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Abstract: A Support Vector Machine (SVM) classification method for data acquired by EEG registration for 
brain/computer interface systems is here proposed. The aim of this work is to evaluate the SVM 
performances in the recognition of a human mental task, among others. Such methodology could be very 
useful in important applications for disabled people. A prerequisite has been the developing of a system 
capable to recognize and classify the following four tasks: thinking to move the right hand, thinking to 
move the left hand, performing a simple mathematical operation, and thinking to a nursery rhyme. The data 
set exploited in the training and testing phases has been acquired by means of 61 EEG electrodes and 
consists of several time series. These time data sets were then transformed into the frequency domain, in 
order to obtain the power frequency spectrum. In such a way, for every electrode, 128 frequency channels 
were obtained. Finally, the SVM algorithm was used and evaluated to get the proposed classification. 

1 INTRODUCTION 

Brain electrical activity can be observed and 
recorded by placing a set of ad-hoc wet electrodes 
on the surface of the scalp. Every kind of task or 
thought performed by the human being causes 
electrical activity in different parts of the brain; thus, 
the activity recognition could be considered as a 
desirable machine learning application. The task is 
not very trivial because of many reasons. First, the 
states of all neurons in the brain are unknown, 
except the mean values of them in some zones of the 
outer part of the brain. Second, the electrical activity 
is not limited to a single zone, depending on the task 
the subject is performing: in some cases, it can even 
involve the whole brain and the difference among 
different tasks seems consist in the way the electrical 
waves are moving from one zone to another. A third 
problem concerns the base of the brain electrical 
activity, even presents when no thoughts or 
movements are done. So the base activity, including 
breathing and all involuntary movements, can mask 
the voluntary task we intend to detect. The “noise 
signals” corresponding to this base activity can also 

assume higher levels with respect to those of 
“voluntary signals” under detection. 

Stand the above considerations, the main 
challenge consists in the proper classification of the 
dataset collected from the electrodes, in order to 
recognize the mental task the subject was 
performing.  

Though the classical classification method for 
this kind of data makes use of artificial neural 
networks (ANN) (Huan, 2004), a different kind of 
classifier is here proposed. In fact we want to 
evaluate how and if the Support Vector Machines 
(SVM) can be recognized as a useful tool instead of, 
together with or in addition to the classical neural 
network. This because SVM presents the interesting 
advantage to support datasets with a huge number of 
components; in such a way, the need of reduction of 
the feature space is not more necessary otherwise 
than ANN. In addition, in the present application, 
SVM training algorithm furnishes valuable 
advantages with respect to the “back-propagation”, a 
rule usually applied in the ANN approach. 

In the following sections, the acquisition data 
system, the acquired data pre-processing and the 
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classifier will be presented. Experimental tests and 
related results will be the test bench to validate the 
proposed method. 

 EEG 

Preprocessing 

Classification  
Figure 1: Block-diagram of the sensor system. 

2 ACQUISITION DATA SYSTEM 

The overall system consists in three blocks (Fig. 1), 
namely data acquisition, pre-processing, and  
classification.  

 
Figure 2: Position and names of the electrodes. 

The acquisition data system used 61 Ag-AgCl 
scalp electrodes. The electrodes were located 
according to the International 10-20 system (Huan, 
2004; Wolpaw, 2002; Schogl, 2005; Yoo, 2004; 
Sharbrough, 1991; Blankertz, 1970) as shown in Fig 
2.  

The electrodes were connected to the computer 
by fiber optic transmission channels, in order to 
provide the proper electrical insulation and to 
guarantee the subject by any risk of electrical shock.  

The signals were processed at the sampling rate 
of 256 Hz and band-pass filtered in the band from 
0.5 Hz to 128 Hz. The sensitivity of the amplifier is 
set to 4 mV. The picture of the sensor system is 
shown in Fig. 3. 

 
Figure 3: Picture of the sensor system. 

3 PREPROCESSING 

The frequencies of the waves observed in EEG 
signals are usually related to different kinds of brain 
activity. To this purpose, some classical waves have 
been defined, namely alpha waves (8-12 Hz), beta 
waves (12-19 Hz), gamma waves (around 40 Hz) 
and delta waves (1-4 Hz) that are associated to 
weakness, sleep, REM and other kinds of brain 
states respectively (Blankertz, 2006; Brazier, 1970; 
Ward, 2006).   

Following this approach, the acquired dataset 
was analysed in the frequency domain. In 
correspondence to every task, the FFT algorithm 
was applied to three windows of 256 samples and, 
for each window, the ratio between the mean value 
of alpha waves (8-12 Hz) and the mean value in 
frequencies range (5-40 Hz) was evaluated. Only the 
first half of every FFT window was considered since 
the second half is symmetric and couldn’t give any 
further information. Channels from 1 to 127 
represent the frequencies from 1 to 127 Hz. Zero 
frequency (Channel 0) was omitted. In this way, one 
data point was obtained in correspondence to every 
electrode and to every task to be classified. In order 
to obtain a useful comparison between different 
choices of electrodes, three occurrences were 
considered. The first one corresponded to all the 
electrodes. The second one considered a proper 
selection of 19 electrodes, in particular the 
electrodes: C1, C2, C3, C4, C5, C6, Cz, P1, P2, P3, P4, 
P5, P6, T3, T4, T5, T6, FPz, Oz. These electrodes are 
strictly related to the sensory-motory cortical area 
(related to hand moving), and to the lower parietal 
(related to arithmetical operations). In the third 
occurrence, the electrodes C3 and C4 were under 
consideration, being very useful to discriminate right 
hand vs. left hand, as suggested in (Blankertz, 2006), 
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but also the electrodes around the above ones were 
used, namely C1, C2, C5, C6, CP3, CP4, FC3, FC4. 
Thus, in this case, a total set of 10 electrodes was 
used. 

As a final step, since a large variance in the 
numerical values was registered, a normalization 
rule was necessary, so that all the values involved be 
in the interval form 0 to 1. 

4 CLASSIFIER 

In the latest years, the technical literature proved the 
SVM to play a valid alternative rule to multi-layer 
feed-forward neural networks, for data classification 
and regression or PCA (Jolliffe, 2002; Burges, 
1998). The basic formulation of SVM learning rule 
for classification consists in the minimum norm 
solution of a set of linear inequality constraints. It 
seems useful to remark the relation between these 
two paradigms in order specify some peculiar 
properties of SVM rule: the “optimal” margin of 
separation, the robustness of the solution and the 
availability of efficient computational tools. Indeed, 
SVM learning problem does not get to non-global 
solutions and can be solved by standard routines for 
Quadratic Programming (QP). In the case of a large 
amount of data, some fast solvers for SVMs are 
available, e.g. SVM-light (Joachims, 1999; 
Scholkopf, 1999). In the following subsection, a 
short description of an SVM will be given. 

4.1 Support Vector Machines 

Let (xk, yk), k = 1,…, m represent the training 
examples for the classification problem; each 
example xk∈RN  belongs to the class yk ∈{-1, +1}. 
Assuming linearly separable classes, a separating 
hyper-plane will exist, such that 

         yk (wT xk+ b) >  0  k = 1,…, m      (1) 

The minimum distance between the data points 
and the separating hyper-plane is the separation 
margin. The goal of an SVM is to maximize this 
margin. If the weights w and the bias b are rescaled, 
the constraints (1) can be rewritten as 

             yk (wT xk+ b)  ≥   1 k=1,…,m         (2) 

Thus, the margin of separation is equal to 1/||w|| 
and the maximization of the margin is equivalent to 
the minimization of the Euclidean norm of the 
weight vector w. The corresponding weights and 
bias represent the optimal separating hyper-plane 
(Fig. 4).    

w
1

w
1

wTx + b = +1  wTx + b = -1 

optimal 
hyperplane 

 
Figure 4: Optimal separating hyper-plane corresponding to 
the SVM solution. The support vectors lie on the dashed 
lines. 

5 EXPERIMENTS AND RESULTS 

In the experiments, five mentally healthy subjects 
(three males and two females) were involved for two 
days. Each subject performed two sessions every 
day. During a single session, each subject was asked 
to perform 400 tasks, randomly selected among the 
following ones: thinking to move the right hand, 
thinking to move the left hand, performing a simple 
mathematical operation, and thinking to a nursery 
rhyme.  

Two sessions on distinct days were recorded for 
each subject. Each session consisted of 200 trials (50 
for each of the four possible tasks). 

The subjects sat in a comfortable armchair in 
front of a computer screen. For every trial a text, 
indicating the task to perform, appeared on the black 
screen for 3 sec. The Inter Trial Interval (ITI) was 
set to 1 sec. 

The objective was to operate discrimination 
between the following pairs of tasks: left hand vs. 
right hand, and mathematical operation vs. nursery 
rhyme. The whole dataset was spitted into training 
set (60% of the dataset), validation set (15% of the 
dataset) and test set (20% of the dataset). The 
accuracy results for the test set on Nursery rhyme vs. 
Math operation are shown on Table 1 for every 
subject, while the mean values are reported on the 
bottom line. The accuracy results for the test set on 
Right hand vs. Left hand are shown on Table 2. 
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Table 1: Math vs. Nursery rhyme discrimination accuracy 
results. 

Subj. 61 elect. 19 elect. 10 elect. 
1 75.8% 78.3% 61.5% 
2 56.7% 63.3% 62.5% 
3 59.2% 68.3% 53.3% 
4 63.3% 73.3% 55.0% 
5 73.3% 75.0% 70.8% 

  65.7% 71.7%  60.6% 

Table 2: Left vs. Right discrimination accuracy results. 

Subj. 61 elect. 19 elect. 10 elect. 
1 72.5% 90.0% 75.0% 
2 55.8% 76.7% 51.7% 
3 55.8% 65.0% 50.8% 
4 45.0% 58.3% 63.3% 
5 53.4% 73.3% 63.3% 

  56.5% 72.6% 60.8% 

For each subject (denoted with a number, for the 
take of privacy), the mean values of results were 
computed for two different sessions, considered 
separately. No mixing of data was allowed from 
different subjects, or from different sessions for the 
same subject, as the results appear very different.  

The accuracy in the case of usage of all the 61 
electrodes is shown in the first column of the tables: 
for some subject, as subject 1, it appears very high, 
while it can be extremely low for some other 
subjects. For instance, for subject 4 in table 2, it is 
less than 50%: in this case, it could mean that, 
paradoxically, a random selection between the two 
choices would have given better results.  

In the second column, the accuracy in the case of 
19 electrodes is shown. As discussed above, an 
accurate selection of best electrodes was done, in 
function of the cortical areas mainly involved in the 
four tasks of interest. Best results were carried out in 
this case, obtaining accuracies over 70%. An error of 
about 27% - 28% can be considered quite low, 
accounting for the difficulty involved in the 
experiment of interest: indeed, in every case, the 
subject was required not to move any muscle, but 
just to think of moving it. By the way, if a limb is or 
is going to be really moved, the electrical activity in 
the brain would become much more clear and could 
be easily detected, as is shown in (Blankertz, 2006). 

The accuracy in the cases of 10 electrodes is 
shown in the third column. Presently, the number of 
electrodes taken into account appears not sufficient 
to get to good results. In particular, results appear 

not useful for the discrimination between 
mathematical operation and nursery rhyme, since the 
selected electrodes are all around C3 and C4, which 
are mainly related to hand movements.  

6 CONCLUSIONS 

A classification method for brain-computer interface 
is presented, which was able to discriminate among 
different kind of mental tasks performed by a 
subject. The method is based on a SVM classifier, 
trained by the power frequency spectrum of EEG 
signals coming from 61 electrodes set in the head 
surface. 

The experimental tests proved quite useful 
results in case of 19 electrodes, while poor results 
were obtained for 61 electrodes. This occurence is 
likely to depend from the small number of trials, as 
SVM method always requires a high number of 
them, accounting for the large number of features to 
be considered. In addition, large accuracy disparity  
was found in the cases of different subjects: for 
instance, in the case of 19 electrodes, accuracy up to 
90% was obtained with subject 1, but just a little 
over 58% with subject 4. 

The results appear quite interesting compared 
with other similar works, as in (Schogl, 2005), in 
which different methods of classification are 
considered. It was also shown SVM method to get 
the best result, with accuracy average of about 63%.  

The essential rules of the electrode number and 
position are here pointed out, as they can 
dramatically affect the classifier performance. 

Future developments will include the time 
domain analysis, in addition to the frequency 
domain here examinated. It could be also interesting 
to investigate the effect of data artefacts. They can 
arise, for example, if the subject sometime can blink, 
and this can produce noise in the EEG, getting worse 
the performance of the classifier. Significant 
improvements could be carried out cleaning the data 
from this kind of noise. 
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