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Abstract: In this paper, we propose a novel sweeping surface based blending method. A generator defined by the 
solution of a vector-valued fourth order ordinary differential equation is swept along the two trimlines, 
which meets the boundary tangent constraints of the primary surfaces at the trimlines. The blending surface 
generated therefore satisfies both the positional and tangential continuity constraints at the interfaces 
between the primary surfaces and the blending surface. Since the vector-valued shape control parameters are 
embedded in the blending surface, its shape can be effectively controlled and manipulated by adjusting 
these vector-valued shape control parameters. Several surface blending examples are given to demonstrate 
the applications of the proposed method. 

1 INTRODUCTION 

In computer-aided design and geometric modeling, 
often it requires to smoothly connect two separate 
surfaces together. This operation is called surface 
blending. The surfaces to be connected are called the 
primary surfaces. The surface which forms a smooth 
transition between the primary surfaces is called a 
blending surface. The interfaces between the 
primary surfaces and the blending surface are called 
trimlins. The geometric properties at the trimlines 
form the boundary conditions, which need to be 
satisfied when a blending surface is generated. 

Surface blending has been a research topic for 
decades especially in computer-aided design. 
Recently, it has found its way to character modeling 
in 3D animation. Several surface blending methods 
have been proposed in the existing literature. 

The rolling-ball method is the most popular. It 
was pioneered by Rossignac and Requicha (1984). 
According to different surface representations, the 
rolling-ball blending method can be classified into 
those of implicit surfaces and parametric surfaces. 
Lukács (1998) discussed how to blend implicit 
surfaces using the rolling-ball method. Kós et al. 
(2000) investigated how to recover constant radius 
rolling ball blends used in reverse engineering. For 
the rolling-ball blending of parametric surfaces, two 
different blends can be identified depending on 

whether the radius of the rolling ball varies or not. 
One is the constant-radius rolling-ball blend method, 
and the other is variable-radius rolling-ball blend 
method. The constant-radius rolling-ball blend 
method is studied by Choi and Ju (1989), Harada et 
al. (1990), Sanglikar et al. (1990), Ying et al. (1991), 
Barnhill et al. (1993), and Farouki and Sverrisson 
(1996). The variable-radius rolling-ball blend 
method is addressed by Harada et al. (1991), Chuang 
et al. (1995), Chuang and Hwang (1997), Chuang 
and Lien (1998), and Hartmann (2000). 

Cyclides are also useful in some simple blending 
tasks such as a cylinder obliquely meeting a plane. 
In general, implicit quartic equations or parametric 
representations in the form of trigonometrical 
parameterisation or rational biquadratic Bézier 
equations are used to describe cyclides. Cyclides 
were investigated by Allen and Dutta (1997a, 
1997b), and Shene (1998). 

Partial differential equations (PDEs) based 
surface blending was pioneered by Bloor and Wilson 
(1989). In the work, a biharmonic-like fourth order 
PDE with one vector-valued parameter was used to 
solve blending problems. The perturbation method 
developed by Bloor and Wilson (2000) is suitable 
for solving more complicated surface blending 
problems than their previously proposed analytical 
solution. In order to improve the capability of PDE 
based surface blending, numerical methods were 
introduced to solve partial differential equations and 
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created blending surfaces. Following their analytical 
work, Bloor and Wilson (1990) developed a 
collocation method based on B-spline representation 
of blending surfaces. Finite difference method was 
proposed by Cheng et al. (1990) to solve a vector-
valued fourth order partial differential equation for 
generation of blending surfaces between two 
cylinders and between a cone and a cylinder. At the 
same year, a B-spline finite element method was 
presented by Brown et al. (1990). Later on, a 
boundary penalty finite element method was 
investigated by Li (1998, 1999) and Li and Chang 
(1999). By studying an efficient semi-analytical and 
semi-numerical method, You et al. (2004a, 2004b) 
used a vector-valued fourth order partial differential 
equation to generate blending surfaces with 
tangential continuity and a vector-valued sixth order 
partial differential equation to create blending 
surfaces with curvature continuity.  

In contrast to the applications of partial 
differential equations in geometric modelling, little 
work exists where ordinary differential equations 
were used for geometric modelling and computer 
animation. Surface creation and manipulation with 
time-independent ordinary differential equations was 
investigated by You et al. (2007). By introducing a 
time variable and considering the dynamic effect, 
time-dependent ordinary differential equations were 
applied in animating skin shapes in character 
animation (You et al. 2008).  

Up to now, we have not found any publications 
investigating ordinary differential equation based 
surface blending. This paper will address this issue. 
It uses the solutions to a vector-valued fourth order 
ordinary differential equation together with the 
boundary conditions to create a blending surface; 
and to control the shape of the blending surface 
through the manipulation of the shape control 
parameters involved in the equation.  

2 MATHEMATICAL MODEL AND 
SOLUTION  

Surface blending with tangential continuity is most 
frequently met in computer-aided design and 
geometric modelling. In this paper, we concentrate 
on such surface blending tasks.  

The boundary conditions for surface blending 
with tangential continuity consist of the positional 
and tangential information of the primary surfaces at 
the trimlines, i.e., boundary curves and boundary 
tangents. They can be represented with the equation 
below. 
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where subscript 0 indicates the boundary 0u  and 
subscript 1 indicates the boundary 1u , those 
without an overbar denote boundary curves, and 
those with an overbar stand for boundary tangents. 

In equation (1), all the vector-valued functions 
)(0 vC , )(0 vC , )(1 vC  and )(1 vC  have three 

components. Taking the vector-valued 
function )(0 vC  to be an example, the three 

components can be written as )(0 vC x , )(0 vC y  and 

)(0 vC z  and ))(),(),(()( 0000 vCvCvCv zyxC . 

A blending surface can be created by sweeping a 
generator along two trimlines and satisfying the 
tangential continuity at the trimlines. If the 
mathematical representation of a blending surface is 

),( vuS , the mathematical representation of the 
generator at the position iv  is ),()( ivuu SG  .  

In order to control the shape of a blending 
surface, we must deform the generator. Through the 
following fourth order ordinary differential equation, 
the generator is related to vector-valued shape 
control parameters which will be used to manipulate 
the generator. 
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where b , c  and d  are vector-valued shape control 
parameters, and )(uG  has three components )(uGx , 

)(uGy  and )(uGz . 

The analytical solution of equation (2) can be 
taken to be 

rueu )(G      (3) 

Substituting equation (3) into (2), the ordinary 
differential equation is changed into an algebra 
equation below 

024  dcb rr    (4) 

Depending on combinations of the vector-valued 
shape control parameters, equation (4) has different 
solutions. Here, we only consider the situation of 

bdc 42  and 0/ bc . 
For this situation, the roots of equation (4) are  

14,3,2,1 qr      (5)   

where  
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)2/(1 bcq     (6) 

With the roots given in equation (5), the solution 
of equation (2) is 

uquququq ueeueeu 1111
4321)(   ccccG  (7) 

where 4321 ,,, cccc  are unknown constants which will 

be determined below. 
The unknown constants in equation (7) can be 

determined by substituting it into boundary 
conditions (1).  

With the obtained solution, we can generate 
blending surfaces constrained by boundary 
conditions (1). 

3 SHAPE CONTROL OF 
BLENDING SURFACES  

In this section, we investigate how the vector-valued 
shape control parameters are used to control the 
shape of blending surfaces through a surface 
blending example below.  

This blending task is to find a transition surface 
which smoothly connects an open surface and a 
cylinder together. The boundary conditions for this 
blending task can be written as 
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where id  (i=0,1,2,3,4), ih  (i=0,1,2), and r  are 

known constants. 
For the blending surface given in Figure 1, 

5001.00 d , 1584.01 d , 4
2 1002.1 d , 5.13 d , 

4775.04 d , 0.2h , 0.221  hh ,  and 0.1r . 

By solving Eq. (2) subjected to boundary 
conditions (8), we obtained the analytical solution.  

Initially, we set the vector-valued shape control 
parameters 1b , and 3c . The blending surface 
indicated in Figure 1a was created. Then, we 
changed the vector-valued shape control parameter 

c  to -15, the blending surface depicted in Figure 1b 
was generated. Finally, we further changed the shape 
control parameter to -30, the blending surface in 
Figure 1b was changed into that in Figure 1c. 
Comparing these figures, we can conclude that the 
vector-valued shape control parameters can be used 
to change the shape of a blending surface but still 
maintain the original boundary conditions of the 
blending task. 

     
       a       b    c 

Figure 1: Different shapes of the blending surface created 
by different vector-valued shape control parameters.  

4 APPLICATION EXAMPLES  

In this section, we give a number of examples to 
demonstrate the applications of the proposed method 
in surface blending. 

The first example is to generate a blending 
surface between the frustum of an irregular conical 
surface and an elliptic cylinder. The boundary 
conditions for this blending task are  
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where R , R , 0u , 01u , 0h , 0h , 1h , 1h , 0x , 0z , a , 

b , and   are known constants. 
Using the same method, we obtained the 

analytical solution of equation (2).  
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Taking the geometric parameters in the above 
equation to be: 2.1 RR , 200  hh , 3.00 u , 

1010  ux , 8.0a , 6.0b , o40 , 5.11 h , 

21 h , and 9.10 z , and setting the vector-valued 

parameters a  and c  to 1, and  b  to -5, the blending 
surface created from the analytical solution is shown 
in Figure 2.  

 

Figure 2: Blending between the frustum of an irregular 
conical surface and an elliptic cylinder. 

The second example is to blend an ellipsoid to an 
elliptic paraboloid. The boundary conditions for this 
blending task are 
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where c , d , d  , 0h , 1h , 1h , a , a , b , b , 2h , 3h , 

3h , 0u , and 1u  are known constants. 

Using the same treatment, we obtained the 
analytical solution of this blending task which was 
used to produce the blending surface shown in 
Figure 3. 

 
Figure 3: Blending between an ellipsoid and an elliptic 
paraboloid. 

The third example is to investigate the blending 
between an elliptic paraboloid and a sphere. The 
boundary conditions for this blending task have the 
form of 
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where a , a , b , b , 0h , 1h , 1h , R , R , 0u , and 01u  

are known constants. 
With the method discussed above, the blending 

surface was obtained from equation (2) and the 
above boundary conditions. It was depicted in 
Figure 4. 

 

Figure 4: Blending between an elliptic paraboloid and a 
sphere. 

The fourth example is to blend an open surface 
to a plane at a specified pedal-like curve. The 
boundary conditions for this surface blending take 
the form of 

0                                                        

cos           )cos(cos                  

sin            )sin(sin           1

                           e                  

cos                  

                  cos)cosh(                  

sin                  

            sin)sinh(          0

3
13

2
82

1
81

2.030.2
03

5
2

4762

5
1

43211





































u

x
hx

va
u

x
vabvax

va
u

x
vabvaxu

e
u

x
hx

va
u

x

v avaax

va
u

x

vaavaaxu

 (12) 

where ia  (i=1,2,…, 8), 0h , and 1h  are known 

constants. 
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Using the analytical solution obtained from 
equation (2) and the above boundary conditions, the 
blending surface was created and indicated in Figure 
5. 

 

Figure 5: Blending between an open surface and a plane at 
a specified pedal-like curve. 

The fifth example is to generate a blending 
surface between a circular cylinder and an elliptic 
hyperboloid of two sheets. The boundary conditions 
for this blending task are given below. 
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where R , a , a , b , b , 0h , 0h , 1h and 1h  are 

known constants. 
The blending surface produced from the solution 

to equation (2) subjected to the above boundary 
conditions was given in Figure 6. 

 

Figure 6: Blending between a circular cylinder and an 
elliptic hyperboloid of two sheets. 

The last example is to smoothly connect two 
intersecting cylinders together. The boundary 
conditions for this blending task can be written as 
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where s , 0h , 1h , 1l , t , and r are known constants. 

Using the same treatment, analytical solution of 
equation (2) under boundary conditions (14) was 
obtained which was used to generate the blending 
surface indicated in Figure 7. 

 

Figure 7: Blending between two intersecting cylinders. 

5 CONCLUSIONS 

With our new surface blending method, a sweeping 
surface is generated along two trimlines. The key 
task is to ensure that this sweeping surface satisfies 
the tangential continuity constraints at the trimlines. 
The shape of the generator is controlled by the 
vector-valued shape parameters associated with the 
fourth order ordinary differential equation. This 
makes the blending surfaces controllable and 
applicable for different conditions and applications. 
The validity of the proposed method is demonstrated 
with application examples given in this paper.  

Since our proposed blending method is based on 
the closed form solution to a vector-valued fourth 
order ordinary differential equation, it is simple and 
efficient in creating blending surfaces. We intend to 
implement it into a user-friendly interface for 
interactive shape manipulation of blending surfaces 
and  apply  this  method to tackle more surface blen- 
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ding problems in our future work. 
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