
 
5
5,5
6
6,5
7
7,5
525 575 625 675 725 775 825 875 925
SOP
ID
Generation: 500 Generation: 1000 Generation: 1500 Generation: 2000
 
Figure 7: Population average fitness for 1ycc, 36 peaks. 
The main drawback of this method, as it is 
implemented, is its dependence of previously 
knowing the expected number of peaks in the search 
space. This problem may be overcome by trying to 
identify the number of peaks in the population 
dynamically, or by using a different approach when 
computing the nich radius, σ
share
. 
Alternative objectives, such as minimizing the 
number of gaps, may be used instead of maximizing 
the identity. However, this kind of approach may 
have poor results when several gaps are needed to 
maximize the similarity among the sequences. A 
possible solution is to increase the complexity of the 
problem by optimizing three objectives: maximize 
identity and sum-of-pairs scores, and minimize the 
number of gaps in the alignment. 
REFERENCES 
Anbarasu, L. A., Narayanasamy, P. & Sundararajan, V. 
(2000) Multiple molecular sequence alignment by 
island parallel genetic algorithm. Current Science, 78, 
858-863. 
Chellapilla, K. & Fogel, G. B. (1999) Multiple sequence 
alignment using evolutionary programming. IN 
Angeline, P. J., Michalewicz, Z., Schoenauer, M., 
Yao, X. & Zalzala, A. (Eds.) Proceedings of the 1999 
Congress on Evolutionary Computation. Washington 
DC, USA, IEEE Press. 
Dayhoff, M. O., Schwartz, R. M. & Orcutt, B. C. (1978) A 
Model of Evolutionary Change in Proteins. Atlas of 
Protein Sequence and Structure. National Biomedical 
Research Foundation. 
De Jong, K. (1988) Learning with genetic algorithms: An 
overview. Mach Learning, 3, 121-138. 
Goldberg, D. E. (1989) Genetic Algorithms in Search, 
Optimization, and Machine Learning Reading, MA, 
Addison-Wesley Publishing Company. 
Goldberg, D. E. & Richardson, J. (1987) Genetic 
algorithms with sharing for multimodal function 
optimization. Proceedings of the Second International 
Conference on Genetic Algorithms on Genetic 
algorithms and their application. Cambridge, 
Massachusetts, United States, L. Erlbaum Associates 
Inc. 
Holland, J. H. (1975) Adaptation in natural and artificial 
systems, Univ Mich Press. Ann Arbor. 
Horn, J., Nafpliotis, N. & Goldberg, D. E. (1994) A niched 
Pareto genetic algorithm for multiobjective 
optimization.  Proceedings of the First IEEE 
Conference on Evolutionary Computation, IEEE 
World Congress on Computational Intelligence 1, 82-
87. 
Horng, J.-T., Lin, C.-M., Liu, B.-J. & Kao, C.-Y. (2000) 
Using Genetic Algorithms to Solve Multiple Sequence 
Alignments. IN Whitley, L. D., Goldberg, D. E., 
Cantu-Paz, E., Spector, L., Parmee, I. C. & Beyer, H.-
G. (Eds.) Proceedings of the Genetic and Evolutionary 
Computation Conference (GECCO-2000). Las Vegas, 
Nevada, USA, Morgan Kaufmann. 
Horng, J., Wu, L., Lin, C. & Yang, B. (2005) A genetic 
algorithm for multiple sequence alignment. Soft 
Computing, 9, 407-420. 
Lassmann, T. & Sonnhammer, E. L. L. (2002) Quality 
assessment of multiple alignment programs. FEBS 
Letters, 529, 126-130. 
Michalewicz, Z. (1996) Genetic algorithms + data 
structures = evolution programs - Third, Revised and 
Extended Edition, Springer. 
Notredame, C. & Higgins, D. G. (1996) SAGA: sequence 
alignment by genetic algorithm. Nucleic Acids 
Research, 24, 1515-1524. 
Notredame, C., O'Brien, E. A. & Higgins, D. G. (1997) 
RAGA: RNA sequence alignment by genetic 
algorithm. Nucleic Acids Research, 25, 4570-4580. 
Pal, S. K., Bandyopadhyay, S. & Ray, S. S. (2006) 
Evolutionary computation in bioinformatics: A 
review.  IEEE Transactions on Systems Man and 
Cybernetics Part C-Appl and Rev, 36, 601-615. 
Shir, O. M. & Back, T. (2006) Niche radius adaptation in 
the cma-es niching algorithm. Lecture Notes in 
Computer Science, 4193, 142. 
Silva, F. J. M., Sánchez Pérez, J. M., Gómez Pulido, J. A. 
& Vega Rodríguez, M. Á. (2007) Alineamiento 
Múltiple de Secuencias utilizando Algoritmos 
Genéticos: Revisión. Segundo Congreso Español de 
Informática. Zaragoza, Spain, CEDI. 
Silva, F. J. M., Sánchez Pérez, J. M., Gómez Pulido, J. A. 
& Vega Rodríguez, M. Á. (2008) AlineaGA: A 
Genetic Algorithm for Multiple Sequence Alignment. 
IN Nguyen, N. T. & Katarzyniak, R. (Eds.) New 
Challenges in Applied Intelligence Technologies. 
Springer-Verlag. 
Silva, F. J. M., Sánchez Pérez, J. M., Gómez Pulido, J. A. 
& Vega Rodríguez, M. Á. (2009) AlineaGA - A 
Genetic Algorithm with Local Search Optimization for 
Multiple Sequence Alignment. Applied Intelligence, 1-
9. 
Thompson, J. D., Plewniak, F. & Poch, O. (1999) 
BAliBASE: a benchmark alignment database for the 
evaluation of multiple alignment programs. 
Bioinformatics, 15, 87-88. 
Wang, C. & Lefkowitz, E. J. (2005) Genomic multiple 
sequence alignments: refinement using a genetic 
algorithm. BMC Bioinformatics, 6. 
 
A NICHED PARETO GENETIC ALGORITHM - For Multiple Sequence Alignment Optimization
329