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Abstract: In this paper, we present a novel multi-ensemble technique for decision fusion of bimodal information. Ex-
ploiting the dichotomic property of 2D emotion model, various ensembles are built from given bimodal dataset
containing multichannel physiological measures and speech. Through synergistic combination of the ensem-
bles we investigated parametric schemes of decision-level fusion. Up to 18% of improved recognition accura-
cies are achieved compared to the results from unimodal classification.

1 INTRODUCTION

Recently a burgeoning interest in automatic emo-
tion recognition from different modalities such as
speech, facial expression, and physiological signals
has been prompted in affective human-computer in-
terface (Zeng et al., 2009; Kim and André, 2008).
Also multimodal approaches by exploiting synergis-
tic combination of multiple modalities are reported
for improved recognition accuracy (Chen et al., 1998;
Bailenson et al., 2008; Kim and André, 2006). Partic-
ularly for such approach we first need to design suit-
able fusion method for multichannel sensory data.

Commonly the fusion can be performed at least
at three levels; data, feature, and decision level. If
observations are of same type, the data-level fusion
might be probably the most appropriate way where we
simply combine raw multisensory data. Feature-level
fusion should be efficient for multichannel data that
are measured from similar sensor type, synchronized
time, and unique signal dimension. Usually a sin-
gle classifier (expert) is employed for the combined
feature vectors to make decision. For multimodal
sensory data containing discriminative data from dif-
ferent modalities, decision-level fusion might be the
most convincing way. In the decision fusion, mul-
tiple experts that use different classifiers trained by
same data or same type of classifier trained by differ-
ent data are generated to derive favorable final deci-
sion. Many methods for this type of fusion have been
reported in various names, such as multiple classifier

systems, mixture of experts, or ensemble systems (Po-
likar, 2006).

However, most of machine learning algorithms are
generalized method based on statistics or linear re-
gression of given data and most suitable for binary
classification problems. Therefore they might not be
able to capture characteristics of input variables in or-
der to efficiently solve multiclass problems. Same
problem holds true for ensemble approaches because
those results are strongly depending on characteristics
of input variables.

In this paper, we present a novel ensemble ap-
proach to parametric decision fusion for automatic
emotion recognition from two modalities, biosignals
and speech. The results are compared with the recog-
nition accuracies that we presented in our previous
work (Kim and André, 2006) using feature-level fu-
sion and generalized decision-level fusion.

2 BIMODAL DATASET
In this work we used the same dataset and feature
vectors presented in our previous work (Kim and
André, 2006) to which we refer for details of the
dataset and feature vectors. The dataset contains the
four emotions that represent each quadrant of the
2D emotion model (Kim and André, 2008), i.e., HP
(high arousal / positive valence), HN (high arousal
/ negative valence), LN (low arousal / negative va-
lence), and LP (low arousal / positive valence). Dur-
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ing the quiz experiment five channels of biosignals
are recorded, blood volume pulse (BVP), Respiration
rate (RSP), skin conductivity (SC), electromyogram
(EMG), and body temperature (TEMP). For the en-
semble approach in this paper, each of the biosignals
forms a single physiological channel and all channels
are summed up to generate a complete BIO chan-
nel. Also speech data recorded during the experiment
are segmented according to measured time periods of
biosignals and stored as SPE channel.

Feature sets consist of 77 features from the
five channel BIO data by analyzing in time, fre-
quency, and statistic domain and 61 MFCC (Mel-
frequency cepstral coefficients) features including
common statistic values from SPE data.

3 BUILDING ENSEMBLES

3.1 Basic Bimodal Ensemble

After feature selection through the sequential back-
ward search algorithm (Jain and Zongker, 1997),
the feature sets (BIO and SPE) are separately clas-
sified for the four emotion classes. We used the
pLDA1(pseudoinverse linear discriminant analysis
(Kim and André, 2008)). Table 1 shows all results
of unimodal classification. The classifiers trained by
each modality represent individual experts that can be
used to build ensembles for decision fusion. The ba-
sic idea of decision level fusion is to reduce the total
error rate of classification by strategically combining
the members of the ensemble and their errors. There-
fore the performance of the single classifiers needs to
be diverse from one another, i.e., neither must these
classifiers provide perfect performance on some given
problem, nor do their outputs need to resemble each
other.

3.2 Cascading Specialists Approach

Using generalized decision-level fusion methods such
as majority voting and Borda count that repetitively
apply weighted decisions causes in general problem
with extremely unbalanced overall performance be-
cause of overemphasizing some classes by weight-
ing. To overcome this problem, we developed a novel
algorithm, we called as cascading specialists (CS)
method that chooses experts for single classes and
brings them in a special sequence. Figure 1 illustrates
this approach.

1In this work, we used this single classifier for all chan-
nels and ensemble decisions

Table 1: Basic multichannel ensemble (available channels
and individual classification results).

Subject A
Channel HP HN LN LP avg

BIO 86.36 70.83 61.90 74.07 73.29
SPE 77.27 58.33 76.19 66.67 69.62

Subject B
Channel HP HN LN LP avg

BIO 55.56 62.50 67.65 44.83 57.64
SPE 72.22 62.50 79.41 79.31 73.36

Subject C
Channel HP HN LN LP avg

BIO 52.17 65.52 66.00 61.90 61.40
SPE 60.87 72.41 70.00 78.57 70.46

Subject Independent
Channel HP HN LN LP avg

BIO 44.26 43.04 51.43 59.18 49.48
SPE 32.79 58.23 71.43 54.08 54.13

Specialist Classification OR

Final Instance Classification DecisionTraining Performance

assigns

Decision

Specialist Classification OR Decision

Figure 1: Cascading Specialists.

First, the experts are selected by finding the clas-
sifier with best true positive rating for every class of
the classification problem during training phase. Then
the classes are rank ordered, beginning with the worst
classified class across all classifiers and ending with
the best one. After the preparation, the algorithm
works as follows: the first class in the sequence is
chosen and the corresponding expert is asked to clas-
sify the sample. If the output matches the currently
observed class the output is chosen as ensemble de-
cision. If not, the sample is passed on to the next
weaker class and corresponding expert whilst repeat-
ing the strategy. It is often observed that none of the
experts classifies its connected class and the sample
remains unclassified at the end of the sequence. Then
the classifier with the best overall performance on the
training data is selected as final instance and is asked
to label the sample as ensemble decision.

This approach promises more uniformly dis-
tributed classification results and a more accurate
overall performance than most ensemble methods that
rely on experts because weakly recognized classes are
treated with priority and the belonging samples are
more unlikely to end up falsely classified as a more
dominating class later on.
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Figure 2: Considered emotion-specific dichotomous ensem-
bles and four class ensemble.

Table 2: Classification performance of the dichotomous en-
sembles.

Subject A
Arousal

high low avg
89.13 91.67 90.40

Valence
positive negative avg
91.84 97.67 94.81

Cross Axis
HP+LN HN +LP avg

95.35 90.20 92.78

Subject B
Arousal

high low avg
85.71 96.83 91.27

Valence
positive negative avg
82.98 93.10 88.04

Cross Axis
HP+LN HN +LP avg

82.69 88.68 85.69
Subject C
Arousal

high low avg
86.54 93.48 90.01

Valence
positive negative avg
92.31 63.29 77.80

Cross Axis
HP+LN HN +LP avg

76.71 85.92 81.32

Subject Independent
Arousal

high low avg
63.57 86.21 74.89

Valence
positive negative avg
70.44 76.09 73.27

Cross Axis
HP+LN HN +LP avg

71.08 71.19 71.14

3.3 Dichotomous Ensembles

Using the CS algorithm, we considered three dichoto-
mous ensembles (arousal, valence, and cross axis) and
four class ensemble, based on the axes of the 2D emo-
tion model (see Figure 2). Table 2 and 3 show the
ensembles and their classification performance.

4 PARAMETRIC DECISION
FUSION

Each of the all ensembles (Table 2 and 3) generates its
decision by using the CS algorithm and the provided
votes are all given a numerical value of one and then
take part in a stepwise combination process positively
leading to a final decision. Classification is guaran-

Table 3: Classification performance of four class ensemble.
Subject A

HP HN LN LP avg
81.82 70.83 61.90 85.19 74.94

Subject B
HP HN LN LP avg

72.22 66.67 82.35 72.41 73.41
Subject C

HP HN LN LP avg
60.87 65.52 70.00 78.57 68.74

Subject Independent
HP HN LN LP avg

45.90 53.16 56.19 59.18 53.61

teed, as the final step inevitably leads to a result (if
preceding steps could not establish it due to voting
ties).

Step 1: Combination of Arousal, Valence and
Cross Axis. This step exactly matches the static
combination method presented in dichotomous ap-
proach with cross axis. Each ensemble distributes its
votes among the two quadrants that fit the recognised
alignments in the 2D emotion model. This step results
in one of two possible outcomes:
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Positive ValenceNegative Valence

Low Arousal

High Arousal

Positive ValenceNegative Valence

(3-1-1-1) (2-2-2-0)

valencearousal

cross axis

cross axis valence
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arousal

cross axis

valence

cross axis
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Figure 3: Possible vote distributions in the step 1.

(3-1-1-1) If the ensembles agree on one
emotion-quadrant, it receives three votes and can
already be chosen as final decision.

(2-2-2-0) If the ensembles do not manage to
agree on one emotion-quadrant, a voting tie occurs.
No final decision can be chosen, instead the draw has
to be dissolved and the algorithm moves on to the next
step.

Step 2: Resolving of Draws through Direct Ten-
dencies. In order to resolve the draw, the direct clas-
sification ensemble designates exactly one vote to the
class it predicts. Two situations can arise through this
supplemental vote:

(3-2-2-0) If the ensemble chooses an emotion-
quadrant that already holds two votes, the tie is re-
solved and the corresponding emotion is determined
to be the final decision.

(2-2-2-1) If the ensemble chooses the emotion-
quadrant that has not received any votes yet, the tie is
not resolved and the last possible step has to be exe-
cuted.
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Figure 4: Possible vote distributions in the step 2.

Table 4: Results of the parametric ensemble fusion. */**
are the results achieved in the work (Kim and André, 2006).

Subject A
HP HN LN LP avg

Feature Fusion* 91.00 92.00 100.00 85.00 92.00
Decision Fusion** 64.00 54.00 76.00 67.00 65.00
Ensemble Fusion 100.00 83.33 85.71 96.30 91.34

Subject B
HP HN LN LP avg

Feature Fusion* 71.00 56.00 94.00 79.00 75.00
Decision Fusion** 59.00 68.00 82.00 69.00 70.00
Ensemble Fusion 83.33 79.17 91.18 82.76 84.11

Subject C
HP HN LN LP avg

Feature Fusion* 50.00 67.00 84.00 74.00 69.00
Decision Fusion** 32.00 77.00 74.00 64.00 62.00
Ensemble Fusion 69.57 72.41 74.00 92.86 77.21

Subject Independent
HP HN LN LP avg

Feature Fusion* 46.00 57.00 63.00 56.00 55.00
Decision Fusion** 34.00 50.00 70.00 54.00 52.00
Ensemble Fusion 49.18 55.70 70.48 66.33 60.42

Step 3: Decision through Arousal and Valence
Combination. If actually no decision could be es-
tablished by the previous steps, the emotion-class that
was originally determined by arousal and valence en-
sembles is ultimately chosen as final decision. In
practice this case rarely occurs, but it is definitely
needed to guarantee that no sample passes the deci-
sion process unclassified.

5 RESULTS

All recognition results obtained by using our para-
metric ensemble fusion are summarized in Table 4
and compared by referencing the results of feature-
level fusion (merging the features) and generalized
decision-level fusion (majority voting) achieved in the
previous work (Kim and André, 2006).

6 CONCLUSIONS

In this paper we proposed a novel decision-level
fusion method based on emotion-specific multi-
ensemble approach. The objective of this work was
to provide guideline towards parametric decision fu-
sion in order to overcome the limitation of the gen-
eralized fusion methods that are not able to exploit
specific characteristics of a given dataset. Compared
to the generalized feature-level and decision-level fu-
sion methods used in the earlier work, the proposed
method achieved about 8% improvement of recogni-
tion accuracy for both subject-dependent and subject-
independent classification.
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Kim, J. and André, E. (2006). Emotion recognition using
physiological and speech signal in short-term obser-
vation. In LNCS-Perception and Interactive Technolo-
gies, pages 53–64. Springer-Verlag Berlin Heidelberg.
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