
 
ding problems in our future work. 
REFERENCES 
Rossignac, J.R., Requicha, A.A.G., 1984. Constant-radius 
blending in solid modeling, Computers in Mechanical 
Engineering, 65-73. 
Lukács, G., 1998. Differential geometry of 
1
G  variable 
radius rolling ball blend surfaces, Computer Aided 
Geometric Design 15, 585-613. 
Kós, G., Martin, R.R., Várady, T., 2000. Methods to 
recover constant radius rolling ball blends in reverse 
engineering,  Computer Aided Geometric Design  17, 
127-160. 
Barnhill, R.E., Farin, G.E., Chen, Q., 1993. Constant-
radius blending of parametric surfaces, Computing 
Supple 8, 1-20. 
Choi, B.K., Ju, S.Y., 1989. Constant-radius blending in 
surface modeling, Computer Aided Design 21(4), 213-
220. 
Harada, T., Toriya, H., Chiyokura, H., 1990. An enhanced 
rounding operation between curved surfaces in solid 
modelling,  In Proceedings of CG International '90. 
Computer Graphics Around the World, Singapore, 25-
29 June, pp. 563-588. 
Sanglikar, M.A., Koparkar, P., Joshi, V.N., 1990. 
Modelling rolling ball blends for computer aided 
geometric design, Computer Aided Geometric Design 
7, 399-414. 
D.-N. Ying, E.-J. Wang and K. Xue. Blending in solid 
modelling. Proceedings of First International 
Conference on Computational Graphics and 
Visualization Techniques, Sesimbra, Portugal, 16-20 
Sept. 1991, Vol. 2, pp. 239-247. 
Farouki, R.A.M.T., Sverrisson, R., 1996. Approximation 
of rolling-ball blends for free-form parametric 
surfaces, Computer Aided Design 28(11), 871-878. 
Allen, S., Dutta, D., 1997a. Cyclides in pure blending I, 
Computer Aided Geometric Design 14, 51-75. 
Allen, S., Dutta, D., 1997b. Supercyclides and blending, 
Computer Aided Geometric Design 14, 637-651. 
Shene, C.-K., 1998. Blending two cones with Dupin 
cyclides, Computer Aided Geometric Design 15, 643-
673.  
Bloor, M.I.G., Wilson, M.J., 1989. Generating blend 
surfaces using partial differential equations, 
Computer-Aided Design 21(3), 165-171. 
Bloor, M.I.G., Wilson, M.J., 1990. Representing PDE 
surfaces in terms of B-splines, Computer-Aided 
Design 22(6), 324-331. 
Cheng, S.Y., Bloor, M.I.G., Saia, A., Wilson, M.J., 1990. 
Blending between quadric surfaces using partial 
differential equations, in Ravani, B. (Ed.), Advances in 
Design Automation,  vol. 1, Computer and 
Computational Design, ASME, 257-263. 
Brown, J.M., Bloor, M.I.G., Susan, M., Wilson, M.J., 
1990. Generation and modification of non-uniform B-
spline surface approximations to PDE surfaces using 
the finite element method, in Ravani, B. (Ed.), 
Advances in Design Automation, Vol. 1, Computer 
Aided and Computational Design, ASME, 265-272. 
Li, Z.C., 1998. Boundary penalty finite element methods 
for blending surfaces, I. Basic theory, Journal of 
Computational Mathematics 16, 457-480. 
Li, Z.C., 1999. Boundary penalty finite element methods 
for blending surfaces, II. Biharmonic equations, 
Journal of Computational and Applied Mathematics 
110, 155-176. 
Li, Z.C., Chang, C.-S., 1999. Boundary penalty finite 
element methods for blending surfaces, III, 
Superconvergence and stability and examples, Journal 
of Computational and Applied Mathematics 110, 241-
270. 
Bloor M.I.G., Wilson, M.J., 2000. Generating blend 
surfaces using a perturbation method, Mathematical 
and Computer Modelling 31(1), 1-13.  
You, L.H., Zhang J.J., Comninos, P., 2004a. Blending 
surface generation using a fast and accurate analytical 
solution of a fourth order PDE with three shape 
control parameters, The Visual Computer20, 199-214. 
You, L.H., Comninos, P., Zhang, J.J., 2004b. PDE 
blending surfaces with 
2
C  continuity,  Computers & 
Graphics28(6), 895-906. 
You, L.H. Yang, X.S., Pachulski, M. and Zhang, J.J., 
2007. Boundary Constrained Swept Surfaces for 
Modelling and Animation, EUROGRAPHICS 2007 
and Computer Graphics Forum 26(3), 313-322. 
You, L.H., Yang, X.S., Zhang, J.J., 2008. Dynamic skin 
deformation with characteristic curves, Computer 
Animation and Virtual Worlds 19(3-4), 433-444.
 
SWEEPING BASED CONTROLLABLE SURFACE BLENDING
83