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Abstract: Communication networks are growing both in terms of size and complexity. Because of the huge amount of 
monitored data to analyse and correlate, the management task that relies mostly on human operators is 
becoming time-consuming, labour-intensive and costly. The centralized management paradigm adopted by 
current management systems is no longer suitable for such networks. A distributed management with more 
autonomy delegated to network devices is therefore paramount to master this complexity efficiently.Multi-
agent systems characteristics fit the requirements that must be taken into account to integrate autonomicity 
in networks. This paper presents CONEMAF, a novel modular multi-agent platform for autonomic network 
management. CONEMAF is fully distributed, allows situated knowledge analysis and implements a 
cognitive cycle for autonomic management. Implemented on top of OSGi, the present release makes use of 
well-proven Java-based COTS. CONEMAF has been deployed on Linux routers and is demonstrated for 
autonomic routing in a wireless mesh network. 

1 INTRODUCTION 

The management systems of future networks are 
expected to embed autonomic capabilities (Strassner 
J. K., 2006) in order to face the increasing 
complexity of communication networks (Ganek, 
2003). This autonomic enablement implies that 
networks are able to self-manage (e.g., self-
configure, self-heal, self-optimize, self-protect) 
(Horn, 2001). Their behaviour is set from high-level 
policies that they implement by dynamically 
adapting network parameters (routing, protocols, 
queue sizes, radio frequencies…) to the varying 
network conditions (changes in topology, resource 
availability, traffic demands…). 

Designing an autonomic system for networks 
management involves several technologies and 
disciplines (Kephart, 2003) and has received 
significant research effort in the past five years. The 
generic architecture for autonomic information 
systems management proposed by IBM (IBM, 2006) 
is a common base for various works. FOCALE 

(Strassner J. A., 2006) adds semantics to this 
architecture. Algorithmic issues including learning 
capabilities (Tesauro, 2007), event correlation 
(Sterritt, 2002), data mining (Garofalakis, 2001), or 
bio-inspired mechanisms (Agoulmine, 2006) are 
under investigation to provide the expected 
autonomic capabilities. 

On the implementation side, attempts are made 
to add more flexibility in network protocol design: 
(Keller, 2008) proposes a framework for self-
composing protocol stacks in multiple compartments 
to replace the existing non-flexible Internet layers, 
and (Manzalini, 2006) provides a platform for 
autonomic service composition. 

Focused on the middleware part of the 
framework, another research trend consists in 
integrating mobile agents in the network to collect 
distributed information or perform remote 
computations (Lefebvre, 2005). A combination of 
both mobile and stationary agents to manage mobile 
ones is proposed in (Ray, 2008). 

Starting from the network administrator’s 
viewpoint, our aim is to provide a software platform 
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that supports autonomic self-management of the 
network governed by high-level policies set by the 
operator. Multi-agent architecture principles support 
coordination of distributed intelligent components, 
which match our requirements. The most popular 
multi-agent implementations, such as JADE, Zeus or 
Cougaar (Ricordel, 2000) (Fang, 2005) follow the 
FIPA specifications for interoperability purposes 
(FIPA, 2005). These efforts, and Jade in particular, 
have guided some of the choices we have made. 
However, these implementations do not fulfil one of 
the main requirements for a scalable and robust 
network management system. Indeed, they rely on a 
centralized component (the FIPA Agent 
Management System) that does not meet the full 
distribution characteristic we need. 

The major contribution of this work is the 
specification and design of CONEMAF (COgnitive 
NEtwork MAnagement Framework), a flexible and 
fully distributed platform that facilitates the 
implementation and the dynamic deployment of 
autonomic control loops in network elements. 
CONEMAF is able to scale to large networks in a 
robust and fault-tolerant way. It can be deployed on 
a large variety of network equipments (routers, 
home-gateways, or even terminals). A first release 
has been implemented and deployed on Linux 
routers to demonstrate enhanced routing features in a 
wireless mesh network. 

The paper is organized as follows: section two 
describes the autonomic networking challenges in 
terms of architecture and software requirements. 
Section three introduces the modular CONEMAF 
platform, the baseline technologies used, and details 
its components. Section four demonstrates the use of 
CONEMAF to support autonomic congestion 
management in a mesh environment. Section five 
concludes with future works. 

2 THE AUTONOMIC 
NETWORKING CHALLENGE 

Networks are complex and costly systems that 
cannot be changed overnight. Enhanced 
management capabilities of converged future 
networks must be introduced gradually. The 
corresponding architecture and implementations 
must thus address the conflicting requirements of 
providing new management features and of 
deploying on legacy networks. 
 

2.1 Autonomic Network Architecture 

In the autonomic network vision, each network 
equipment (be it a router, a gateway…) is potentially 
considered as an autonomic element. An autonomic 
element is capable of monitoring the network state 
and modifying it based on conditions that 
administrators have specified. This “cognitive 
cycle”consists in constantly monitoring the network 
state, making decisions and executing 
reconfiguration actions. 

To support gradual introduction of autonomic 
capabilities, the cognitive cycle is implemented in 
software. In the remainder of the paper, this software 
add-on embedded in network equipments and 
executing the cognitive cycle is referred to as the 
“cognitive network manager” (CNM). 

Network equipments are physically distributed 
and the configuration of a given equipment often 
interplays with that of other equipment 
configurations. So, the representation of the network 
context that every CNM makes cannot be limited to 
its local point of view. Using a centralized approach 
to provide this complete picture is not feasible as it 
would not scale and be tolerant to faults. This means 
that communication between distributed autonomic 
elements is required to exchange relevant 
information as input for the decision making 
process. 

Broadcasting messages throughout the entire 
network is not an option and the autonomic network 
management system must limit the communications 
to a defined range. Considering that knowledge 
about an entire network is not necessary to make fast 
local decisions either, information exchange is 
limited to compartments (subsets of neighbouring 
network elements). As a consequence, each CNM 
has a situated knowledge corresponding to its 
compartment view. Decisions are made locally, 
based on information gathered and exchanged 
between neighbouring entities in the defined 
compartment view. 

Because of the variety of capabilities of network 
elements, some CNMs may be more complex than 
others. These particular CNMs could deal with 
higher-level knowledge collected by a set of CNMs 
in the specified domain they manage. With this 
knowledge, possibly complemented by exchanges 
with other domain managers, they could make 
global decisions solving problems that standard 
CNMs cannot address locally, control and adjust 
policies to fit the desired system behaviour, and 
learn from previous experience (Figure 1). 
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Figure 1: Multi-layered cognition and decision 
capabilities. 

The autonomic network management 
architecture must thus support flexible and dynamic 
compartment definition. 

2.2 Software Requirements 

Implementing the architecture described above leads 
naturally towards multi-agent platforms since they 
aim to include communication, perception and 
action functions (Ferber, 1995). Each CNM is 
embedded in a network element and the autonomic 
network management framework should provide it 
with the following functionalities: 

• network topology discovery 
• neighbourhood discovery 
• semantic communication 
• network element control, via services which are 

declined to sensors and effectors 
• scheduling (in order to plan behaviours 

execution). 

The multi-agent implementation must satisfy further 
requirements. First of all, the autonomic network 
management system needs to be fully distributed in 
order to scale up to large or constrained networks 
and to be fault tolerant. Then, considering that 
CNMs are embedded in heterogeneous hardware 
devices with sometimes hard constraints implies that 
the solution must be lightweight and easily 
adaptable. 

Moreover, the system must support reasoning 
capabilities to make fastdecisions in order to deal 
with applications or services that are not tolerant to 

delays. This means they must manipulate knowledge 
(situation, operator policies). The distribution of 
entities implies that knowledge is distributed. As a 
consequence, the knowledge representation must be 
uniform in order for entities to exchange 
understandable information. 

Finally, the system must provide communication 
functions for entities to cooperate and collaborate. 
Modular sensors and effectors that cognitive 
network managers will use to gather data and 
configure equipments are also necessary. 

3 CONEMAF PLATFORM 

The CONEMAF platform has been designed to 
address the software requirements previously stated. 
It is composed of robust baseline COTS, which, 
once combined in the CONEMAF framework, 
provide the CNMs with the expected capabilities. 
Developed in Java, it can be easily integrated in 
various network equipments running a JVM (routers, 
home gateways, end devices) and allows fully 
distributed autonomic management of different types 
of networks such as wired or wireless. 

3.1 Baseline Technologies 

3.1.1 OSGi 

Because CNMs aim at being embedded in network 
devices where the computational resources are 
devoted to routing, they should be designed in such 
a way that the required modules are only activated 
depending on devices capabilities. OSGi, for Open 
Services Gateway initiative (OSGi Alliance, 2009), 
is a Java platform providing functionalities for 
service-oriented programming. It allows developing 
smaller independent modules that can dynamically 
provide services to other modules and consume 
those that other modules offer. In this framework, 
modules, called bundles, can be loaded, started, 
replaced or stopped at runtime. Moreover, this 
platform allows developing bundles with clear 
separation between interfaces and their 
implementation in a natural way. To summarize, 
OSGi makes programming service-oriented 
applications easier and provides high adaptation 
capabilities, which is a required property for 
integrating autonomic elements in future network 
equipments. 

Other assets of the OSGi platform are the ease of 
bundle version management and, above all, the 
plugin deployment facilities. In fact, launching the 
OSGi framework is straightforward: some tools like 
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PaxRunner (PaxRunner, 2009) ease the management 
of bundle provision inside interchangeable OSGi 
framework implementations. Managing bundles life 
cycle (install, run, stop, uninstall) is also simple. 

Another important benefit of the OSGi 
technology is that Cisco network equipments already 
integrate an implementation of the OSGi platform 
(Cisco, 2008). Remote deployment of OSGi bundles 
is the only thing to do to integrate the autonomic 
network management system in a Cisco piece of 
equipment. 

3.1.2 Web Ontology Language and Semantic 
Web Rule Language 

A cognitive network manager needs to have a 
“world” representation and capture the technical 
know-how in order to work autonomously with 
respect to the operator objectives. Therefore, a tool 
that allows the network expert to express its 
knowledge in a machine-readable way is required. 

An ontology is a « shared and common 
understanding of a domain that can be 
communicated between people and heterogeneous 
and distributed systems » (Fensel, 2001). It enables 
representing domain background knowledge in a 
machine understandable form (Studer, 1998). Using 
such a formal model within our distributed 
architecture is appropriate. An ontology defines a set 
of concepts, properties, relationships, constraints and 
axioms that provide rules that govern them. 

The Web Ontology Language (OWL) (W3C, 
2004) is the W3C standard for ontological 
modelling. It has been designed to provide a 
common way to process the content of web 
information. The OWL standard defines three 
increasingly expressive dialects: OWL Lite, OWL 
DL and OWL Full. OWL Full contains all the OWL 
language constructs but has no computation 
guarantees because it introduces too many 
possibilities. OWL DL is a sublanguage of OWL 
Full and relies mostly on description logics (DL). 
OWL DL is computationally decidable and more 
appropriate for knowledge representation when 
inference is needed. OWL Lite is a subset of OWL 
DL and suits well for expressing basic classification 
hierarchy and simple constraints. Although 
originally defined as an important part of the 
semantic Web suite, OWL is emerging as the major 
standard for knowledge representation. 

However, OWL constructs do not allow the 
formalization of rules on top of the ontology. 
Among many proposals aiming at enhancing OWL 
knowledge bases with rules, the Semantic Web Rule 

Language (SWRL) (W3C, 2004) is probably the best 
known and most established. SWRL provides the 
means to define rules that extends the OWL set of 
axioms. 

3.1.3 Jess Inference Engine 

Cognitive network managers need reasoning 
capabilities to make decisions according to policies 
defined by network administrators. An inference 
engine performs reasoning from declarative facts. 
Jess, for Java Expert System Shell (Friedman-Hill, 
2003), is a fast and powerful rule engine for the Java 
platform, which supports development of rule-based 
systems that can be tightly coupled to code entirely 
written in Java. Jess has been integrated with several 
agent frameworks and other tools like the popular 
ontology editor Protégé (Protégé, 2009). Jess, which 
supports both forward and backward chaining, has 
been integrated in the CONEMAF platform to 
provide such reasoning capabilities. 

3.2 Modular Framework 

CONEMAF is built on top of OSGi and follows the 
modular principles that OSGi enables. Software 
upgrade, deployment over heterogeneous network 
elements are thus facilitated. 

3.2.1 Framework Components Overview 

Figure 2 represents the different components the 
CONEMAF platform is made of from a software 
point of view. The core framework is composed of 
components that are essential for the cognitive 
network manager to play its role. This includes a 
scheduler to trigger the execution of behaviours, an 
inference engine for decision-making, and a 
blackboard, which acts as an organized common 
space for information sharing. Topology, discovery 
and communication services are also implemented 
as modules. The main benefit of the framework 
resides in the simplicity of adding, deleting or 
changing one of its components. Behaviours and 
network element controllers that may be adapted to 
the type of device they are embedded in particularly 
aim at exploiting such a benefit. All these 
components are individually described in the 
following section. 

3.2.2 Modules Description 

Each component of the cognitive network manager 
is implemented as a module, called bundle in the 
OSGi terminology. The present release of 
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Figure 2: CONEMAF components. 

CONEMAF includes a first implementationof the 
following modules: 

• Topology service: based on a regular exchange 
of hello messages, constructs, updates and 
exchanges adjacency tables that reflects the 
physical network topology 

• Discovery service: maintains information 
concerning neighbouring cognitive network 
managers (IP addresses, network interfaces used 
to reach them…) 

• Communication service: fundamental service 
that provides communication functions with 
high-level semantics (communication acts, 
content identification) 

• Network element controller: gathers network 
equipment status and publishes these different 
pieces of information (interfaces, routing…) in 
the blackboard. It also provides means to enforce 
reconfigurations in the network equipment. 

• Behaviours: a behaviour realizes tasks or 
computations that are inherent to a specific 
objective. Two kinds of behaviours have been 
developed, differentiated on how often they are 
executed: 

- one shot: is executed only once 
- periodic: is executed at regular intervals. 

The execution of behaviours is triggered by the 
scheduler. Their life cycle, depicted in Figure 3, 
can be controlled. 

• Scheduler: schedules the execution of 
schedulable components registered beside it 
(behaviours basically) 

 
Figure 3: Behaviour life cycle. 

• Blackboard: provides writing and reading 
functions in a shared space. We have extended 
LighTS (Picco G. P., 2005) (Picco G. P., 2001), a 
light Java implementation of the Linda model of 
tuple spaces (Wells, 2003). The blackboard 
contains different topics semantically linked to 
concepts of the ontology. Each topic is 
implemented as a tuple space 

• Inference engine: in charge of making high-level 
decisions, it can be considered as the brain of a 
cognitive network manager. The ontology and 
the operator policies are loaded inside it, so as 
declarative facts representing the situation. 
Regarding to defined policies, decisions can be 
made as rules are triggered. The inference engine 
makes decisions that may need additional 
information for reconfiguring the network 
equipment and delegates these kind of specific 
processes to behaviours. 
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4 AUTONOMIC CONGESTION 
MANAGEMENT IN A 
DYNAMIC ENVIRONMENT 

The purpose of this experiment is to offer an initial 
validationof the applicability of CONEMAF to 
perform autonomic network management. The 
objective of using autonomic management is to 
provide faster adaptation of the network to varying 
load conditions. This experiment aims to highlight 
the use of the framework to overcome congestion 
problems in wireless networks, where bandwidth 
often fluctuates. In this specific case, CONEMAF 
provides proactive route selection on top of the 
legacy routing protocol. The experiment has been 
carried out with a virtualization tool that emulates 
network equipments and links. The same scenario is 
run without and with CONEMAF and performances 
are compared in both cases. 

4.1 Initial Situation 

Let’s consider the mesh network in Figure 4. It is 
composed of five routers and the scenario also 
involves two end devices. OSPF (Moy, 1998), one 
of the standard Internet routing protocol, is executed 
in this mesh network. A video flow is running across 
the network from a server to a client. In this context, 
the scenario consists in evaluating the visual impact 
of different failures or disruptions without and with 
CONEMAF cognitive network managers. 

 
Figure 4: Initial situation. 

4.2 Without CONEMAF 

First of all, without cognitive network managers, 
when a link fails on the path from source to 
destination, the routing protocol is able to detect the 
failure and converges back. The video flow is 
affected (stopped) and its diffusion restarts when the 
routing protocol has converged (this can be quick). 

Then, still without cognitive managers, limiting 
bandwidth capacity on a link between source and 
destination simulates a link disruption. This is the 
most interesting situation because, as there is no link 
failure, the routing protocol cannot do anything (it is 
not able to detect this disruption). The quality of the 
video flow remains affected (e.g., blocks still 
appear). 

4.3 CONEMAF in Action 

Cognitive network managers aim at anticipating 
corrective actions to problems that can arise in a 
network. This first demonstration using the 
framework consists in detecting a link disruption and 
reacting to this problem as soon as it occurs by 
redirecting the video flow. 

To achieve this, a policy defining a threshold for 
available bandwidth on network interfaces is 
included as a rule in the inference engine. It looks 
like this: 

(interface ?name … ?availableBW …) 
^ (?availableBW <= threshold) 
=> (changeRoute ?name) 

The network element controller regularly gathers 
and publishes information on interfaces (name, state, 
available bandwidth…) in the blackboard. These 
factual pieces of information concerning every 
interface are retrieved by the inference engine and 
inserted into it under that form: 

(interface <name> <state> 
<availableBW> <otherParameters>) 

Simple behaviours realize the following actions: 

• exchange local routing table with direct 
neighbours (Figure 5) 

• use received neighbouring routing tables to 
compute alternative paths (the algorithm is 
illustrated in Figure 7) to reach each destination 
contained in the local routing table (Figure 6). 

 
Figure 5: Local routing table exchange between 
neighbours. 
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Figure 6: Alternative routing table computing. 

 
Figure 7: Alternative routing table computation algorithm. 

When a disruption occurs on a given link and the 
defined threshold is reached, the rule inserted in the 
inference engine is triggered and a fact is published 
in the blackboard topic associated to orders. The 
network element controller then reads this order for 
changing the route(s) using the relevant interface 
(whose name is given in the inference result). It 
makes use of alternative routes computed by the 
behaviour in charge of this task to select one to be 
applied. If existing, this alternative route is enforced 
in the network equipment routing table and the flow 
is instantaneously redirected (Figure 8). 

Enforcing an alternative route is a solution to 
face the disruption. Other solutions could be 
envisaged and the cognitive network manager would 
have to choose the most appropriate according to the 
situation. This simple reaction gives quite good 
results: even if we can see small pixels for less than 
one second, the video remains fluent. 

 
Figure 8: Facing the disruption by redirecting the video 
flow. 

5 CONCLUSIONS AND FUTURE 
WORKS 

This paper has presented CONEMAF, a platform 
that implements Cognitive Network Managers in 
Java. CONEMAF emphasizes autonomous 
distributed cognitive network managers that are able 
to monitor and act on the network equipment they 
are embedded in. They share an ontology that allows 
them to understand information they gather and 
exchange. Following high-level policies defined by 
operators, they can reason, make decisions and 
cooperate autonomously. 

Based on the OSGi platform, CONEMAF is 
made up of easily deployable components and 
provides the modularity required to manage 
heterogeneous equipments in future converged 
networks. The first release has demonstrated 
autonomic routing capabilities in a simple use case. 

Further work on the ontology and the inference 
engine is the next step towards extended autonomic 
capabilities. While still paying a particular attention 
to the framework modularity, further developments 
will then focus on giving the cognitive network 
managers learning capabilities to evaluate and adjust 
decisions based on their past experiences. 
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