
A VISUAL METHODOLOGY
FOR THE DESIGN OF COURSE CONTENTS

A Case Study in Communications Software

Jesús Martı́nez
Computer Science Departament, University of Málaga, Spain

Keywords: Content development, UML, Model-driven architecture.

Abstract: This paper proposes a novel methodology for the design of courses visually. Our method takes borrowed
techniques from Software Engineering such as the Unified Modeling Language (UML) and Model-driven
Architecture (MDA). The main goal of this approach is the creation of generic courses that may be refined
later depending on different educational contexts. Therefore, teachers will have automatic support from tools
in order to schedule lectures, activities or resources. This experience is being carried out in the context of a
Communications Softwarecourse for different undergraduate degree programs at the University of Málaga.

1 INTRODUCTION

During the last thirty years, distributed services have
evolved in the same way as computer networks and
protocols have. Part of the success of these newly
emerging applications is due to the use of high-level
standards and middleware which allow developers to
abstract specific features of transport protocols and
execution platforms. However, the availability of
these resources may lead to the design of poor per-
formance communications software (due to the abuse
of application protocols and Web Services, misunder-
standing of the Socket API,...). It is worth noting that
many networked applications are thought to be effi-
cient only because less time was spent on their devel-
opment, thus some important details regarding robust-
ness and scalability may not have been considered.
Our students must understand that in order to design
good communications software they will have to ob-
tain a good founding in Concurrent Programming,
Protocol Engineering and Software Engineering. For
this reason, it is important that institutions and teach-
ing staff must carefully consider what, when, and how
to teach these subjects.

For instance, a Communications Software syl-
labus usually focuses on different learning objectives
if it belongs to different programs (Computer Engi-
neering, Electrical Engineering), degrees (undergrad-
uate, masters of science) and also depends on the
number of hours allocated to the course. Moreover,

there are other factors that influence coursework plan-
ning, for instance, if the students skills on program-
ming languages are not as expected or if they lack an
in-depth knowledge of operating systems or concur-
rency. In these cases, there will be more introductory
lectures, usually at the expense of other material later
due to lack of time. Therefore, the original syllabus
becomes obsolete. This situation applies to some of
these courses in the Electrical Engineering and Com-
puter Engineering programs existing in the Univer-
sity of Malaga where students may have taken dif-
ferent courses previously: rigid planning significantly
affects the academic performance of some students.

Designing a course taking all these constraints
into consideration would be a challenge for any
teacher so it would be more beneficial to handle the
learning objectives, lectures and activities at different
levels of detail (from more general to more specific
ones), where each level would deal with specific re-
quirements according to the constraints considered.
Undoubtedly, in order to obtain a model for design-
ing courses in this way, we should apply a rigorous
methodology to support the description, manipulation
and refinement of each level, until the most suitable
course is obtained.

This paper presents a visual approach for the de-
sign of contents and learning activities for a course.
We will use Software Engineering methods and tools
such as the Unified Modeling Language (UML) (Ob-
ject Management Group, c) to describe subjects, con-

434
Martínez J. (2010).
A VISUAL METHODOLOGY FOR THE DESIGN OF COURSE CONTENTS - A Case Study in Communications Software.
In Proceedings of the 2nd International Conference on Computer Supported Education, pages 434-437
DOI: 10.5220/0002792204340437
Copyright c© SciTePress

 Object Oriented Programming

 Design Patterns

Procedural Programming

 Communication Patterns

Concurrent Programming Operating Systems

Protocol Engineering

 Client/Server

TCP/IP

<<import>>

<<import>>

<<import>>

<<import>><<import>>

<<import>>

<<import>>
<<import>>

<<import>>

Figure 1: A visual diagram describing relationships among subjects.

cepts and their relationships visually. We will also use
UML to define activities and their sequencing during
the course. It is worth noting that there are only a
few approaches which have employed UML to de-
scribe some concepts related to education (Nodenot
et al., 2004; Marlowe et al., 2005). We also propose
to design courses in a generic way, that is, we will
use some guidelines available in the Model-driven Ar-
chitecture (MDA) (Object Management Group, a) to
transform a generic (and visual) UML course in order
to obtain specific subjects according to different ed-
ucational contexts or the student backgrounds. MDA
transformation rules will also be useful to obtain other
resources from our visual courses, such as documen-
tation for teachers, subject coordinators or students
(the syllabus, mandatory exercises, etc.). Courses de-
signed using this approach are stored in XML for-
mat, it being possible to manipulate them automati-
cally using well-known CASE tools, such as Eclipse
(The Eclipse Foundation, 2009).

2 APPLYING UML AND MDA
FOR DESIGNING COURSES

Communications Softwareand related subjects are
part of the Computer and Electrical Engineering cur-
ricula available in the University of Málaga. This
section presents a case study for the design ofCom-
munications Softwarerelated courses using UML and
MDA concepts in two steps. First, we will define
subjects, their concepts and relationships in a visual
(and generic) way. We will also describe a set of
activities to be carried out (sequentially or in paral-
lel) within every subject. Second, we will define the

appropriate transformation rules to obtain a specific
curriculum (for concepts and activities), taking into
account different educational contexts or the student
backgrounds.

2.1 Designing Generic Courses

In order to use our visual approach, subjects in the
curriculum are first selected following the Univer-
sity guidelines. Once we have the set of learning
objectives to cover, we will design generic subjects,
the concepts to cover and activities. Initially, we
will depict high-level Class Diagrams to model these
subjects which will include contents units. We will
also indicate relationships between subjects (includ-
ing those belonging to other existing curricula in the
program). Fig. 1 shows an example of this descrip-
tion, where each subject constitutes a UML pack-
age. In the figure, available packages refer to Socket
TCP/IP programming, Client/Server architecture or
specific design patterns for communications (Schmidt
and Huston, 2003) contents. The subject called Proto-
col Engineering is based on teaching typical concepts
needed to build protocol stacks in layers: messages,
queues, timers or state machines, among others. The
relationship between subjects (or content units) will
be explicitly depicted in the diagram, beginning with
the basis set by Procedural Programming, taught in
the first courses. An<<import>> relation indicates
that one subject requires the previous knowledge ob-
tained in another one. This dependence relationship
is clarified inside each subject/package using a Class
Diagram where topics or concepts will be described
as UML classes, allowing the connections with pre-
vious concepts through class relationships. Fig. 2
depicts a simplified scenario where some classes de-

A VISUAL METHODOLOGY FOR THE DESIGN OF COURSE CONTENTS - A Case Study in Communications
Software

435

IPC

 (Concurrent Programming)

Comm. End Point

+IP addr
+port

UDP

+send()
+reception()

TCP

+buffering
+OOB data

+send()
+reception()

Passive TCP

+backLog()
+accept()

Socket

+init()
+close()

Active TCP

+connection()

Net DB

Figure 2: A generic model to describe Socket concepts.

fine concepts of the TCP/IP subject. The figure shows
the concept ofSocket, which is derived from a previ-
ous concept calledIPC (inter-process communication
concept), which was learned previously within the
Concurrent Programming subject. TheSocketcon-
cept will be specialized inUDP andTCP sockets. For
each class, the attributes are used to list the main im-
portant features of the concepts. For example, when
defining aCommunication End Point, one IP ad-
dress and one transport port are required. Procedural
concepts are included as operations within the class.
We have included the basic operations that students
will use when working with Sockets. The diagram in
fig. 2 also uses more UML notation for our descrip-
tion purposes. For instance, classes in italics (UML
abstract classes) will now mean that the concepts they
represent need to be extended/refined by other classes
(that is, they need more explanation). This refinement
is shown in fig. 2, where the IPC concept is special-
ized as a Socket and, then as a TCP socket, which
is also specialized in a passive and active one. As
commented before, this example describing a subject
can be considered a generic model, and can be refined
later.

2.2 Scheduling Lectures and Activities

Once we have designed our subjects and concepts us-
ing Class Diagrams, the next step in our methodol-
ogy consists of organizing all activities which lead
to obtaining the proposed learning objectives. Thus,
we will add UML Activity Diagrams to our general
model. Fig. 3 shows an example of a diagram pre-
pared to be used for teaching the concepts related to
the TCP/IP subject. An action could be fully iden-
tified by its name. Furthermore, control flow makes
it easy to move forward through the syllabus. For ex-

 Application data framing

 Basic usage

 TCP-UDP relationship

 Network queries

 TCP basic exercise UDP basic exercise

Sockets Definition

Figure 3: Sequence of activities involved in a subject.

ample, if we are now in the action calledBasic Usage,
then we will execute two exercises in parallel, for ex-
ample, one exercise programming TCP sockets (in the
lab) and another one programming UDP sockets (at
home).

2.3 Obtaining Specific Courses

In our methodology, an educational itinerary will be
the result of a (parameterizable) transformation pro-
cess applied to a generic course in order to obtain an-
other more concrete. Therefore, the teacher could be
able to react to different constraints such as the stu-
dent backgrounds, and subsequently preparing differ-
ent learning strategies (modifications of the generic
elements designed in our visual subject). This trans-
formation process will mean the existence of an MDA
transformation template, which will be applied to our
existing general models. The model obtained after
the transformation will be a specific one, now includ-
ing modifications in the original diagrams. A typical
scenario of application for an educational itinerary,
would consists of insertions, modifications and re-
movals of actions in existing Activity Diagrams, or
content features and explanations in Class Diagrams.
In the proposedCommunications Softwarecourse, we
have considered at least three different itineraries:
one that uses the C language and a UNIX platform,
one that uses multiplatform C++ libraries and spe-
cific Design Patterns (Schmidt and Huston, 2003) and
the last one using the Java language. For instance,
fig. 4 shows a partial view of applying the so-called
C/UNIX educational itinerary to the Class Diagram
for TCP/IP concepts of fig. 2. In the figure, ba-
sic concepts on the left part become the ones on the
right, which specify that the concepts will focus on

CSEDU 2010 - 2nd International Conference on Computer Supported Education

436

TCP

+PUSH
+URGENT

+send()
+recv()

TCP

+buffering
+OOB data

+send()
+reception()

Passive TCP

+backLog()
+accept()

Passive TCP

+listen()
+accept()

Active TCP

+connection()

Active TCP

+connect()

Figure 4: Obtaining a specific learning context.

Figure 5: Using a profile with our elements.

Berkeley Sockets for UNIX systems (and its common
interface with send(), recv(), connect(), listen(), ac-
cept(), and other system calls). In the same way, these
itineraries could be used to modify basic activities for
concrete actions (lectures, practical exercises oriented
to programming languages and platforms) along with
the whole course planning.

2.4 Supporting Tools

In order to help automatic tools to detect and manipu-
late our proposed visual elements (subjects, concepts,
activities,...), we are developing a UML Profile. This
UML mechanism defines a so-called Domain Spe-
cific Language (DSL), giving the possibility to rede-
fine the semantics of any UML elements as our ap-
proach requires. Therefore, UML elements redefined
using a Profile will include specificstereotypetags to
mark them and guide other processing tools such as
the transformation engines. The most suitable stereo-
types for our approach are being tested at this mo-
ment. Fig. 5 show an example of some stereotypes
proposed. The left column depicts a special package
with the <<subject>> semantics that could contain
some<<concept>> classes, whereas the right column
depicts two possible activities including a lecture and
homework. These activities also include tags related
to their duration (in minutes) and marking (valid for
the homework). It is worth noting that the use of pro-
files has also been used in other e-Learning contexts,
as presented in (Nodenot et al., 2004).

Therefore, a tool which supports our approach
will have to include graphical interfaces to load, edit
and save visual courses (stored in XMI format (Ob-
ject Management Group, b)) and will have also to in-
clude features to create educational itineraries, where
target elements to transform could be specified easily.
These itineraries should be described visually in order
to hide the complexities of a transformation language
from teachers. Currently, we are implementing this
graphical tool in Eclipse.

2.5 Conclusions and Future Work

This paper has presented a visual methodology for
the design of courses and curricula using UML and
MDA. Our aim is also to facilitate the coordination
tasks and to detect inconsistencies and overloads of
work on student activities during the courses.

ACKNOWLEDGEMENTS

The author would like to thank ETSI Informática and
the University of Málaga for their support during this
experience.

REFERENCES

Marlowe, T., Ku, C., and Benham, J. (2005). Acm sigcse
bulletin, vol-37(1). InDesign patterns for database
pedagogy: a proposal.

Nodenot, T., Marquesuzaa, C., Laforcade, P., and Sal-
laberry, C. (2004). Model based engineering of learn-
ing situations for adaptive web based educational sys-
tems. InProc. 13th WWW Alternate.

Object Management Group. MDA Guide Version 1.0.1.

Object Management Group. MOF 2.0/XMI Mapping,
v2.1.1.

Object Management Group. UML Version 2.1.2.

Schmidt, D. and Huston, S. (2003).C++ Network Pro-
gramming Volume 2: Systematic Reuse with ACE and
Frameworks. Addison-Wesley.

The Eclipse Foundation (2009). Eclipse IDE. Available at
http://www.eclipse.org/.

A VISUAL METHODOLOGY FOR THE DESIGN OF COURSE CONTENTS - A Case Study in Communications
Software

437

