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Abstract: Enzyme function prediction problem is usually solved using annotation transfer methods. These methods are
suitable in cases where the function of the new protein is previously characterized and included in the taxon-
omy such as EC hierarchy. However, given a new function that is not previously described, these approaches
arguably do not offer adequate support for the human expert.
In this paper, we explore a structured output learning approach, where enzyme function—an enzymatic
reaction—is described in fine-grained fashion with so called reaction kernels which allow interpolation and
extrapolation in the output (reaction) space. Two structured output models are learned via Kernel Density
Estimation and Maximum Margin Regression to predict enzymatic reactions from sequence motifs. We bring
forward two choices for constructing reaction kernels and experiment with them in the remote homology case
where the functions in the test set have not been seen in the training phase. Our experiments demonstrate the
viability of our approach.

1 INTRODUCTION

Enzymes are the workhorses of living cells, produc-
ing energy and building blocks for cell growth as well
as participating in maintaining and regulation of the
metabolic states of the cells. Reliable assignment of
enzyme function, that is, the biochemical reactions
catalyzed by the enzymes, is a prerequisite of high-
quality metabolic reconstruction (Palsson, 2006).

In literature, the enzyme function prediction prob-
lem comes in two general formulations: annotation
transfer or classification by machine learning. In the
first approach, given an unannotated protein, a similar
annotated protein with experimentally verified func-
tion is searched for in databases, and the annotation
is transferred to the new protein. In the second ap-
proach, a model is trained to classify the new protein
into one of the predefined functional classes such as
four-level hierarchical EC classification of enzymatic

functions.
The success of the above approaches depends on

the set of previously characterized and catalogued en-
zymatic functions. If the new protein belongs to the
existing function classes, annotation transfer or clas-
sification learning may work. If the new protein, how-
ever, posseses a function that is not pre-existing, cor-
rect function cannot be predicted even in principle.

Given the diversity of the tree of life, it is likely
that completely new functions are encountered as se-
quencing and annotation efforts widen. Tools, which
can give accurate predictions of what the new func-
tions might be, could expedite these efforts. In this
paper, we develop a structured output prediction ap-
proach that, to our knowledge is the first enzyme func-
tion prediction tool to possess the capability of predic-
tion previously unseen functions. The key component
of our method is the representation of enzyme func-
tion in fine-grained fashion with the so called reaction
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kernels, that allow interpolation and extrapolation in
the space of enzymatic function.

The organization of the paper is the following.
In section 2 we briefly describe main existing ap-
proaches in enzyme function prediction. In section 3,
we review structured output prediction approaches, in
particular Kernel Density Estimation and Maximum
Margin Regression which are applied in the subse-
quent sections. In section 4, we describe representa-
tions for structured output prediction of enzyme func-
tion. We put forward two reaction kernel variants that
allow us to interpolate and extrapolate in the space of
enzymatic reactions. Section 5 describes experiments
validating our approach. Section 6 discusses the rela-
tive merits of the current and competing methods, and
outlines directions for future work.

2 ENZYME FUNCTION
PREDICTION

Protein function prediction is recognized as one of the
key problems in bioinformatics, and hence there is a
large number of approaches to tackle this problem.
Most enzyme function prediction methods are instan-
tiations of the more general protein function predic-
tion problem. Here we give a brief overview of pro-
tein function prediction approaches. For more infor-
mation, we refer the interested reader to the recent
survey of (Punta and Ofran, 2008).

2.1 Annotation Transfer Approaches

The most widely used function prediction approach is
still annotation transfer based on sequence similarity:
given an unannotated protein, using a sequence com-
parison tool such as BLAST, search for an annotated
sequence homolog with an experimentally verified
function, and transfer the annotation to the new pro-
tein. This approach has well-known pitfalls: sequence
similarity does not equate to homology, function is
typically determined by a small group of residues
whose contribution in the overall similarity may fail
to be detected, and the danger is the propagation of
the annotation errors.

Sequence motifs or signatures are used to over-
come shortcomings of overall sequence similarity. As
the protein function is typically dependent on a small
region of the sequence (e.g. for enzymes the residues
forming the active center), a significant amount of re-
search has been conducted to derive sequence mo-
tifs that are predictive of the function (Henikoff and
Henikoff, 1996; Falquet et al., 2002; Mulder et al.,
2002). In this paper, we apply the Global Trace Graph

(Heger et al., 2007) features that can be interpreted
as predicted conserved residues. The GTG features
are derived from a global alignment of all known pro-
tein sequences. In this alignment, GTG features cor-
respond to residues that align consistently within a
group of proteins.

Information about the 3D structure is known to
be a powerful aid in function prediction, due to the
fact that it is ultimately the three-dimensional struc-
ture that determines the protein function. Structural
similarity of two proteins may indicate common evo-
lutionary origin even in the absence of significant
sequence similarity. Numerous structural alignment
methods (e.g. (Krissinel and Henrick, 2004; Ye and
Godzik, 2004; Holm and Sander, 1996)) have been
developed to make use of the 3D structures. Structural
motifs are an analogous concept to sequence motifs:
a local constellation of residues in the active center of
an enzyme may be higly predictive of the function. In
this paper, we do not apply 3D information, but leave
this as future work.

2.2 Machine Learning Approaches

Machine learning methods are potentially useful in
cases where the new protein does not possess sig-
nificant sequence (or structure) similarity to existing
proteins. Given large enough data, machine learning
methods are able to distill non-trivial associations be-
tween the input features and the function.

In the machine learning setting, enzyme function
prediction has been generally defined as a classifica-
tion problem. The works by Lanckriet et al. (Lanck-
riet et al., 2004) and Borgwardt et al. (Borgwardt
et al., 2005) use the kernel method to predict the main
categories in MIPS and EC taxonomies, respectively.

Other works aim to predict the membership in the
whole taxonomy. These include the work by Clare
and King (Clare and King, 2002) who use decision
trees to predict the membership in the MIPS taxon-
omy. Barutcuoglu et al. (Barutcuoglu et al., 2006)
combine Bayesian networks with a hierarchy of sup-
port vector machines to predict Gene Ontology clas-
sification. Blockeel et al. (Blockeel et al., 2006) use
multilabel decision tree approaches to functional class
classification according to the MIPS FunCat taxon-
omy.

Structured output approaches (see below) for hi-
erarchical multilabel classification (c.f. (Rousu et al.,
2006)) have been applied to enzyme function predic-
tion by Astikainen et al. (Astikainen et al., 2008) and
Sokolov and Ben-hur (Sokolov and Ben-Hur, 2008).
In this paper, we take the hierarchical classification
against the EC hierarchy (Astikainen et al., 2008) as
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one of the comparison methods to the reaction kernel
approach.

3 STRUCTURED OUTPUT
LEARNING

Our objective is to learn a function that, given (a fea-
ture representation of) a sequence, can predict (a fea-
ture representation of) an enzymatic reaction.

Learning algorithms that are designed for struc-
tured prediction tasks like the above, are many. We
concentrate on kernel methods, that let us utilize high-
dimensional feature spaces without computing the
feature maps explicitly. Structured SVM (Tsochan-
taridis et al., 2004), Max-Margin-Markov networks
(Taskar et al., 2004; Rousu et al., 2006), Kernel Den-
sity Estimation (KDE) and Maximum-Margin Re-
gression (MMR) (Szedmak et al., 2005) are learning
methods falling into this category.

We consider a training set of (sequence,reaction)-
pairs Dm = {(xi,yi)|xi ∈ X ,yi ∈ Y }m

i=1 drawn from an
unknown joint distribution P (X ,Y ).

For sequences and reactions, respectively, we as-
sume feature mappings φ: X 7→ FX and ψ: Y 7→ FY ,
mapping the input and output objects into associ-
ated inner product spaces FX and FY . The kernels
KX (x,x′) = 〈φ(x),φ(x′)〉 and KY (y,y′) = 〈ψ(y),ψ(y′)〉
defined by the feature maps are called the input and
output kernel, respectively. Above 〈·〉 denotes the
inner product. Subsequently, we discuss particular
choices for the feature mappings and the kernels suit-
able for the enzyme function prediction task.

3.1 Joint Kernels

In structured prediction models based on kernels, the
associations between the inputs and outputs are typ-
ically represented by a joint kernel, defined by some
feature map joint for inputs and outputs. In this paper,
we use a joint feature map

ϕ(x,y): X ×Y 7→ FX⊗Y ,

where ϕ(x,y) = φ(x)⊗ψ(y) is the tensor product of
input and output feature maps, thus consisting of all
pairwise products φ j(x)ψk(y) between input and out-
put features. This choice gives us the joint kernel rep-
resentation as elementwise product of the input and
output kernels

KXY (x,y;x′,y′) = KX (x,x′)KY (y,y′).

The tensor product kernel is suitable in situations
where there is no prior alignment information of in-
put and output features available, but the learning ma-

chine is expected to learn the alignments. This is the
case in our enzyme function prediction setup.

3.2 Learning Task

Most structured prediction models (Taskar et al.,
2004; Tsochantaridis et al., 2004; Szedmak et al.,
2005; Rousu et al., 2006) take the form of a linear
score function

Fw(x,y) = 〈w,ϕ(x,y)〉= 〈w,φ(x)⊗ψ(y)〉

in the joint feature space. The model’s prediction ŷ(x)
corresponds to highest scoring output y:

ŷ(x) = argmaxyFw(x,y).

For the model learning we use two computational
methods. The first method is Kernel Density Estima-
tion (KDE) which uses the joint kernel density func-
tion

Fw(x,y) = ∑
i

KXY (x,y;xi,yi) (1)

for scoring. This is the simplest model we use for
prediction, since there is no weighting vector w for
the training examples and all the datapoints are thus
equally important.

The second method, Max-Margin Regression
(MMR) (Szedmak et al., 2005) aims to separate the
training data ϕ(xi,yi) from the origin of the joint
feature space with maximum margin, thus it can be
seen analogous to the one-class SVM (Schlkopf et al.,
2001). The primal form of the MMR optimization
problem can be written as

min
1
2
||w||2 +C∑

i
ξi

s.t. 〈w,ϕ(xi,yi)〉 ≥ 1−ξi

ξi ≥ 0, i = 1, . . . ,m.

The dual form of the MMR problem can be expressed
as

max
m

∑
i=1

αi−
1
2

m

∑
i, j=1

αiα jKX (xi,x j)KY (yi,y j)

s.t. 0≤ αi ≤C, i = 1, . . . ,m. (2)

MMR, due to its simple form, can be optimized
very efficiently which makes, for example, the op-
timization of kernel parameters a feasible task on
medium sized datasets (103-104 examples), which is
not true for most competing approaches (Taskar et al.,
2004; Tsochantaridis et al., 2004; Rousu et al., 2006).

Furthermore, as the output representation is ker-
nelized, it is possible to learn in very complex output
spaces, as we will demonstrate subsequently.
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3.3 Preimage Problem

In all structured output prediction approaches, the
prediction of the model needs to be extracted by solv-
ing the preimage problem

ŷ(x) = argmaxy∈Y Fw(x,y).

Depending on the output space, solving the preim-
age exactly can be computationally challenging or in-
tractable.

Using kernelized outputs, as in the case of dual
MMR (2), the preimage takes an even more challeng-
ing form

ŷ(x) = argmaxy∈Y ∑
i

αiKX (x,xi)KY (y,yi),

for which efficient algorithms are hard to come by.
However, a difference between MMR and most struc-
tured output prediction methods is that there is no
need to solve the preimage problem as part of the
training, only during prediction. Thus, the compu-
tational complexity of the preimage is not as a crucial
issue.

In the experiments reported in this paper, we use
a trivial preimage algorithm: we enumerate the set of
outputs contained in our whole dataset (training and
test examples included) Y n = {y|(x,y) ∈ Dn}. This
approach will give us an approximate solution to the
preimage problem, that is, the globally best scoring
prediction may lie outside the set Y n. This approach
is sufficient for first evaluation of the proposed pre-
diction methods. We leave the development of better
preimage algorithms as future work.

4 KERNELS FOR CHEMICAL
REACTIONS

In this section, we consider how to build kernels for
chemical reactions, using molecule graph kernels as
the building blocks.

Let us first introduce some notation used in this
section. We denote a basic set of reactions R , where
a reaction ρ(S(ρ),P(ρ)) ∈ R is given by a set sub-
strates S(ρ)⊂M and products P(ρ)⊂M 1. The set of
reactants is simply the union of substrates and prod-
ucts R(ρ) = S(ρ)∪P(ρ). A feature vector describing
a reaction ρ is denoted by ψ(ρ) and the feature vector
describing a molecule M is denoted by φ(M).

1To fully represent chemical reaction equations, we
would also need to consider the stoichiometric coefficients
for each reactant; However, we ignore this modelling aspect
here

For illustration, consider a chemical reaction ρ =
({S1},{P1,P2}) converting a substrate molecule S1
into two product molecules P1 and P2, thus defined
by the reaction equation

ρ: S1⇒ P1 +P2.

Consider now a second reaction ρ′ =
({S′1,S′2},{P′1,P′2}), converting substrates S′1,S

′
2

into products P′1 +P′2, and back, expressed as

ρ
′: S′1 +S′2⇔ P′1 +P′2

How can we measure the similarity of these re-
actions via kernels? The approach in this paper is
to consider pairwise similarities of the constituent
molecules and compute an aggregate on them. While
there are many ways how this could be done in prin-
ciple, two important considerations arise from the
(bio)chemical reality:
• Similarity of Reaction Events vs. Reactants.

We should make a distinction between the simi-
larity of the reaction events versus the similarity
of the reactant molecules. For example, enzymes
belonging to the amino-transferase group are sim-
ilar to each other in that they transfer a certain
functional group (the amino group) from a reac-
tant molecule to another. However, the reactant
molecules need not be similar.
Conversely, there are many different transfor-
mations which can be performed on the same
molecule. For example, pyruvate, an important
hub metabolite in the central metabolism of all
living cells, participates in many reactions. The
transformations applied by the reactions may be
very different from each other, although they work
on the same substrate molecule pyruvate.
Thus, depending on the application, our kernel
should be designed to measure one of these sim-
ilarity notions, or measure both of them in some
proportion.

• Directionality of Reactions. The reactions may
be defined as unidirectional or bidirectional. As
the direction of a reaction depends on thermody-
namical conditions, this may or may not be a rel-
evant issue. For example, most enzymatic reac-
tions are bidirectional in principle, but the condi-
tions inside a living cell force unidirectionality.
When the directionality of reactions is of impor-
tance, each bidirectional reaction can be divided
into forward and backward reactions. In our ex-
ample, we would obtain

ρ
′
f wd : S′1 +S′2⇒ P′1 +P′2,

and
ρ
′
bwd : P′1 +P′2⇒ S′1 +S′2.
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In this case we would like our kernel to be sensi-
tive to the direction so that forward and backward
directions of the same reaction can be discrimi-
nated in the feature space.
However, when reaction direction is of no impor-
tance, the forward and backward directions of a
bidirectional reaction should be treated the same
by our kernel.

Below, we will describe a molecule graph kernel
matrix KM which constitutes the basic component of
the two alternative reaction kernels described next.
For both reaction kernels we also show the underly-
ing feature map which will suffice to show that both
of the reaction kernels below are valid Mercer kernels
if the underlying molecule kernel is a valid Mercer
kernel.

Both of the reaction kernels described below are
very fast to compute, given that the molecule kernel
KM is pre-computed: the time complexity of the re-
action kernel computation is then linear in the number
of the elements in the kernel matrix.

4.1 Kernels for Molecule Graphs

As the molecule kernel KM underlying the reaction
kernels we use a subgraph kernel restricted to small
subgraphs (10 nodes or less). The kernel computes
the product graph of the two molecule graphs and
counts its connected subgraphs. The kernel con-
structed in this way may in general not be a valid Mer-
cer kernel. However, on our dataset, the kernel matrix
was observed to be positive semidefinite.

Enumerating the subgraphs up to the maximum
subgraph size d takes O(md) time, where m is the
number of edges in the product graph. Thus the ker-
nel is quite time-consuming to compute. In practice,
we were able to compute the common connected sub-
graphs of 1767 KEGG LIGAND (Goto et al., 2002)
molecules up to subgraph size 10 in a week with ap-
proximately 50 Pentium 4 class computers. Consid-
ering the computational resources available nowadays
in research labs, and the time available to solve a typ-
ical problem involving molecular data, the computa-
tional complexity hardly presents a prohibitive con-
straint.

We note that it would also be possible to use a
more quickly computable graph kernel based on com-
mon walks (Gartner, 2003), that is, sequences of la-
beled atoms and bonds, which can be thought to ap-
proximate common subgraphs (each common sub-
graph induces a set of common walks). However, we
leave exploring this direction as future work.

4.2 Sum-of-Reactants Kernel

A simple kernel, called the Sum-of-Reactants (SoR)
kernel, is obtained by defining

KSoR(ρ,ρ′) = m(ρ)T KM m(ρ′),

where the vector m(ρ) consists of indicators m j(ρ) =
1{M j∈Rρ} for the presence or absence of a molecule
M j in the set of reactants of ρ. The corresponding
feature vector is simply the sum of feature vectors of
molecule graphs in Rρ:

ψ(ρ) = ∑
M∈Rρ

φ(M)

Intuitively, the kernel measures the similarity of
reactions in terms of how similar the molecules ma-
nipulated by the reactions are on average, rather than
the similarity of reaction events. The reaction rep-
resentation and the kernel can be considered bidirec-
tional as the different roles of reactant molecules are
not considered.

4.3 Reactant-Matching Kernels

In the SoR kernel there is an underlying all-against-
all matching between the substrate sets (Sρ,S′ρ), prod-
uct sets (Pρ,P′ρ) and between the cross-pairs (Sρ,P′ρ)
and (Pρ,S′ρ). This measure implicitly contains spuri-
ous matches where one substrate s1 ∈ Sρ is matched
against a substrate s′ ∈ S′ρ while another s2 ∈ Sρ is
matched against a product p′ ∈ Pρ. Considering such
matches has no biological significance. We can filter
out the above spurious mactches by defining a feature
map via the tensor product

ψ(ρ) = ∑
M∈Sρ

φ(M)⊗ ∑
M∈Pρ

φ(M),

which gives us the Reactant-Matching (RM) kernel

K(ρ,ρ′) = K(Sρ,Sρ′)K(Pρ,Pρ′),

where we use the shorthand

K(S,S′) = ∑
M∈S

∑
M′∈S′

KM (M,M′).

The above kernel is obviously unidirectional as it
matches the reactions in the forward direction. To ob-
tain a bidirectional kernel we compute the backward
direction by taking the cross terms

K(ρ,ρ′) =
1
2
(K(Sρ,Sρ′)K(Pρ,Pρ′)+K(Sρ,Pρ′)K(Pρ,Sρ′))

We note that the bidirectional kernel still filters out
the above mentioned spurious matches, in the second
term the other reaction is just flipped around.
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5 EXPERIMENTS

5.1 Data

The dataset is a sample(sequence, reaction) pairs from
the KEGG LIGAND database (Goto et al., 2002). As
the input (sequence) representation, we use Global
Trace Graph (GTG, (Heger et al., 2007)) features
that can be interpreted as predicted conserved amino
acids.

We have two separate datasets: the parameter val-
idation set of 1481 enzymes and testing set of 8112
enzymes, which do not have overlapping EC num-
bers. Parameter validation set is yet divided into two
folds, training set of 930 and test set of 551 enzymes.
Testing dataset is divided into five folds with average
of 1622 enzymes. Members of the folds are chosen
such that each of the different EC number exist only
in one of the folds, so the training sets have no en-
zymes with the test set EC number appear. This is to
simulate setting where a previously unseen functions
are to be predicted.

Both the input (GTG) kernel and the output
(reaction) kernels are fed to a polynomial kernel
Kpoly(x,z) = (K(x,z) + 1)d and normalized. The re-
stricted size subgraph kernel is used as the molecule
kernel underlying all the reaction kernel variants.

5.2 Compared Methods

We compare the following methods:
• NN(BLAST): This is the baseline annotation

transfer method: given a test sequence, find the
nearest sequence neighbor in the training set and
transfer the annotation to the new protein. Se-
quence similarity is taken from pre-computed
Blast scores from the Pairs-DB server (Heger
et al., 2008).

• NN(GTG): This is the annotation transfer meth-
ods using the GTG data. Given a test sequence,
find the training sequence with the most common
GTG features with the test sequence, and transfer
the annotation.

• MMR(GTG,Hierarchical): The hierarchical
structured output prediction from (Astikainen
et al., 2008). The method predicts the mem-
bership of the new protein in the EC hierarchy;
generally the prediction is a root-to-leaf path in
the EC hierarchy.

• MMR(GTG,RM): MMR with GTG as input ker-
nel and Reactant-Matching as output kernel.

• KDE(GTG,RM): KDE with GTG as input kernel
and Reactant-Matching as output kernel.

We have beforehand made an experiment where
we compared the function prediction accuracy with
both of the reaction kernels using degree-6 polyno-
mial kernel over the inputs and degree-20 polynomial
kernel over the outputs. F1 score for RM was 27.9%
and for SoR it was 25.9%. Since the RM outper-
formed SoR, we use the RM as output kernel in all
the following experiments.

5.3 Measure of Success

To measure accuracy of prediction, for each test
instance (x,y), we first compute the set of top-
scoring functions Ŷ (x) = {yi ∈ Y n|F(α,x,yi) ≥
F(α,x,y′),∀y′ ∈ Y n}, that is the reactions that the
prediction model considers the (equally) best. This
set is considered as the prediction of the model.

For each function y′ ∈ Ŷ (x), we check how many
consecutive digits starting from the left of the EC
number associated with y′ coincide with digits of the
EC number associated with the reference function y.
Each such correctly predicted EC digits counts as a
true positive, rest of the EC digits counts as a false
positive. For example, if the reference function y is
3.1.1.1 and prediction set Ŷ (x) contains two mem-
bers 3.1.2.1 and 3.1.1.10, there are five true positives
(marked bold) and three false positives out of 8 EC
digits. The EC digit F1 is then the F1 score taken
over all EC digit predictions in the test set.

5.4 Results

5.4.1 Effect of Polynomial Kernel Degree

In the first experiment we illustrate the behaviour of
the structured output learning of MMR in very high-
dimensional joint feature space. We use the GTG ker-
nel (predicted conserved residues) as the base input
kernel and the RM kernel as the base output kernel.

In this experiments we use two sets: one for train-
ing and second for testing. Figure 1 shows a heat map
of the EC digit F1 score. The F1 score improves when
the degree either the input, the output or both input
and output polynomial kernels increases. The opti-
mum reaches a plateau at input degrees 1-4 and out-
put degrees 8-16 indicating robustness with respect to
changes in parameter values.

Applying a high-degree polynomial to the base
kernel makes the resulting output kernel more sparse,
which suggests that the reactant matching kernel
alone is too smooth for optimum performance. We
note that optimizing the input and output kernels inde-
pendently can be useful in other structured prediction
settings as well.
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Figure 1: The EC digit F1 score plotted as the function of
the degrees of the input and output kernels. The best results
are obtained with degree 2 polynomial over the inputs and
degree 8 or higher over the outputs.

5.4.2 Prediction under Remote Homology

In the final experiment, we demonstrate the gener-
alization ability of the structured output prediction
methods. We measure how many EC digit are cor-
rectly predicted in testing over a five fold set of en-
zyme families where the four digit EC numbers are
not overlapping between folds. Thus the training set
contains no enzyme that has exactly the same EC
number, but families that have three matching EC dig-
its typically appear in the training.

In this setup is should be clear that the nearest
neighbor classifier or the hierarchical classifier can-
not ever predict four-digit EC number correctly, as the
methods have not seen any examples of that particular
family. The reaction kernel approach, however, does
not suffer from this limitation: as all possible reac-
tions can be represented in the output space, it is in
principle possible to predict the correct function.

Figure 2 shows the results of this experiment.
Here, we used a degree 8 polynomial kernel over the
RM kernel and degree 2 polynomial kernel over the
inputs. In the bottom chart is the cumulative chart
depicting the number of enzyme families that have at
least certain number of correctly predicted EC digits.

It can be seen that the methods relying on the GTG
features (NN(GTG), KDE(GTG,RM) and both MMR
methods) are more effective in predicting more than
one EC digits correcly. The KDE reaction kernel and
MMR hierarchical approach is slightly better in pre-
dicting two or more EC digits correctly than the com-
peting approaches. Finally, we note that the reaction
kernel approach is the only method that, at times, can
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Figure 2: The cumulative distribution of correctly predicted
EC digits in the test set (bottom chart). Each member of
the top ranking preditions Ŷ (x) contributes one item in the
distribution.

get the whole EC number correct. In other words, the
set of top-ranking reactions Ŷ (x) contain reactions
that possess the exactly correct EC number.

6 DISCUSSION

The present experiments show the potential of struc-
tured output prediction using reaction kernels: given
a novel, previously unseen enzymatic function, the re-
action kernel approach is significantly more accurate
than the annotation transfer approach and also com-
pares with a hierarchical classifier trained with struc-
tured output learning.

Also we note that the reaction kernel approach is
an enabling technique: it is possible, albeit not easy,
to predict the new function exactly correctly. Interest-
ingly best results are obtained with a highly complex
output representation: a high-degree polynomial ker-
nel over reactant matching kernel.

As the result show, using the reaction kernel meth-
ods for enzyme function prediction is encouraging
way to go, even if the prediction accuracy is still very
low for all of the methods used. There are many ar-
eas where the methods can be improved. First, we
only used predicted conserved residues (GTG) as in-
puts. Although they work well, augmenting them
with other types of data, e.g. structural information
should be helpful. Second, the presented reaction ker-
nels certain can be improved and completely different
kinds of encodings of enzyme function can be imag-
ined.

Third, a better preimage algorithm will be needed
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for novel prediction, brute-force enumeration of re-
actions, although sufficient for the purposes of this
paper, is not a satisfactory approach for a practical
system. As simpler output representations may pro-
vide more efficient preimage algorithms, it would be
tempting to simplify the representations. However, in
our view this should not be done at the expense of
predictive accuracy.
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