t−1,σd,i) (9)

where Xi,t denotes the ith component of Xt , and {σd,i}i
are the noise standard deviations.

3.4 Optimization of the Error Function

In practice we minimize the negative logarithm of the
posterior defined in Eq. (3). Besides, we use our
knowledge of the geometry of the mesh to infer if
some of the feature points are occluded under a pose
Θt . We introduce for each feature i a visibility factor
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Figure 3: Performances of three trackers on the same sequence - Frames 95, 210, 260, 310, 360. From top to bottom: our
tracker (Tracker 1), our tracker without using the side mesh (Tracker 2), our tracker using a continuous adaptation scheme
(Tracker 3). For clarity, in all cases only the face part of the mesh is drawn.

vi(Xt) defined so that it is equal to 0 when the fea-
ture is hidden, and 1 when it is maximally visible:
vi(Xt) = max(0, ~ni,t(Xt).~z).

where ~ni,t(Xt) is the normal to the mesh triangle
to which the point belongs, and~z the direction of the
camera axis. The visibility of a feature point is taken
into account as a weight factor in the likelihood terms
of the error function:

E(Xt) = − ∑
i∈Sstr

vi(Xt) · log(p(Zstr
i,t |Xt))

− ∑
i∈Sint

vi(Xt) · log(p(Zint
i,t |Xt))

−
Np

∑
i=1

log(p(Xi|X̂i,t−1)) . (10)

The downhill simplex method was chosen to per-
form the minimization. This iterative non-linear opti-
mization method has several advantage: it does not re-
quire to derive the error function (which would be dif-
ficult to extract in our case) and it maintains multiple
hypothesis (which ensures robustness) during the op-
timization phase. The dimension of the state space be-
ing quite large, the optimization is done in two steps:
we first run the optimization algorithm to estimate the
pose parameters Θt , then we estimate the whole state
Xt .

4 EXPERIMENTS AND RESULTS

Our implementation of the described algorithm pro-
cesses an average of 3 frames per second. However,
execution time was not our priority and we believe

that the algorithm could run much faster with minor
revisions of the code.

The system was tested on several long video se-
quences in order to evaluate qualitatively its ability
to track challenging head poses and facial actions in
natural conditions and evaluate its stability over time,
which is our primary aim. However, to provide quan-
titative evaluation, we also used the BUFT database
(Cascia et al., 2000) to measure the precision of the
head pose estimation and compare with state-of-the-
art results.

4.1 Qualitative Results on Long Video
Sequences

We tested our system on 8 long video sequences to
evaluate its ability to track in the long term the head
pose and facial actions. Sample results are given on
Fig. 3 and 4, but the quality of the results is better as-
sessed from the videos given as supplementary mate-
rial. The first sequence is the publicly available Talk-
ing Face video from PRIMA - INRIA, a video of a
person engaged in a conversation. The second se-
quence is an extract of a politician’s speech in a TV
broadcast. The six other sequences are videos that we
recently recorded in order to test the system on more
challenging head poses and facial actions.
We compared the performances of three trackers.
Tracker 1 is the system described in this paper.
Tracker 2 is the same as Tracker 1, but with no exten-
sion of the Candide model, i.e. no information is col-
lected on the sides of the head. Tracker 3 is the same
as Tracker 1, but using a recursive adaption method
as proposed in (Lefèvre and Odobez, 2009) instead of
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Figure 4: Sample images from various sequences obtained with our tracker.

Table 1: Comparison on the BUFT database of robustness and accuracy between our approach (in bold) and state-of-the-art
face trackers. The Three first results were extracted from the corresponding papers.

Uniform-light dataset Varying-light dataset
Approach Ps Epan Etilt Eroll Em Ps Epan Etilt Eroll Em

La Cascia (Cascia et al., 2000) 75% 5.3◦ 5.6◦ 3.8◦ 3.9◦ 85% - - - -
Xiao (Xiao et al., 2003) 100% 3.8◦ 3.2◦ 1.4◦ 2.8◦ - - - - -

Morency (Morency et al., 2008) 100% 5.0◦ 3.7◦ 2.9◦ 3.9◦ - - - - -
Adaptation (Lefèvre and Odobez, 2009) 100% 4.4◦ 3.3◦ 2.0◦ 3.2◦ 100% 4.1◦ 3.5◦ 2.3◦ 3.3◦

View-based 100% 4.6◦ 3.2◦ 1.9◦ 3.2◦ 100% 6.2◦ 4.4◦ 2.7◦ 4.4◦

the view-based templates.
Not surprisingly, the three systems perform

equally well on the first two sequences. These two
sequences are useful to evaluate long-term and subtle
lip movements tracking, but the head poses do not go
very far from frontal view. The difference of perfor-
mance between the different approaches shows when
they are tested on the more challenging sequences.
Sample results obtained by the different systems on
the same sequence are illustrated in Fig. 3.

One can notice that Tracker 3 correctly estimates
the movement towards profile view, but looses track
when trying to come back to a more frontal pose. This
phenomenon is actually observed in most of the se-
quences in which such a movement (frontal-profile-
frontal) occurs. Indeed, the information that allows to
follow the movement back to frontal view is mainly
contained by the intensity features on the head side.
As mentioned before, the appearance of these features
varies a lot under such pose variations, and the mem-
oryless adaptive system cannot follow.

Tracker 2 is more robust, since it never looses
track in all our sequences. Despite the absence of
measurements on the head sides, the memory of the
learned appearances under different poses allows the
tracker to find its way under all kinds of head mo-
tions. However, the loss of information compared to
Tracker 1 leads to a lack of precision, and thus to a
less accurate fit. An example can be seen in Fig. 3.
On the second, third and fourth frames the eyes are
not correctly fit, and on the fifth image the mouth and
the eyebrows are not well positioned.

Out of the three systems, Tracker 1 is the one that
demonstrates the best results. The use of a set of
view-based templates over an adaptive template for
the intensity features allows to robustly track chal-
lenging poses, and the extension of the mesh allows

to gather more information and leads to an accurate
tracking. The system can follow both natural and
faked facial action under difficult head poses, as il-
lustrated in Fig. 4.

4.2 Results on the BUFT Database

The BUFT database contains 72 videos presenting 6
subjects performing various head movements (trans-
lations, in-plane and out-of-plane rotations). Each
sequence is 6 seconds long and has a resolution of
320×240 pixels. Ground truth was collected using a
“Flock of Birds” magnetic tracker. The databased is
divided into two datasets. The Uniform-light dataset
contains 45 sequences recorded under constant light-
ing conditions. The Varying-light dataset contains 27
sequences recorded under fast-changing challenging
lighting conditions.

We can define the robustness of a tracker as the
percentage Ps of frames successfully tracked over all
the video sequences. The accuracy of a tracker is de-
fined as the mean pan, tilt and roll angle errors over
the set of all tracked frames: Em = 1

3 (Epan +Etilt +
Eroll). We compared the performances of five track-
ers; the results are shown in Table 1. The “View-
based” approach corresponds to the method described
in this paper. One can notice that the results obtained
by the Adaptation approach and the View-based ap-
proach are very similar. The performances on the
Uniform-light dataset are in accordance with our ex-
pectations; on such short sequences and only a few
profile views we did not expect to observe improve-
ment. On the other hand, we did not expect our sys-
tem to perform as well on the challenging Varying-
light dataset, since it does not incorporate a way to
handle fast illumination variations (appearance model
updates are much less frequent than in the recursive
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case), but in the end our coarse estimation of the
global illumination changes and the update of the set
of templates was enough to successfully track all the
sequences with a small loss of accuracy compared
to (Lefèvre and Odobez, 2009). Remember however
that using this recursive approach in our modeling of-
ten failed on longer sequences, which showed that it
was not really stable. When comparing our approach
to three other trackers in the literature, we notice that
it perform noticeably better than (Cascia et al., 2000)
on both datasets. The performances on the Uniform-
light dataset are comparable to those demonstrated
in (Morency et al., 2008; Xiao et al., 2003). How-
ever, we handle the much more challenging Varying-
light dataset while none of (Morency et al., 2008;
Xiao et al., 2003) demonstrated successfully on this
dataset.

5 CONCLUSIONS

In this paper we introduced a face tracking method
that uses information collected on the head sides to
robustly track challenging head movements. We ex-
tended an existing 3D face model so that the mesh
reaches the ears. In order to handle appearance vari-
ation (mainly due to head pose changes in practice),
our approach builds online a set of view-based tem-
plates. These two distinctive features were proved
to be particularly useful when the tracker has to deal
with extreme head poses like profile views. More-
over we showed the ability of our approach to follow
both natural and exaggerated facial actions. However
we are aware that one limitation of our system is that
there is no mechanism to recover from a potential fail-
ure. One solution would be to add a set of detectors
for specific points that could help to set the system
back on track.
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