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Abstract: Network motifs are small connected subnetworks within a larger network that occur in statistically 
significant quantities and may indicate functional regions of the network.  Network motif software tools 
employ algorithms that compare a network to randomly generated networks in order to identify subnetworks 
that occur in frequencies higher than would be expected by random chance.  The transcriptional regulation 
network of E. coli has been represented as a network and evaluated using both full enumeration and an edge 
sampling algorithm.  Several significant network motifs were identified, including feedforward loops and 
bipartite graphs.  This paper applies both full enumeration and a different sampling algorithm, randomized 
enumeration, to the E. coli network using the newer software tool FANMOD.  Evaluating the E. coli 
transcriptional regulation network with FANMOD also identified feedforward loops and bipartite graphs as 
significant network motifs.  Sampling identified fewer and less significant motifs than full enumeration, 
however, sampling enables the evaluation of larger subgraph sizes. 

1 INTRODUCTION 

Graph theory provides a useful mathematical model 
to represent many systems as graphs composed of 
vertices, or nodes, and edges that connect the pairs 
of vertices.  Network motifs are small connected 
subnetworks within a larger network that occur in 
higher frequencies than would be expected in 
random networks (Kashtan 2004, Schreiber and 
Schwobbermeyer 2005, Wernicke and Rasche 
2006).  Network motifs are the building blocks of 
networks, providing information about the behavior 
or design of the network; they may identify 
functional regions within biological systems.  A 
range of network motif detection software tools have 
been developed to analyze network systems and to 
identify network motifs.  Systems ranging from 
social networks to biological systems have been 
represented as graphs and analyzed for network 
motifs using these software tools.  However, there is 
still room for improvement in network motif 
detection software tools. Since the most common 
network motifs in biological systems are different 

than those found in other systems, it may be useful 
to optimize software tools specifically for network 
motif detection in biological systems. This could 
improve both outcome and performance.  

1.1 Network Motifs and E. Coli 

The transcription regulation networks of E. coli and 
Saccharomyces cerevisiae have been evaluated with 
network motif detection software tools by Alon and 
Lee respectively.  There are three significant motif 
patterns in the transcriptional regulation network of 
E. coli.  Each of these network motifs becomes 
apparent while comparing subnetworks of a 
particular size in the E. coli network with those of 
the same size in randomly generated networks.  
Significant motif patterns in E. coli depend on the 
number of nodes within the system.  For a graph 
with only three nodes, the only significant network 
motif found by the Alon team is the feedforward 
loop.  The feedforward loop is characterized by three 
nodes; X, Y and Z.  A transcription factor X 
regulates a second transcription factor Y, which both 
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jointly regulate the operon Z.  Alon terms the X the 
‘general transcription factor’, Y the ‘specific 
transcription factor’ and Z the ‘effector operon’.  
Feedforward loops are also significant network 
motifs in networks with more than three nodes; in 
this case, transcription factors X and Y jointly 
regulate one or more operons Z(1)…Z(n).  The 
feedforward loop has other significant 
characteristics, of which the most important is 
coherence.  Shen-Orr describes coherence, “A 
feedforward loop motif is ‘coherent’ if the direct 
effect of the general transcription factor on the 
effector operons has the same sign (negative or 
positive) as its net indirect effect through the 
specific transcription factor. For example, if X and 
Y both positively regulate Z, and X positively 
regulates Y, the feedforward loop is coherent. If, on 
the other hand, X represses Y, then the motif is 
incoherent” (Shen-Orr, Shai, Milo, Mangan and 
Alon, 2002).  Most feedforward loops are coherent 
(85%).  The feedforward loop occurs much more 
often within the E. coli transcriptional regulation 
network than would be expected by random chance.  
Shen-Orr suggests that the coherent feedforward 
loop has a significant functional structure; the ability 
to act as a circuit that rejects transient activation 
signals from the general transcription factor and 
responds only to persistent signals, while at the same 
time allowing a rapid system shut down through the 
control of the general transcription factor. This 
structure is useful way to coordinate a rapid 
response to an external signal.  Also, the abundance 
of coherent feedforward loops over incoherent loops 
suggests a functional design.  Lee’s research on the 
transcriptional regulatory networks of 
Saccharomyces cerevisiae suggest that the 
feedforward loop is also a significant network motif 
within that system (Lee et al., Science 02).  This 
suggests that the feedforward loop may also be 
significant within other biological system networks.  
Additional network motifs emerge as subgraphs of 
increasing numbers of nodes are evaluated.  When 
subgraphs of four nodes are evaluated, the 
overlapping regulation motif becomes apparent.  In 
the overlapping regulation motif, two operons are 
regulated by the same two transcription factors.  
This type of overlapping regulation motif is a 
smaller and specific form of dense overlapping 
regulons (DORs), which are discussed later. 

 Other significant motif patterns within the 
transcriptional regulation network of E. coli can be 
seen when graphs with higher numbers of nodes are 
evaluated.  When subgraphs of larger than three 
nodes are evaluated, the single input module (SIM) 

network motif becomes significant.  The SIM is 
defined by a set of operons that are controlled by a 
single transcription factor, where all of the operons 
are under control of the same sign (positive or 
negative).  There is no additional transcriptional 
regulation of the operons.  The transcription factors 
involved in SIM systems are mostly autoregulatory 
(70%).  Most of the autoregulatory transcription 
factors are autorepressive.  There is a higher rate of 
autoregulatory transcription factors within SIM 
motifs than in the overall system.  In the E. coli 
transcription regulation network, 70% of the 
transcription factors involved in SIM motifs are 
autoregulatory, compared to 50% in the overall 
dataset.  SIMs are found in systems of genes that 
function stochiometrically to form a protein 
assembly (e.g. flagella) or a metabolic pathway (e.g. 
amino acid biosynthesis).  SIM systems may involve 
temporal ordering, where the first gene activated is 
the last to be deactivated.   

Dense Overlapping Regulons (DORs) are a type 
of network motif found within E. coli when 
evaluating larger subnetworks.  DORs are composed 
of layers of overlapping interactions between 
operons and a group of input transcription factors 
organized in a bipartite graph that is much more 
dense than corresponding structures in randomized 
networks.  DORs are not a homogenous mesh of 
interconnections; rather, they contain several loosely 
connected, internally dense regions of combinatorial 
interactions.  The regions are somewhat overlapping, 
and different criteria can yield slightly different 
groupings.  One way to quantify DORs is by the 
frequency of pairs of genes regulated by the same 
two transcription factors.  Shen-Orr uses a clustering 
approach to define DORs.  An algorithm detects 
locally dense regions in the network with a high 
ratio of connections to transcription factors.  Within 
the E. coli network, there are six DORs, where 
operons in each DOR share common biological 
functions.  Usually, every output operon is 
controlled by a different combination of input 
transcription factors, but there are multi-input 
modules in rare cases where several operons in a 
DOR are regulated by precisely the same 
combination of transcription factors with identical 
regulation signs (termed ‘multi-input modules’.  
DORs are significant in the larger structure of 
biological networks; they seem to partition the 
operons into biologically meaningful combinatorial 
regulation clusters.  DORs also govern how several 
different network motifs connect together within the 
larger network.  Shen-Orr describes patterns in the 
overall structure of the E. coli network, “A single 
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layer of DORs connects most of the transcription 
factors to their effector operons.  Feedforward loops 
and SIMs often occur at the outputs of these DORs.  
The DORs are interconnected by the global 
transcription factors, which typically control many 
genes in one DOR and a few genes in several 
DORs” (Shen-Orr et al., Nature 02).  Over 70% of 
the operons are connected to DORs; the rest of the 
operons are in small disjoint systems, with most 
disjoint systems having only one to three operons.   

1.2 Motif Detection Tools 

There are a number of software tools dedicated to 
network motif detection.  Most of them employ 
different algorithms to achieve this task.  In order to 
find network motifs, the software tool must find 
which subgraphs occur in the input network and in 
what number, determine which subgraphs are 
isomorphic (equivalent), and determine which 
subgraph classes of isomorphic graphs are displayed 
at higher rates than in random graphs.  This means 
random graphs must also be generated.  FANMOD 
is a newer motif detection tool that uses a random 
enumeration sampling algorithm.  FANMOD uses 
the NAUTY algorithm (McKay, 1981) in order to 
group isomorphic graphs together into subgraph 
classes.  It also supports colored graphs, a useful 
feature that other software tools do not support.  
Support of colored graphs is a highly useful feature 
for motif detection in biological networks because 
elements that should not be connected to one 
another, such as in a bipartite system, can be 
assigned the same color.  This is a computationally 
effective way to avoid the generation of unnecessary 
random graphs for comparison.  FANMOD employs 
a randomized enumeration algorithm called RAND-
ESU.  It works by first taking an algorithm for full 
enumeration and then modifying it to skip over some 
subgraphs randomly as the algorithm is executed.  
FANMOD also has the advantage of running much 
faster than similar programs.  Other software tools 
include MAVISTO, which visualizes occurrences of 
a motif in a network by a force-directed graph 
algorithm, and MFINDER, which uses a different 
algorithm called edge sampling (Wernicke and 
Rasche, 2006).  Edge sampling works by first 
selecting a random edge in the input graph, and then 
the edge is randomly extended until a connected 
subgraph with the desired number of vertices is 
obtained.  However, edge sampling has distinct 
disadvantages.  Wernicke has shown that the edge 
sampling algorithm results in a sampling bias, and 

that the bias cannot be estimated from the number of 
edges neighboring the oversampled subgraph alone. 

1.3 This Study 

Enumeration of the subgraphs of a particular size 
within a larger graph is a computationally expensive 
and time consuming task.  As the size of the 
subgraphs increases, the process becomes unwieldy 
and current algorithms take far too long to execute.  
Two of the major aspects involved in improving 
network motif detection tools are improving full 
enumeration algorithms for faster runtimes, and 
improving the sampling of motifs so that the 
algorithm is able to identify those motifs most likely 
to be functionally relevant.   The transcriptional 
regulation network of E. coli has been analyzed by 
Shen-Orr using a Markov-chain algorithm to 
generate random networks for comparison.  
FANMOD uses the previously discussed RAND-
ESU randomized enumeration algorithm to generate 
random networks.  We chose to evaluate Shen-Orr’s 
E. coli transcriptional regulation network data with 
FANMOD in order to see if other algorithms would 
also identify the network motifs the Shen-Orr team 
found significant.   

   The study consisted of analyzing Shen-Orr’s 
E. coli transcription regulation network using the 
FANMOD motif detection software tool. We 
downloaded the E. coli transcription regulation 
network data from the Uri Alon lab website to use as 
the input file for FANMOD.  Next, we ran both the 
full enumeration and sampling algorithms with 
FANMOD for subgraphs of increasing size, from 
three nodes to five nodes.  The sampling algorithm 
takes less time to execute, but provides less 
information and identifies fewer network motifs than 
full enumeration.  Sampling improves runtime, but 
at the loss of the identification of functional network 
motifs.  The fact that the FANMOD sampling 
algorithm returns far fewer significant network 
motifs than full enumeration shows that there is 
room to improve the sampling algorithm.  However, 
the more important quality in a sampling algorithm 
is not so how many motifs it identifies compared to 
full enumeration, but whether it is able to identify 
those motifs that are most functionally relevant.  
There are a few features that could improve the user 
experience of FANMOD.  FANMOD generates 
diagrams of the most significant network motifs.  It 
would be useful to be able to highlight substructures 
within these diagrams; for example, to highlight all 
feedforward loops within subgraphs of a particular 
size larger than three.  Also, network motif detection 
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tools could allow the user to specify the types of 
network motifs that person is most interested in 
seeing.  For example, the ability to show graphs that 
are bipartite or nearly so (80-90% of edges 
connecting different colors) would be useful for 
those studying such systems.   

2 RESULTS 

FANMOD provides several statistical values 
alongside significant network motifs.  The Z-score is 
one way of determining how significant a network 
motif is. The Z-Score is the original frequency 
minus the random frequency divided by the standard 
deviation.  Motifs with the highest Z-scores are the 
most significant, so the following tables of motifs 
are organized in order of decreasing Z-score.  P-
Values range from zero to one; smaller p-Values 
indicate more significant motifs because a smaller p-
value indicates that the motif occurs more often in 
the network than would occur by random chance.  
The p-Value is calculated in the following way, 
“The p-Value of a motif is the number of random 
networks in which it occurred more often than in the 
original network, divided by the total number of 
random networks.”   

The following tables show the results for full 
enumeration and sampling of the E. coli network, 
enumerating subgraphs of size three.  All graphs are 
ordered by descending Z-Score, so that the most 
significant network motifs are listed first.  Full 
enumeration of the network at subgraph size three 
identified two significant network motifs, whereas 
the sampling algorithm just identified one significant 
network motif.  The full enumeration data shows the 
average values from three trials.  Two of the five 
trials for the sampling algorithm of subgraph size 
three resulted in no identification of significant 
network motifs.  The sampling data shows the 
average values from the remaining three trials. 

The table below shows the three most significant 
network motifs of subgraph size four identified 
using full enumeration.  All of the seven significant 
network motifs for subgraph size four using full 
enumeration are bipartite graphs or contain at least 
one feedforward loop.  The two motifs with the 
highest Z-scores contain two feedforward loops, and 
the third most significant is a bipartite graph.  The 
remaining four motifs contain one feedforward loop.  
For sampling of subgraph size four, only one trial 
out of three trials identified any significant network 
motifs at all.  The one network motif identified was 

the sixth most significant according to the full 
enumeration data.   

Table 1: Significant network motifs identified using 
FANMOD, full enumeration and subgraph size 3 (n=3). 

(Three trials) Feedforward 
Loop 

 

Bipartite 
Graph 

 
Average 
Frequency 
[Original] 

0.80676% 91.76% 

Average 
Mean-
Frequency 
[Random] 

0.14468% 
 

91.216% 
 

Average 
Standard-
Deviation 
[Random] 

0.00058784 0.00048442 

Average  
Z-Score 

11.264 11.221 

Average  
p-Value 

0 0 

Table 2: Significant network motifs identified using 
FANMOD, sampling and subgraph size 3 (n=3).  

(Three Trials) Feedforward 
Loop 

 
Average Frequency 
[Original] 

0.99259% 

Average Mean-
Frequency [Random] 

0.10969% 
 

Average Standard-
Deviation [Random] 

0.0015703 

Average Z-Score 5.6127 
 

Average p-Value 0.003667 
 

The full enumeration algorithm identified the 20 
most significant network motifs for subgraphs of 
size five.  Each of the three trials identified 20 
network motifs; 22 distinct motifs total.  All of the 
22 motifs are either bipartite graphs or contain at 
least one feedforward loop.  Two of the 22 network 
motifs contain three feedforward loops and three of 
the motifs are bipartite graphs.  Ten of the motifs 
contain two feedforward loops, and the remaining 
seven graphs contain only one feedforward loop 
each.  The table below shows the two network 
motifs found with full enumeration of subgraph size 
five that contain three feedfoward loops.  The first 
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network motif listed was found to have the highest 
Z-score for all three trials, and the second was in the 
top ten motifs in every trial.  The next table shows 
the three bipartite graphs.   

Table 3: Significant network motifs identified using 
FANMOD, full enumeration and subgraph size 4 (n=4).   

Network 
Motif 

Average 
Z-score 

Motif Rank 
Trial 1 Trial 2 Trial 3 

 

24.927 1 1 1 

 

15.641 
 

2 2 2 

 

10.533 
 

3 3 3 

Table 4: Significant network motifs identified using 
FANMOD, sampling and subgraph size 4 (n=4).   

Network Motif 

Frequency [Original] 0.62167% 

Mean-Frequency 
[Random] 

0.050375% 

Standard-Deviation 
[Random] 

0.00074301 

Z-Score 7.6889 

p-Value 0.001 

The sampling algorithm identified five 
significant motifs in one trial and ten in another.  
The third trial identified no significant motifs.  The 
two trials together identified 12 distinct motifs.  9 of 
these 12 motifs are included in the 22 motifs 
identified using full enumeration.  Of the 12 motifs 
identified using sampling, one motif contains three 
feedforward loops, one motif contains two 
feedforward loops, and seven contain one 
feedforward loop.  The remaining three motifs 
contain no feedforward loops.  The second motif 
containing three feedforward loops in the table 
below was also identified in one of the sampling 
trials, ranked first with a Z-score of 10.528.  As can 
be seen in the table below, the average Z-score for 
the same motif identified using full enumeration is 
16.047. 
 

Table 5: Significant network motifs containing three 
feedforward loops, identified full enumeration and 
subgraph size 5 (n=5).   

Network 
Motif 

Average 
Z-score 

Motif Rank 
Trial 1 Trial 2 Trial 3 

206.22 1 1 1 

16.047 6 8 9 

Table 6: Significant network motifs that are bipartite 
graphs, identified full enumeration and subgraph size 5 
(n=5).   

Network 
Motif 

Average 
Z-score 

Motif Rank 
Trial 1 Trial 2 Trial 3 

17.474 7 7 6 

11.31933 
 

10 11 10 

5.6591 
 

18 19 17 

3 CONCLUSIONS 

Every single significant network motif identified 
using full enumeration for subgraph sizes of three, 
four and five is either a bipartite graph or contains 
one or more feedforward loops.  Most of the 
network motifs identified using sampling also 
contain one or more feedforward loops.  The data 
supports the notion that the feedforward loop and 
bipartite graphs are statistically significant structures 
in the transcriptional regulation network of E. coli.  
The data supports Shen-Orr’s research that shows 
the feedforward loop as the most significant network 
motif at subgraph size three.  Additionally, the 
second network motif that was detected using full 
enumeration is a bipartite graph, suggesting that 
bipartite graphs are significant in the E. coli 
transcription regulation network.  Many of the 
network motifs found to be significant from the 
enumeration and sampling of larger subnetwork 
sizes contain feedforward loops or are bipartite 
graphs.  When the subgraph size is increased to four, 
the full enumeration data shows that the two most 
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significant network motifs each contain two 
feedforward loops.  The third most significant motif 
is the previously-described overlapping regulon 
motif, a bipartite graph.  All of the remaining 
identified motifs for full enumeration of size four 
graphs contain one feedforward loop with one 
additional edge.  Overall, six out of the seven 
significant motifs contain at least one feedforward 
motif, with the two most significant motifs 
containing two feedforward loops.  The remaining 
motif is a bipartite graph.  This further supports that 
feedforward loops and bipartite systems are 
significant within the E. coli transcription regulation 
network.  The sampling data for subgraphs of size 
four only identified one of the significant motifs, the 
sixth most significant according to the full 
enumeration data.  It consists of a feedforward loop 
with one additional edge.  The most significant 
motifs at subgraph size five also contain feedforward 
loops, with those ranked highest containing two or 
three feedforward loops.  The sampling data showed 
fewer network motifs than full enumeration in all 
cases.  For subgraphs of sizes four and five, the most 
significant motif identified by sampling was not 
represented in the top five most significant motifs 
identified using full enumeration.  Sampling has 
major shortcomings when compared to full 
enumerations; it identifies both fewer and less 
significant network motifs.  Overall, the FANMOD 
data shows that feedforward loops and bipartite 
graphs are significant network motifs in the 
transcriptional regulation network of E. coli.    

4 FUTURE WORK 

There are several ways to improve network motif 
detection tools.  One way to improve sampling 
results in FANMOD could be to alter the default 
probability settings in order to better favor sampling 
the network more evenly.  This is discussed in detail 
in  Section 5 of the FANMOD manual.  The default 
settings are 0.5 for all probability fields, but 
organizing the probability fields with high 
probabilities in the left fields and lower probabilities 
in the right fields increases the chance that the 
network will be sampled more evenly.  However, 
preliminary results for sampling using the 
probabilities 0.8, 0.5 and 0.3 for subgraph size three 
resulted in identification of the feedforward loop 
with a lower average Z-score from three trials 
(4.8304) than sampling subgraphs of size three with 
the probabilities 0.5, 0.5, 0.5 (Z-score 5.6127).  This 
indicates that the feedforward loop was actually 

found to be less significant using the alternative 
descending probabilities.  More trials could be 
conducted using subgraphs of different sizes to 
determine whether an altered probability pattern 
improves the results from sampling compared to 
those from full enumeration. 

FANMOD also supports several models for 
randomized network generation.  Our study used the 
local constant model, where directed edges are 
exchanged with one another and the number of 
edges connected to each vertex remains constant.  
FANMOD also supports a global constant model 
that preserves the total number of edges, but the 
number of edges connected to a specific vertex may 
or may not remain the same.  The transcriptional 
regulation network of E. coli could also be evaluated 
using the global constant model with full 
enumeration and sampling in order to see whether 
the motifs identified as significant change.  
Additionally, it would be useful to test other 
transcriptional regulation networks to see if 
structures such as the feedforward loop are 
significant in other biological networks.   
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