
MapO2R: MAPPING OBJECT ORIENTED
APPLICATIONS TO RELATIONAL DATABASES

A Case of Study

J. J. Astrain, A. Córdoba and J. Villadangos
Dept. Ingenierı́a Matemática e Informática, Universidad Pública de Navarra, Campus de Arrosadı́a, 31006 Pamplona, Spain

Keywords: Object mapping, Relational databases, Case study.

Abstract: This paper presents an open education tool which enables students to acquire best practices on object ori-
ented design and programming. This tool analyzes different mapping strategies to store objects into relational
databases. The tool evaluates the performances of different mapping strategies offering a measure of their costs
in terms of time spent in database operations. Students can select and evaluate their object-relational mapping
proposals in order to discover the best design and implementation solutions for different case studies.

1 INTRODUCTION

Object-relational mapping consists on transforming
between object and relational modeling approaches
and between the systems that support them. Object-
relational mapping requires the understanding of both
object and relational modeling, their similarities and
their differences. When dealing with real systems
implementing object and relational models, we of-
ten discover deficiencies and inconsistencies with the
theoretical relational approaches and a lack of stan-
dardization concerning object modeling. Thus object-
relational mapping becomes a complicated task.

In object-relational databases (RDBMSs) the data
resides in the database and is manipulated collec-
tively with queries in a query language, while object-
oriented databases (OODBMSs) are essentially a per-
sistent object store for software written in an object-
oriented programming language, with a programming
API for storing and retrieving objects. Querying sup-
port is very limited in OODBMSs, while the object re-
trieval from RDBMSs requires hard mapping efforts.
Object-relational mapping is used to map object ori-
ented programming to RDBMSs.

In object-relational mapping products, the abil-
ity to directly manipulate data stored in a relational
database using an object programming language is
called transparent persistence (Barry, 2005). Most of
these products deal with the problem of translating
objects to relational tables and viceversa, but they use
different mappings to tackle the existing impedance
between object oriented programming and relational

databases. Some problems related to this impedance
arrives (Objectmatter, 2005): a) while objects have
state, behavior, identity and data, an RDBMS stores
data only; b) while objects are traversed using direct
references, RDBMS tables are related to values in for-
eign and primary keys; c) current RDBMS have no
equivalence to object inheritance for data and behav-
ior; and d) the goal of relational modeling is to nor-
malize data, whereas the goal of object-oriented de-
sign is to model a business process by creating real-
world objects with data and behavior.

Benefits of using object oriented applications (as
encapsulation, isolation, easy business logic mainte-
nance or component reusability) advise to continue
using object oriented designs. But relational models
offer an interesting way to store and manage knowl-
edge information that must be considered. Relational
theory is concerned with knowledge and object tech-
niques are concerned with behavior. Mapping be-
tween the two models requires deciding how the two
worlds can refer to each other. Furthermore, relational
databases have been deficient for multiple decades in
correctly implementing the core concepts of relational
theory, and object modeling is not standardized. Be-
cause of these deficiencies object-relational mapping
is more complicated than it needs to be. A good map-
ping can significantly reduce development time oth-
erwise spent with manual data handling in SQL and
JDBC, and it also can significantly reduce the time
spent by the RDBMS when accessing the stored data.

This paper presents an open education tool
(MapO2R) which enables students to understand the

335
J. Astrain J., Córdoba A. and Villadangos J. (2010).
MapO2R: MAPPING OBJECT ORIENTED APPLICATIONS TO RELATIONAL DATABASES - A Case of Study.
In Proceedings of the 2nd International Conference on Computer Supported Education, pages 335-340
DOI: 10.5220/0002767903350340
Copyright c© SciTePress



object-relational mapping. A tool which allows defin-
ing and analyzing different mappings over different
RDBMSs providing a benchmark between different
mapping proposals. This tool allows students to select
those mappings that perform better for each problem.

The paper is organized as follows: section 2 de-
scribes the concepts that students would acquire using
MapO2R; section 3 analyzes different mapping tech-
niques (their benefits and drawbacks); section 4 de-
scribes the internals of the tool; section 5 is devoted
to present and analyze a case study where different
mappings are compared over relational databases; and
finally, conclusions and references end the paper.

2 LEARNING CONCEPTS

The tool allows the student acquiring some essential
concepts. Each object has a unique object identi-
fier (OID), which distinguishes it univocally from all
other objects. At the creation step, a unique and uni-
vocal OID is assigned to each object, whether its state
happens to be equal to other objects previously cre-
ated. Thestateof an object is the set of current values
of the attributes associated with a given identity. Ob-
jects can have a single state through their whole life or
can go through many state transitions. Due to object
encapsulation, the state is an abstraction which is only
visible by examining the behavior of the object. Both
OID and object state are stored into the RDBMS.

Objects provide an abstraction that clients can in-
teract with. Thebehaviorof an object is the collec-
tion of provided interactions (called methods or oper-
ations and, collectively, an interface) and the response
to these method calls (or messages). Interactions with
an object must be through its interface and all knowl-
edge about an object is from its behavior (returned
values or side effects) to the interface interaction.

Encapsulationprovides an abstraction that makes
possible the user to use this abstraction without know-
ing the implementation of the object. The user can
known the state and behavior of an object, but not
their implementation. That ensures an easy way to
develop complex applications, using modular tech-
niques and the power of object oriented design. Other
concepts concerning relations among objects that are
commonly used are inheritance, association and ag-
gregation relationships.Inheritanceapplies to types
(the specification of an interface that objects will sup-
port) or to classes (that define the implementation for
multiple objects). When applied to types, inheritance
specifies that an object can be used just like an ob-
ject of both types. All objects that have a certain type,
have also the new inherited type. When applied to

classes, inheritance specifies that a class uses the im-
plementation of another class with possible overriding
modification implying type inheritance or not.Asso-
ciation is related to objects that establish a relation-
ship (1-N, M-N) between them. Andaggregationim-
plies that an object is part of another object.

In the relational side, concepts as attribute, rela-
tionship, domain and tuple must be also introduced.
A relationshipis a truth predicate that defines what
attributes are involved in the predicate and what the
meaning of the predicate is. Anattribute identifies
a name that participates in the relationship and spec-
ifies the domain from which values of the attribute
must come. Adomainis simply a data type and atu-
ple is a truth statement in the context of a relation. A
tuple has attribute values which match the required at-
tributes in the relation and that state the condition that
is known to be true. The state of an object is directly
related to the attribute values of a certain tuple or a set
of them. The object type determines the domains of
all the attributes of a tuple. Concepts as aggregation,
association and inheritance concern the relationships.

3 OBJECT-RELATIONAL
MAPPING

Performance is limited by other secondary goals as
flexibility and maintenance of the relational storage,
as redundancy and fault tolerance, as space con-
sumption and many others. The number, frequency
and distribution of the read/write operations has also
an important contribution in the final performance
result obtained for a certain mapping schema. The
application style determines the read/write operations
that are performed over the persistent storage system
implemented over an RDBMS. MapO2R considers
different approaches and strategies that can be applied
when mapping object-oriented applications to re-
lational schemas as Keller presented in (Keller, 1997).

Aggregation can be mapped using two different
strategies:

1. Single Table Aggregation: it is the optimal solu-
tion in terms of performance since only one table
is accessed to retrieve an aggregating object with
all its aggregated objects. As drawback, it can in-
troduce data redundance.

2. Foreign Key Aggregation: it increases the
number of database operations since it needs a
join operation or at least two database accesses.
This schema follows the normalization theory,
but it can provide poor results when access-

CSEDU 2010 - 2nd International Conference on Computer Supported Education

336



ing/retrieving aggregated objects is performed to-
gether with the aggregating object. This strategy
is more flexible and scalable, since it allows an
easy way to support new aggregated objects. As
drawback, aggregated objects are not automati-
cally deleted on deletion of the aggregating ob-
jects, the mapping must to deal with this task.

Inheritance can be mapped using three different
strategies:

1. Single Table Inheritance: as happened in the sin-
gle table aggregation case, it is the optimal so-
lution in terms of performance, but it introduces
data redundance, poor scalability, contradicts the
normalization theory and can introduce data in-
consistency when performing schema evolutions.

2. Inheritance Tree: it minimizes or eliminates data
redundance. This schema provides a high scala-
bility degree. The main drawback is the number of
database operations needed to insert, delete or up-
date objects. So, performances decrease notably.

3. Path Table: it makes easy to perform path navi-
gation across the objects against data redundancy
and performances. Parent attributes are duplicated
in each inheritance class.

An important factor is the inheritance hierarchy
depth. Some solutions that work acceptable with flat
inheritance hierarchies become inefficient and com-
plicated with very deep inheritance hierarchies. Poly-
morphic read operations support and space storing re-
duction obtained when using multiple tables inheri-
tance introduce low or very low write/update perfor-
mances. Mapping solutions that clutter a single ob-
ject’s data across several tables might be fast for poly-
morphic reading, although they are very hard to main-
tain in case new object attributes are added or existing
object attributes are deleted.

Schema evolution becomes a nightmare when
multiple inheritance is allowed. When considering
unique inheritance, the use of a unique table in a
schema evolution implies the modification of the
number and/or types of the fields of a table. This fact
force to realize a big effort to ensure the consistency
of the table. The system must ensure that previous
and new data is consistently stored. When using
multiple tables, scalability is easier to implement
although the hierarchy depth can become a problem.
Path navigation is complex and expensive in terms
of database operations. The use of a inheritance
tree strategy minimizes the data redundancy existent
in the single table inheritance and in the path table
strategies, but is very difficult to perform path nav-
igation across object attributes since a great number
of complex queries must be performed. Note that

multiple inheritance is not considered.

Association can be mapped using different strategies:

1. Foreign Key Association: using two tables for a
1:N association, where the N is mandatory.

2. Association Table: using a new table to map N:M
associations.

Association presents the same drawbacks and ad-
vantages previously described for the aggregation
scenario, but involving two o three tables respectively.

4 MapO2R INTERNALS

MapO2R is a JAVA application that interacts with
some RDBMSs located in different sites. Both com-
puters (client and server) are interconnected by a
switched Gigabit Ethernet LAN. MapO2R supports
the following RDBMSs: MS Access 2007, Oracle 9i,
SQL Server 2008, MySQL 5.1 and PostgreSQL 8.4.1.
Due to its modularity and scalability, MapO2R can
support other RDBMSs by adding the corresponding
plugin. MapO2R follows a client-server architecture.

MapO2R acts on two stages: the generation and
the benchmarking (queries) stages. In the genera-
tion stage, the student selects an RDBMS and the
number of registers to consider (in the domain [500,
2,000,000] registers). Those registers are generated
automatically in order to obtain the benchmarking of
all the mappings described in Section 2. The bench-
marking stage provides the results obtained including
the average, the harmonic average, the median and
the standard deviation. Furthermore, the scale can be
either linear either logarithmic. Results can be pro-
vide in terms of figures or tables. The time is al-
ways measured in milliseconds. In order to obtain
reliable benchmarking results, each query (INSERT,
SELECT, DELETE and UPDATE) is performed fol-
lowing the number of iterations selected by the stu-
dent (ten iterations by default).

MapO2R does not maintain a JDBC connection
pool. Database session is closed and reopened for
each iteration. If a student selects an UPDATE query
over a set of 1,000 registers, with 25 iterations, the
session between the the application and the RDBMS
server is closed an reopened 25 times. The results ob-
tained from each set of queries are stored in a filesys-
tem in order to allow the comparison among the per-
formances provided for both different mapping strate-
gies and RDBMSs. MapO2R allows the visualization
of the results and also allows exporting the benchmark
results to CSV, plain text or MS Excel formats.

MapO2R: MAPPING OBJECT ORIENTED APPLICATIONS TO RELATIONAL DATABASES - A Case of Study

337



5 CASE STUDY

MapO2R is used on theAnalysis and Design Software
course of theComputer Sciencedegree (Software En-
gineering) at the State University of Navarra. It has
been validated during the courses 07/08 and 08/09 by
54 students. Students have answered a questionnaire
concerning MapO2R and its relevance in the student’s
learning process at the end of each course, . In this
section we include a practical session example, and
the evaluation of the tool by students.

5.1 Practical Session

This practical session focus on the analysis and eval-
uation of the mapping schemas proposed by students.
First of all, students analyze a given case study and
with the aid of MapO2R obtains the different mapping
schemas. Then, students select the databases where
they want to apply the mappings. Results obtained al-
low the validation of the students mapping proposals.

Figure 1 shows the different GUIs that allow the
configuration of the benchmark: automatic or man-
ually execution of the benchmark, automatic bench-
mark settings, number of registers to be evaluated and
database to be used, respectively. As it can be appre-
ciated in Figure 1 (upper right corner), the student can
select the mapping related to each association, aggre-
gation or inheritance operation, and even select the
kind of SQL query (select, update, insert and delete).

Figure 1: Benchmark configuration.

We present the results obtained for a basic case
study, where aggregation, inheritance and associ-
ation relationships are evaluated over a MySQL
database. The practical sessions take place in a
laboratory equipped with 25 PCs with Windows XP
(SP2), where 20 of them are used by students (with

MapO2R) and the rest host the different databases.

Figure 2: Select queries for the aggregation schema, follow-
ing a certain criterion (up) or not (down).

Aggregation: Figure 2 presents the time spent when
performing select queries following a certain criterion
or not. Select queries performed following a certain
criterion have a lower cost than recovering all the ob-
jects (all the rows of the table), and the use of the for-
eign key table strategy reduces notably the time spent
when looking for a certain field only stored in one of
the tables. When the query is performed over fields
contained in both tables, the use of a single table per-
forms better than de foreign key strategy. The queries
involved in the comparison are:

SELECT * FROM Clients SELECT Clients.ClientID, Clients.Surname,

Clients.Name, Clients.TotalAmmount, Adress.Street, Adress.ZIPCode, Adress.City

FROM Address INNER JOIN Clients ON Address.AdressID = Clients.BillAdress

The cost of inserting new objects following a cer-
tain criterion is higher than the simple insertion (with-
out criteria), as it can be seen in Figure 3. The queries
involved in the comparison are:

INSERT INTO Clients VALUES (’123456789’,’Manuel’,’Ruiz Lopez’, 1500,

’Main street’,’Madrid’,’28115’,’Oak’,’Guadalajara’,’19030’)

INSERT INTO Address VALUES (’123456789’,’Main street’, ’Madrid’,’28115’)

INSERT INTO Address VALUES (’987654321’,’Oak’, ’Guadalajara’, ’19030’)

INSERT INTO Clients VALUES (’123456789’,’Manuel’, ’Ruiz Lopez’, 1500,

’123456789’, ’987654321’)

Figure 3: Insert queries for the aggregation schema.

Figure 4 shows that the deletion cost is lower
when using the foreign key aggregation. It is inter-

CSEDU 2010 - 2nd International Conference on Computer Supported Education

338



esting to remark that the deletion of certain rows fol-
lowing a certain criterion has a higher cost than the
deletion of all the table.

Figure 4: Delete queries for the aggregation schema.

Inheritance: Figure 5 presents the median time spent
in select queries for the three inheritance mappings
proposed. Symbolsx andN (lowest one) represent the
values obtained for a unique table inheritance map-
ping,♦ and+ for the inheritance tree mapping, and◦
andN for the inheritance path mapping. Higher costs
are related to the path strategy, followed by the tree
strategy. The use of a unique table has the lowest cost.

Figure 5: Select queries for the inheritance schema.

As it can be seen in figure 6, the time spent in in-
sert operations does not depend on the number of reg-
isters (objects), and is almost constant. On this figure,
the lowest curve represents the cost of the insertion
when using a unique table strategy. So the path and
tree strategies have a higher cost in terms of time than
the unique table strategy.

Figure 6: Insert queries for the inheritance schema.

Figure 7 presents the median time spent in delete
queries for different inheritance mappings. On this
figure, symbols• and� represent the values obtained
for a unique table inheritance mapping,N andx for
the inheritance tree mapping, andH and♦ for the
inheritance path mapping. For each case, the upper
value corresponds to the deletion of all the registers

of a table (all the objects in the object oriented do-
main), and the lower one corresponds to the deletion
of certain registers-objects that verifies a certain crite-
rion. As it can be observed, deletion costs (measured
in time terms) increase linearly with the number of
registers (objects) managed, although the tangents are
very different.

Figure 7: Delete queries for the tree inheritance mappings.

Association: Figure 8 (up) shows the linear cost of
select queries, where the foreign key strategy per-
forms better than the association table strategy. The
deletion of a certain object has a higher cost when
we follow a certain criterion for the table association
strategy when the field to compare is located in the
association table. The use of the foreign key strat-
egy is faster than the use of an association table. Fig-
ure 8 (down) shows that differences between using
both strategies is not relevant when performing inser-
tions.

Figure 8: Select, delete and insert queries (respectively)for
the association schema.

MapO2R: MAPPING OBJECT ORIENTED APPLICATIONS TO RELATIONAL DATABASES - A Case of Study

339



5.2 MapO2R Evaluation

We have performed some questionnaires to students
in order to validate the accuracy of MapO2R. Students
are asked for the goodness and usefulness degree of
the tool MapO2R in their learning process.

The questionnaire consists on 20 questions con-
cerning many aspects of the tool and the mapping
learning. Students are ask about their opinion about
the use of the MapO2R tool (interactivity, ease of use,
user-friendly...) and about the mapping learning us-
ing MapO2R (does MapO2R help to understand the
different mapping strategies?). Each question is rated
in the interval [0,20], where 0 represents a total dis-
agreement and 20 a total agreement.

Figure 9 shows the overall assessment of the stu-
dents to the MapO2R tool. The 87% of the students
consider MapO2R a useful tool to learn the object-
relational mapping.

Figure 9: Overall assessment to MapO2r.

As Figure 10 shows, a 93% of the students con-
sider that MapO2R is a good tool for the learning of
the object-relational mapping. The 91% (49/5) of the
students declare they would use again the tool.

Figure 10: Learning degree for the object-relational map-
ping using MapO2R.

Figure 11 shows that the inheritance is more diffi-
cult to understand instead the aggregation or the asso-
ciation. Students consider the inheritance mappings
more complex and hard to implement than associa-
tion and aggregation. The 33% of the students con-
sider the inheritance very complex and 46% consider
it complex. So, the 79% of the students find the in-
heritance difficult and complex, while only 81% and
64% of the students find the association and the ag-
gregation (respectively) easy and simple.

The analysis of the questionnaires shows that
MapO2R is suitable for learning object-relational
mappings. Due to its ease of use, suitable graphical
interface, the ability to play practical scenarios and
the ability to import and export the results, students
consider MapO2R a valid learning tool.

Figure 11: Learning complexity degree.

6 CONCLUSIONS

This paper presents an open education tool, MapO2R,
which enables students to acquire best practices on
object-relational mapping. Students can evaluate ex-
perimentally different mapping strategies, identify-
ing the most adequate for each proposed scenario.
MapO2R implements the mapping language defined
by Keller (Keller, 1997). MapO2R has been evalu-
ated favorably by the students that have used it.

ACKNOWLEDGEMENTS

Research partially supported by the Spanish Research
Council under research grant TIN2008-03687.

REFERENCES

Barry, D. K. (2005). Transparent persistence in
object-relational mapping. http://www.service-
architecture.com/object-relational-mapping/articles/
transparentpersistence.html.

Keller, W. (1997). Mapping objects to tables - a pattern
language. InProc. Of European Conference on Pat-
tern Languages of Programming Conference (Euro-
PLOP)97.

Objectmatter (2005). Object relational mapping strategies,
http://www.objectmatter.com/vbsf/docs/maptool/
ormapping.html.

CSEDU 2010 - 2nd International Conference on Computer Supported Education

340


