SPATIAL COLOR CONFIDENCE FOR PHYSICALLY BASED RENDERING SETTINGS ON LC DISPLAYS

Jörg Koch, Niklas Henrich, Stefan Müller

2010

Abstract

Color confidence is crucial regarding physically-based rendering settings in order to produce most promising visual results. Display characterization and in particular spatial inhomogeneity correction is often neglected in physically-based rendering applications, yet, are important to achieve color confidence. By evaluating relevant display characteristics, this paper recommends a strategy for selecting the most suitable characterization model for a given device. We indicate the importance of correcting spatial inhomogeneity and, on that account, provide an extension to the applied characterization models. All characterization models as well as our proposed extensions are implemented using modern graphics hardware, therefore, applicable to real time applications. The focus is on finding an optimal characterization model which can achieve color confidence across the display while reducing characterization time and effort. All models are created using a common, single point, consumer measurement device and applied to two LC displays.

References

  1. Berns, R., Motta, R., and Gorzynski, M. (1993a). CRT colorimetry. Part I: Theory and practice. Color Research & Application, 18(5).
  2. Berns, R., Motta, R., and Gorzynski, M. (1993b). CRT colorimetry. Part II: metrology. Color Research & Application, 18(5).
  3. Berns, R. S. (1996). Methods for characterizing crt displays. Displays, 16(4):173 - 182. To Achieve WYSIWYG Colour.
  4. Berns, R. S., Fernandez, S. R., and Taplin, L. (2003). Estimating black-level emissions of computer-controlled displays. Color Research & Application, 28(5):379- 383.
  5. Brainard, D., Pelli, D., and Robson, T. (2002). Display Characterization. Encyclopedia of Imaging Science and Technology.
  6. Cho, Y., Im, H., and Ha, Y. (2006). Inverse characterization method of alternate gain-offset-gamma model for accurate color reproduction in display device. Journal of Imaging Science and Technology, 50:139.
  7. CIE (2004). CIE 15: 2004 Colorimetry. Vienna: Central Bureau of the CIE.
  8. Cook, J., Sample, P., and Weinreb, R. (1993). Solution to spatial inhomogeneity on video monitors. Color Research & Application, 18(5).
  9. Day, E. A., Taplin, L., and Berns, R. S. (2004). Colorimetric characterization of a computer-controlled liquid crystal display. Color Research & Application, 29(5):365- 373.
  10. Fairchild, M., , Fairchild, M. D., and Wyble, D. R. (1998). Colorimetric characterization of the apple studio display (flat panel lcd). In LCD), Munsell Color Science Laboratory Technical Report, page http://www.cis.rit.e.
  11. Gibson, J. and Fairchild, M. (2000). Colorimetric characterization of three computer displays (LCD and CRT). Munsell Color Science Laboratory Technical Report, 40.
  12. Hardeberg, J., Seime, L., and Skogstad, T. (2003). Colorimetric characterization of projection displays using a digital colorimetric camera. In Proceedings of SPIE, volume 5002, page 51.
  13. Hung, P. (1992). Tetrahedral division technique applied to colorimetric calibration for imaging media. In Annual Meeting IS&T, NJ, pages 419-422.
  14. Hung, P.-C. (1993). Colorimetric calibration in electronic imaging devices using a look-up-table model and interpolations. Journal of Electronic Imaging, 2:53-61.
  15. Majumder, A. and Stevens, R. (2002). LAM: Luminance attenuation map for photometric uniformity in projection based displays. In Proceedings of the ACM symposium on Virtual reality software and technology, pages 147-154. ACM New York, NY, USA.
  16. Menu, G., Peigne, L., Hardeberg, J., and Gouton, P. (2005). Correcting projection display nonuniformity using a webcam. In Proceedings of SPIE, volume 5667, page 364.
  17. Pharr, M. and Humphreys, G. (2004). Physically Based Rendering: From Theory to Implementation. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.
  18. Post, D. L. and Calhoun, C. S. (1989). An evaluation of methods for producing desired colors on crt monitors. Color Research & Application, 14(4):172-186.
  19. Post, D. L. and Calhoun, C. S. (2000). Further evaluation of methods for producing desired colors on crt monitors. Color Research & Application, 25(2):90-104.
  20. Renani, S., Tsukada, M., and Hardeberga, J. (2009). Compensating for non-uniform screens in projection display systems. In Proceedings of SPIE, volume 7241, page 72410F.
  21. Sharma, G. (2002). LCDs versus CRTs-color-calibration and gamut considerations. Proceedings of the IEEE, 90(4):605-622.
  22. Thomas, J.-B., Colantoni, P., Hardeberg, J. Y., Foucherot, I., and Gouton, P. (2008). An inverse display color characterization model based on an optimized geometrical structure. In Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, volume 6807.
  23. Thomas, J.-B., Hardeberg, J. Y., Foucherot, I., and Gouton, P. (2008). The plvc display color characterization model revisited. Color Research & Application, 33(6):449-460.
  24. Wen, S. and Wu, R. (2006). Two-primary crosstalk model for characterizing liquid crystal displays. Color Research & Application, 31(2).
Download


Paper Citation


in Harvard Style

Koch J., Henrich N. and Müller S. (2010). SPATIAL COLOR CONFIDENCE FOR PHYSICALLY BASED RENDERING SETTINGS ON LC DISPLAYS . In Proceedings of the International Conference on Computer Graphics Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2010) ISBN 978-989-674-026-9, pages 173-180. DOI: 10.5220/0002835001730180


in Bibtex Style

@conference{grapp10,
author={Jörg Koch and Niklas Henrich and Stefan Müller},
title={SPATIAL COLOR CONFIDENCE FOR PHYSICALLY BASED RENDERING SETTINGS ON LC DISPLAYS},
booktitle={Proceedings of the International Conference on Computer Graphics Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2010)},
year={2010},
pages={173-180},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0002835001730180},
isbn={978-989-674-026-9},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Computer Graphics Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2010)
TI - SPATIAL COLOR CONFIDENCE FOR PHYSICALLY BASED RENDERING SETTINGS ON LC DISPLAYS
SN - 978-989-674-026-9
AU - Koch J.
AU - Henrich N.
AU - Müller S.
PY - 2010
SP - 173
EP - 180
DO - 10.5220/0002835001730180