USING COMPUTER ANIMATIONS IN THE CLASSROOM

Keywords:

Abstract:

George F. Riley
Georgia Institute of Technology, Atlanta, GA. U.S.A.

Animations, Classroom teaching, Teaching programming.

We present several animation tools that we have used in the classroom to help reinforce some fundamental
concepts of computer architecture, computer programming, and computer networking. When presenting such
concepts to undergraduate students, the concept of concurrency has been particularly difficult to explain and
demonstrate. When two more things are happening at the same time, student often struggle to grasp what this
actually means. Additionally, when teaching introductory programming classes, we believe it is important
for students to understand how their program is converted into a larger number of simpler steps resulting in
assembly language or machine code instructions. Attempts to show these concepts using traditional chalkboard
methods or static viewgraphs have not worked well. To help present these concepts in a more understandable
way, we have created several computer animations that we have shown to students in the classroom to illustrate
visually these fundamental concepts. Further, our animation programs can create movie output files that

students can download and view as often as desired.

1 INTRODUCTION

The use of computers and computation has become
fundamental to all engineering disciplines. All un-
dergraduate engineering students are required to take
CS1371 - Computing for Engineers and all undergrad-
uate Electrical and Computer Engineering (ECE) stu-
dents must take CS1372 - Program Design for En-
gineers. The CS1371 class introduces students to ba-
sic programming concepts using the Matlab program-
ming language, and gives a solid understanding of
simple concepts such as variable declarations, arrays,
loops, and subroutines. The second class, CS1372,
uses the C programming language to introduce more
advanced concepts such as memory addressing, point-
ers, structures, and recursion. We typically teach sev-
eral thousand students annually in CS1371, and sev-
eral hundred annually in CS1372. Recently, we de-
cided to introduce the concepts of concurrency and
multi-programming in one section of the 1372 class,
since multi-core architectures have become perva-
sive and are expected to continue for the foreseeable
future. Additionally, we concluded that explaining
“how the computer works™ at a lower level (e.g. as-
sembly language versus high—level languages) would
be of benefit, particularly when discussing race con-
ditions and interlocking.

When preparing lecture materials for these new
topics, we realized that we needed more than just a

F. Riley G. (2010).
USING COMPUTER ANIMATIONS IN THE CLASSROOM.

set of static handout slides, since we need to illustrate
the concepts of concurrency (things happening at the
same time) and sequential actions (such as assembly
language instructions executing one after the other).
Thus we undertook to develop a set of computer pro-
grams that both simulate the action of some funda-
mental process, and animate it visually to help stu-
dent “see” what is happening. Further, we designed
these animation programs to be flexible enough to
create animations of specific actions based in either
command line arguments or data input files. For ex-
ample, our CPU animator actually reads in an assem-
bly language program (in human readable format) and
then executes the specified program. As another ex-
ample, our animation of parallel bubble sort is driven
by command line arguments specifying the size of the
array to be sorted, and the number of CPU’s assigned
to sort the array. Finally, our animation programs out-
put a set of individual time—stepped images that can
be combined into a single movie file in one of several
video formats.

We will present some details regarding several dif-
ferent animation programs we created in subsequent
sections. In some cases, individual snapshots of the
animation will be shown here with discussion of the
animations used.

473

In Proceedings of the 2nd International Conference on Computer Supported Education, pages 473-476

DOI: 10.5220/0002806404730476
Copyright © SciTePress



CSEDU 2010 - 2nd International Conference on Computer Supported Education

2 RELATED WORK

The use of simulations and animations to increase
understanding of fundamental principles is of course
new new and has been used for decades. As far back
as the 1970’s the Control Data Corporation PLATO
system (Control Data Corporation and PLATO Learn-
ing Inc., 2009) made extensive use of graphics, an-
imation, and simulation to help teach undergradu-
ate and graduate students. However, the use of the
PLATO in educational settings was primarily used for
“drills” with customized feedback to the users, rather
than being used in the classroom. One notable excep-
tion was the CDC Assembly Language Simulator for
PLATO, that allowed users to write, execute, and de-
bug programs both in the CDC CPU language and the
CDC PPU language.

More recently, Jerding et. al (Jerding et al., 1997)
have discussed using visualization to observe the flow
of a given program, primarily to assist in debug-
ging and performance analysis. Earlier, Stasko et.
al (Stasko, 1991) designed the Tango system, that pro-
vides a simple and easy-to-use interface for instruc-
tors to create animations of algorithm execution. The
Tango system produced animations similar to our par-
allel bubble sort animation discussed later.

Carothers et. al (Carothers et al., 1997) created a
visualization environment that we used to observe the
execution of a parallel and distributed discrete event
simulation environment. Their PvaniM system was
primarily intended to allow a user to observe possible
performance bottlenecks in an optimistic distributed
simulation, and to compare various middleware ap-
proaches to obtain optimal performance.

The commonly used SPIM (Larus, 2009) MIPS
simulation tool is widely used to help students design,
implement, and debug assembly language programs.
While the SPIM environment does have a comprehen-
sive and friendly graphical user interface, it does not
animate the actual execution steps within an instruc-
tion (such as computing the effective memory address
and fetching operands from memory).

The preceding is only a small sampling of a large
number of computer—based simulations that have
been frequently used to provide detailed insight into
computer and computer program operation. We have
developed simulations and animations that are specifi-
cally designed to help students understand fundamen-
tal concepts in computer architecture, algorithms, and
networking.

474

3 ANIMATION DESCRIPTIONS

This section describes in detail several of the simu-
lation and animation tools we have created recently.
We have focused our design and features specifically
for use by classroom instructors during the lectures, to
give students additional visual clues for the individual
concept being presented.

3.1 CPU Animations

Given the current popularity of multi—core architec-
tures, such as the Intel Core 2 Duo, we decided that
an introduction to parallel computation was needed
very early in the Electrical Engineering curriculum.
In order to provide a deep understanding of the is-
sues in parallel programs, such as race conditions, in-
terlocks, deadlocks and livelocks, we decided to in-
troduce students to lower—level assembly language in
the first weeks of CS1372. Our objective was not to
teach the students any individual assembly language
such as Intel 1386, but rather teach the fundamental
concepts of memory accesses, register to register op-
erations, and branching instructions. Without this de-
tailed understanding of what is happening “under the
covers”, it is hard for students to realize the conse-
quences of seemingly innocuous instructions like “i
= 1 + 1” in a multi—processing environment. In or-
der to illustrate these assembly language principles,
we developed the CompSim program.

Since we were not interested in any one particu-
lar machine language, we decided the simplest and
easiest approach was to define our own assembly lan-
guage. We included the usual arithmetic instructions,
load and store instructions (with both “load from im-
mediate” and “load from memory”), and the usual
conditional and unconditional branching instructions.
Even though we only supported 20 instructions, they
are sufficiently capable to design and implement any
arbitrarily complex program. The key feature of
CompSim was of course the animation output.

First we will discuss and show the Single CPU
simulation supported by CompSim. A snapshot of
the initial state of CompSim is shown in figure 1(a).
Shown clearly are the CPU components (Instruction
Register, Program Counter, and the eight Registers),
the data memory, and the instruction memory. The
question mark characters shown in several of the reg-
isters indicates an uninitialized value. This particular
“program” calculates the sum and average of an ar-
ray of numbers, with the length of the array found in
a specific memory location. Next, figure 1(b) shows
the instruction fetch cycle, which reads the next in-
struction at the address specified by the PC register,



USING COMPUTER ANIMATIONS IN THE CLASSROOM

Computer Computer
Data Instruction Data Instruction
Memory Memory Memory
100| 1 Length 200| LDI,R0,0 100] 10 Length
104) 7 d 204| LDM,R1,Length 104| 87 d
108( 123 208| LDI,R2,0 108 123
112[ 234 212 LDI,R3,0- 112 234
11e[ 400 216 LDM,R4R3,d 116[ 400
120 234 220 ADD,R2,R2,R4 120] 234
124 124 1
128 1213 128 1213
132 232 132 232
136 0 236 BLT,RO,R1,216 136| 0 BLT,ROR1,216
140 1213 240[_DIV.RO.R2,R1 1401213 LOMRER3,d DIV,RO,R2,R1
144) ? Sum CPU 244] _STM.RO.Avg 144] 87 Sum CPU STM,R0,Avg
148 7 Avg Current Instruction 248] HLT 148 2 Avg Current Instruction 248] HLT
[ ? ] [ BLT,RORL,216 ]
PC PC
[ 200 ] [ 216 ]
Registers Registers
0| ? 0| 1
1 ? 1 10
2| 7 2| 87
3 7 3 4
4 ? 4 87
5| ? 5 ?
6| ? 6 ?
7| ? 7| ?
(a) CompSim Initial Conditions (b) CompSim Instruction Fetch
Computer Computer
Data Instruction Data Instruction
Memory Memory
100| 10 Length 100| 10 Length 200|
104 87 d 104] 87 d 204
108 12 108] 123 208|
112 23 112 234 212
116[ 40 LDM,R4.R3,d 116]__400 216|
120 23 220 ADD,R2,R2,R4 120] 234 123 220|
124 1 224] STM,R2,Sum 124 1 224
128 1213 128 1213 228
132|232 132 232 232
136 [ 236 BLT,RO,R1,216 136 0 236 BLT,RO,R1,216
1401213 pt 240[_DIV,RO0,R2.R1 140 1213 240[_DIV,RO,R2,R1
144 87 Sum 0\ CPU 244 144 87 Sum CPU 244 STM,R0,Avg
148] ? Avg Curreat Instruction 248| HLT 148] ? Avg Current Instruction 248| HLT
[ [OMR4.R3,d ] [ (DM.R4,R3.d ]
PC PC
[ 220 | [ 220 ]
Registers Registers
0 0|
1 10 1 10
2| 87 2| 87
3 4 3 4
4| 87 4 87
5| ? H ?
6] ? 6 ?
7| 7 7| ?

(c) CompSim Memory Request

(d) CompSim Memory Reply

Figure 1: CompSim Single CPU Animations.

address 216 in this case. Figure 1(c) shows the anima-
tion of the execution of the LDM, R4, R3, d instruction.
This particular instruction reads the memory location
specified by the address d (104 in this example) plus
the value found in register R3 (4 in this case). Thus
the memory address 108 is requested. Not shown
of course is the animation, which animates the value
108 leaving the CPU and arriving at the data mem-
ory unit. Finally, figure 1(d) shows the value 123 be-
ing read from memory and being loaded in register

R4. The CompSim animation will continue reading in-
structions and executing the instruction, including of
course the looping instructions, until the program ter-
minates with the HLT instruction at address 248.

As we mentioned, one of the primary reasons for
using CompSim in the classroom was to illustrate the
concept of “things happening at the same time” that is
needed to understand and create parallel programs. To
this end, the CompSim animation supports the simul-
taneous simulation of two CPUs. There is no techni-

475



CSEDU 2010 - 2nd International Conference on Computer Supported Education

cal reason why CompSim could not simulate and ani-
mate a larger number of processors, but the animation
and screen real estate would be too cumbersome to be
meaningful.

We have also use a similar approach to show the
operation of a multi-core system, with two CPU’s op-
erating simultaneously and independently. Our ani-
mations show clearly that we have two distinct and
separate Central Processing Units, each with the own
and independent program counter (PC), Current In-
struction register, and the set of eight general-purpose
registers.

One particular animation shows the two CPUs ex-
ecuting independent programs with disjoint memory
footprints for each. We have several other example
programs, including a true multi—threaded program
where both CPU’s are executing from the same in-
struction memory and have potential access to the
same data memory locations. We believe this helps
with understanding the problems of race conditions
and mutual exclusion that are fundamental to multi—
core programming.

Another item of interest for the CompSim program
is that it models the Intel addressing approach of indi-
vidual byte addresses, even though virtually all mem-
ory accesses are on 4-byte boundaries. The memory
addresses shown in CompSim advance by 4 bytes for
each consecutive memory address, as is done in Intel
architectures.

4 CONCLUSIONS

We have presented details of several animations that
we used in a classroom environment when teaching
introductory “C” programming to freshmen at Geor-
gia Tech. These animations were created in an at-
tempt to increase student’s understanding of both the
low—level fundamental operation of computer hard-
ware, as well as understanding how algorithms can
operate “in parallel” to produce more timely results.
We used these animations in the classroom in a re-
cent section of our CS1372 class. Further, we posted
movie files of several of the animations for students
to download and observe as needed.

Unfortunately we only have anecdotal evidence
of the effectiveness of this approach. We intention-
ally did not pursue approval from our Institutional Re-
view Board (IRB), nor did we compare performance
of these students to a possible control group in other
sections. The reason was simply that we were not
confident that we could create the necessary software
to produce the animations on a timely basis. Infor-
mal feedback from students indicated a good appre-

476

ciation and understanding of the issues presented, but
of course such evidence is by no means conclusive.

REFERENCES

Carothers, C. D., Topol, B., Fujimoto, R. M., Stasko, J. T,
and Sunderam, V. (1997). Visualizing parallel sim-
ulations in network computing environments: a case
study. In WSC ’97: Proceedings of the 29th confer-
ence on Winter simulation, pages 110-117, Washing-
ton, DC, USA. IEEE Computer Society.

Control Data Corporation and PLATO Learning Inc. (2009).
The PLATO system. http://www.plato.com.

Jerding, D. F., Stasko, J. T., and Ball, T. (1997). Visualiz-
ing interactions in program executions. In ICSE '97:
Proceedings of the 19th international conference on
Software engineering, pages 360-370, New York, NY,
USA. ACM.

Larus, J. (2009). A MIPS32 simualtor. Software on-line:
http://pages.cs.wisc.edu/ larus/spim.html. Microsoft
Research.

Stasko, J. T. (1991). Using direct manipulation to build al-
gorithm animations by demonstration. In CHI ’91:
Proceedings of the SIGCHI conference on Human fac-
tors in computing systems, pages 307-314, New York,
NY, USA. ACM.



