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Abstract: Most crowd simulation models for pedestrian dynamics are based on analytical approach using experimental 
settings without being related to real world data. In order for the models to be adapted to real world 
applications such as fire evacuation or warning systems, some technical aspects first must be resolved. First, 
the base data should represent the 3D indoor model which contains semantic information of each space. 
Second, in order to communicate with the indoor localization sensors to capture the real time pedestrians 
and to store the simulation results for later uses, the data should be in a DBMS instead of files. The purpose 
of this paper is two folds. One is to suggest a DBMS-based 3D modeling approach for pedestrian 
simulations. The other is to improve the existing floor field based pedestrian model by modifying the 
dynamic field. We illustrated the data construction processes and simulations using the proposed DBMS 
approach and the enhanced pedestrian model. 

1 INTRODUCTION 

Many micro-scale pedestrian simulation models 
have been proposed for the last decade and applied 
to fire evacuation problems or building safety 
evaluation. Recent development in localization 
sensors such as RFID draws our attention to indoor 
spaces and real-time applications. In order for our 
pedestrian models to be applied to real world indoor 
applications, they need to use different data formats 
other than current experimental file formats. The 
data should include semantic and topological 
information of building 3D spaces. Also, to be able 
to communicate with the location sensors to capture 
the real pedestrian movement, the data should be 
stored in a DBMS. Once data are stored in a 
database, the simulation results can also be stored 
back in the DB for real time evacuation guidance.  

In this paper we proposed a method to build a 
simplified 3D model which is suitable for pedestrian 
simulation. Instead of representing the complex 
details of indoor spaces, we used the floor surfaces 
focusing on the fact that pedestrian movements take 
place only on the surfaces. We showed the process 
to build the 3D model using a spatial DBMS. 

We also developed a pedestrian simulator and 
tested using our proposed 3D model. In the model, 

we used the floor field model as our base model and 
revised the dynamic field strategy. 

2 RELATED WORKS 

3D models currently used in the 3D GIS are actually 
2.5 dimensional CAD-based data types focusing on 
visualization purpose in realistic way. They have 
limitations for analytical purposes in indoor space 
applications due to its lack of topological and 
semantic structure. As a solution to this, topological 
models along with using DBMSs for 3D objects 
have been recently investigated by some researchers 
(Arens 2003, Stoter et al. 2002, 2003, Zlatanova 
2000). 3D models suggested by those are generally 
categorized as follows: 

A. SOLID – FACE – EDGE – NODE  
B. SOLID – FACE – NODE 
C. SOLID – FACE 

The three types are data models for defining 3D 
volumes not for interior spaces. CAD-based models 
have been used widely and there is a growing 
interest in using IFC (Industry Foundation Classes) 
format especially for modeling and developing 
building information systems. Although these 
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formats offer flexibility in modeling indoor spaces 
with various data primitives, they are file-based 
formats and, thus, have limitations in being used in 
indoor information systems as mentioned earlier. On 
the other hand, CityGML which was adopted as a 
standard by OGC (Open Geospatial Consortium) is a 
3D model that provides different levels of details 
ranging from region to interior spaces (Kolbe 2008, 
Stadler et al. 2007). CityGML is based on XML 
format for the storage of data and has capability of 
storing complex semantic information. However, it 
has not provided fully functional data base 
implementation. One of the reasons is attributed to 
the fact that current commercial DBMSs do not fully 
support topological structure of 3D objects yet.  

Evacuation models have been studied in various 
fields such as network flow problems, traffic 
assignment problems, and are generally categorized 
into two; macroscopic and microscopic models 
(Hamacher et al. 2001).   

Macroscopic models appear in network flow or 
traffic assignment problems and take optimization 
approach using node-link-based graphs as the data 
format. They consider pedestrians as a homogeneous 
group to be assigned to nodes or links for 
movements and do not take into account the 
individual interactions during the movement. On the 
other hand, microscopic models emphasize 
individual evacuees’ movement and their responses 
to other evacuees and physical environment such as 
walls and obstacles. Microscopic models are mainly 
based on simulation and use fine-grained grid cells 
as the base format for simulation. They have been 
used by experts in different domains including 
architectural design for the analytical purposes of the 
structural implications on the human movement 
especially in emergency situations. 

 
Figure 1: Helbing’s social force model. 

Different micro-simulation models have been 
proposed over the last decades (Schadschneider 
2001) but two approaches are getting attention; 
social force model and floor field model (Kirchner et 
al. 2002). A frequently cited model of former type is 

advanced by Helbing and collegues (Helbing et al. 
1997, 2001) and is based on strong mathematical 
calculation acted on agents to determine its 
movement to destination (e.g. exits). Helbing’s 
model considers the effects of each agent upon all 
other agents and physical environment (Figure 1) 
leading to the computation of O(n2) complexity, 
which is unfavorable for computer-based simulation 
with many agents (Henein et al. 2005, 2007).  

In recent years there is a growing interest to use 
cellular automata as the base of micro-simulation 
(Blue et al. 1999, Klupfel et al. 2002). Kirchner and 
colleagues (Kirchner et al. 2002) have proposed CA-
based floor field model, where two kinds of fields—
static and dynamic—are introduced to translate 
Helbing’s long-ranged interaction of agents into a 
local interaction. Although this model considers only 
local interactions, they showed that the resulting 
global phenomena share properties from the social 
force model such as lane formation, oscillations at 
bottlenecks, and fast-is-slower effects. The floor 
field model uses grid cells as the data structure and 
computes movement of an agent at each time step 
choosing the next destination among adjacent cells. 
This makes computer simulation more effective.  

In this paper we focus on Kirchner’s model as 
our base model. We will later describe the limitation 
of his dynamic field computation strategy and how 
we revised it.  

3 A SIMPLIFIED INDOOR 3D 
MODEL 

In our previous study (Park et al. 2007) we had 
proposed a 2D-3D hybrid data model that can be 
used both in 2D-based semantic queries and 3D 
visualization. We used two separate models, 2D GIS 
layers and 3D models, and combined them using a 
database table as the linkage method.  

Although the previous file-based approach was 
satisfactory in incorporating semantic and 
topological functionality into a 3D model, it has 
some drawbacks. First, two models are created 
separately and need additional table for linkage, 
which makes consistent maintenance difficult. 
Second, building a 3D model by separating 
compartments requires additional time and cost. 
Finally, such file-based models are not easy to store 
many buildings and, most importantly, they cannot 
be integrated with client/server applications such as 
sensor systems (i.e. RFID, UWB, thermal sensors). 
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To solve these problems, we proposed in this 
research a new approach that uses a DBMS instead 
of files. Because semantic information is now 
extracted from database tables and used for analyses 
and 2D/3D visualization, the new model does not 
require an additional table for linkage. This data 
model has a multi-layered structure based on 2D 
building floor plans as the previous file-based 
model. It retains 2D topology because building floor 
plans are converted into 2D GIS layers (shapefiles) 
and then are stored in a spatial database. Thus, it is 
possible to perform topology-based analyses and 
operations provided by the DBMS. Also, all records 
containing geometries can be visualized for 2D and 
3D. 

Indoor location-based application use locations 
and tracing information of pedestrians who move on 
the surface floors in the building. This means that it 
is possible to retrieve semantic data and perform 
analytical operations only using floor surfaces in 
such applications (i.e. indoor crowd simulation, 
indoor wayfinding). This is the reason that we 
choose to use building floor plans as the base data 
type. For the connection of floors, we also converted 
the stairs to a simple set of connected polygons and 
then stored in the DBMS. Figure 2 illustrates the 
process for storing indoor objects in a database. This 
shows that we used only the bottom part of a room 
polyhedron. 

 
Figure 2: An example of storing rooms floors in a spatial 
DB. 

This approach can well fit in DBMS-based 
applications due to less complex and simplified data 
construction process. Using a DBMS against file 
format gives many merits including data sharing, 
management, security, back-up and speed. It is also 
possible to integrate with sensor systems by storing 
the sensor information in the database. In this study, 
we used PostgreSQL/PostGIS for the DBMS. 
PostgreSQL is an open source object-relational 
database system, freely downloadable. To display 
indoor objects in 3D stored in the database, we used 
OpenGL library and it also interacts with the 
PostGIS database for the data retrieval and 
visualization (Figure 3). 

 
Figure 3: 3D visualization using data from a spatial 
DBMS. 

4 FLOOR FIELD MODEL 

We chose Kirchner model as our base model. His 
original model (Kircher et al. 2002) and some 
variations (Nishinari et al. 2005) have demonstrated 
the ability to capture different pedestrian behaviors 
discussed in the previous section while being 
computationally efficient. First, we will describe the 
basic features of the floor field model and, then, 
describe how we improved the model. 

4.1 Two Fields in Floor Field Model 

Floor field model is basically a multi-agent 
simulation model. Here, each pedestrian is an agent 
who interacts with environments and other 
pedestrians. The group of such agents forms a multi-
agent system (MAS). The agents in MAS have some 
important characteristics as follows (Wooldridge 
2002). 

 Autonomy: Agents are at least partially 
autonomous. An agent reacts to environment 
and other agents with autonomous manner. 

 Local View: No agent has a full global view 
of the system. Each agent has no guidance to 
exits, instead, it moves only by local rules. 

 Decentralization: Each agent in the system is 
equal and no agent controls others. 

These characteristics of MAS in pedestrian 
models are frequently implemented using cellular 
automata (CA) and Kirchner model is also based on 
CA. CA theories are introduced in many related 
works, thus we will not introduce them here. 

The basic data structure of Kirchner model is 
grid cells and each cell represents the position of an 
agent and contains two types of numeric values 
which the agent consults to move. These values are 
stored in two layers; static field and dynamic field. 

A cell in the static field indicates the shortest 
distance to an exit. An agent is in position to know 
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the direction to the nearest exit by these values of its 
nearby cells. 

While the static field has fixed values computed 
by the physical distance, the dynamic field stores 
dynamically changing values indicating agents’ 
virtual traces left as they move along their paths. As 
an ant use its pheromone for mating (Bonabeau 
1999), the dynamic field is similarly modeled where 
an agent diffuses its influence and gradually 
diminishes it as it moves. Without having direct 
knowledge of where other agents are, it can follow 
other nearby agents by consulting dynamic values. 

It is possible to simulate different pedestrian 
strategies by varying the degree to which an agent is 
sensitive to static or dynamic field. For example, we 
can model herding behaviors in panic situation by 
increasing sensitivity to the dynamic field. Such 
sensitivity factors are described in the following 
section. 

4.2 Floor Field Rule 

An agent in the floor field model consults the scores 
of its adjacent cells to move. A score represent the 
desirability or the attraction of the cell and the score 
of cell i is computed by the following formula (Colin 
2005): 

Score(i) = exp(kdDi ) × exp(ksSi ) × ξi × ηi (1)

where,    Di : the dynamic field value in cell i 
         Si : the static field value in cell i 

              kd, ks : scaling parameters governing the 
degree to which an agent is sensitive to 
dynamic field or static field respectively 

              ξi : 0 for forbidden cells (e.g. walls, 
obstacles) and 1 otherwise 

              ηi : Occupancy of agent in the cell. 0 if an 
agent is on the cell, and 1 otherwise. 

Kirchner and his colleagues used probability 
P(i), the normalized value of score(i) against all nine 
adjacent cells including itself. However, it turns out 
that using score(i) and p(i) has same effect since 
they are always proportional to each other in the 
adjacent nine cells. 

The static field is first computed using a shortest 
distance algorithm such as the famous Dijkstra’s 
algorithm. Then, all agents decide on their desired 
cells and they all move simultaneously. We 
converted Kirchner’s rule to a pseudocode. The 
following pseudocode represents the movement of 
an agent.  

After an agent has moved to one of its adjacent 
cells except its own, the dynamic value at the origin 
is increased by one: Di  Di + 1 (Burstedde 2001, 

Nishinari 2005). Then a portion( α ) of Di is 
distributed equally to the adjacent cells (diffuse) and 
a portion(β) of Di itself becomes diminished. α and 

β is the input parameters to the model. This diffuse 
and decay process follows the analogy of ant 
pheromones which are left for a while and decayed 
gradually. Agents consult dynamic and static values 
at the same time. The scaling factors(kd and ks) are 
used to control the degree to which an agent react 
more to one of two fields. The ratio kd /ks may be 
interpreted as the degree of panic. The bigger the 
ratio, the more an agent tend to follow others. 

● ●

Di Di + 1

 
Figure 4: Diffuse and decay of the dynamic value. 

5 REVISED DYNAMIC FIELD 

The dynamic field is believed to be an effective 
translation of the long-ranged interaction of 
Helbing’s model (Helbing et al. 1997, 2001) to local 
interaction. However, Kirchner model do not 
differentiate an agent’s dynamic value with ones of 
others. The model simply adds the diffused and 
decayed values to the existing values. 

It is reasonable that we consider that an agent 
should be able to avoid its own influence as an ant 
uses its pheromone. Kirchner’s dynamic field does 
not cause a significant problem when an agent 
moves to one direction. However, as shown in figure 
5, there may be cases when an agent comes back to 
its own trace area. Then, the agent has no choice but 
to get influenced by its own dynamic value if not 
much. 

●

 
Figure 5: A problem of using the dynamic value when 
returning to the own dynamic area. 

We modified the Kirchner’s dynamic field such 
that an agent can exclude its own dynamic value 
when computing equation (1). To make it possible, 
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the model should have a data structure that allows 
each cell to store a list of dynamic values of agents 
that have chance to leave their values to that cell. If 
we put the dynamic value of agent p as d(p, k), then 
a set D(k) having a list of dynamic values can be 
given by 

D(k) = {d(p, k) : p=1, 2, …, n} 

Here, n is the number of agents that have the 
dynamic values that are greater than zero. We might 
easily presume that maintaining such set makes the 
model O(n2) complexity which are computationally 
unfavorable. However, D(k) does not contain the 
entire agents’ values and, instead,  keep only those 
agents’ values that pass k’s nearby areas and keep 
non zero dynamic values. Thus, each cell keeps 
relatively small number of entries compared to the 
whole number of agents. For the implementation of 
the simulator, we used .NET C# language, and the 
data structure called Dictionary. The dictionary 
keeps a list of (key, value) pairs, where the key 
represent an agent while the value is its dynamic 
value. 

If an agent p happens to leave any portion of its 
dynamic value to cell k more than once, d(p, k) 
maintains only the maximum value among them. 
This makes sense if we imagine that the decaying 
scent get again maximized when an ant returns to 
that area. 

d(p, k) = max{d(p, k): p=1, 2, …, m} 

Here, m is the number that an agent p leaves any 
portion of its dynamic values to cell k. Eventually, 
when consulting the score(i), agent q at cell i is able 
to exclude its own dynamic values in the adjacent 
cells and only takes the maximum one from each 
D(k) into account. 

D(k)q = max{d(p, k): p ≠ q} 

●

D(k) = {d(p, k) : p=1, 2, …, n}

● ●

dmax dmax dmax

dmax ● dmax

dmax dmax dmax

d(p,r) = d(p,r) ? 1
where r is an 

adjacent cell of i-1

if ￢d(p, k) ∈D(k) then 
D(k) = D(k)∪d(p, k)
where 
k is an adjacent cell of i,
d(p, k) = dmaxi i-1

 
(a)                       (b)                      (c) 

Figure 6: The list of dynamic values at cell k(a), an agent’s 
movement, and diffusion and decay(c). 

We also modified the diffusion and decay 
strategy in our model. As shown in Figure 6, right 
after an agent p moves, d(p, k) values of the adjacent 
cells of cell i-1 is decreased by one, and then d(p, k)s 
of the adjacent cells of the current cell i are newly 

assigned the maximum dynamic value. Then, what is 
the maximum dynamic value? Let us first take an 
example before describing it. 

Figure 7. shows a building floor plan that has a 
main exit and a room inside with a door. We assume 
Agent A and B are located as in the figure. The 
numbers on the cells indicated the static field values 
computed from the main exit. 

In Kirchner’s model, the dynamic values are 
assigned regardless of the static values of the current 
location. In a simple rectangular space as those used 
by the author, such strategy may not cause much 
problem since the static values lead the agents to the 
exit eventually even though the dynamic values are 
much greater than its static counterparts at the 
current location. 

However, in using real building plans where 
multiple rooms are located inside, such strategy can 
cause a problem. If static values are gradually 
assigned from main exit(s), inner rooms can have 
very low values depending on the size of the 
building. Let’s suppose Agent B reaches the room 
door. If there are multiple agents in the room and 
they happen to leave bigger dynamic values in the 
back of agent B than the static values in that area, 
then the agent can get stuck in the door because one 
or more empty adjacent cells in the back may be 
bigger than that of forward cells. 
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Figure 7: The problem of initializing the dynamic values 
in a building having multiple compartments. 

To solve this problem, we changed the diffuse 
and decay strategy by letting an agent choose the 
maximum value of the adjacent static values as its 
initial dynamic value. This way, any agent inside the 
space can have the initial dynamic value which is 
proportional to the corresponding static values. The 
static and dynamic values are of different units; one 
is distance and the other is an abstract interpretation 
for attraction force. In order for a model to control 
the sensitivity to these two field values, two values 
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should be comparable to each other at any cell. That 
is the reason we synchronizes the initial dynamic 
values with the static values every time an agent 
moves. Following is a pseudocode with the modified 
dynamic value computation. 

i = b    // Set i to the beginning node 
O=Φ    // Set the open list to empty set 
D(k)=Φ  for k∈ N // Set the Dynamic list for each node to empty set 
P(i) = null   // Set the parent node of node i to null 
s(i) = 0   // Set the score of the node i to 0 
O = (i)   // Add the node i to the open list 
While (i ≠ E)  // Iterate while node-i is not the destination node 
{ 
 // Choose the maximum score node among the open list. 
 Let  i ∈ O  be a node for which  
  s(i) = max{ s(i) : i ∈ O } and s(i) > 0 
 
 // If the agent- i has moved to a node other than itself 
 if( i ≠ P(i) ) 
 { 
  // For each node in the open list, if the node contains  
  // the agent p’s dynamic value, decrease it by one 
  for each k ∈ O 
   if d(p, k) ∈ D(k) then d(p,k) = d(p,k) - 1 
 
  O=Φ  // Reset the open list to empty set 
  // For each of searchable adjacent nodes of i  
  // (i.e. excluding those obstacles as walls and furniture and 
  // including i and) set parent, and add to the open list 
  // j: Adjacent nodes of i including i itself 
  for each ( i, j ) ∈ A(i)  
  {  
   // If not in the open list, add j to it 
   if j∉O then O = O∪(j) 
   // Set the parent node of j to i 
   P(j) = i     
  } 
  // Get the maximum static value  among those  
  // in the open list nodes (t(k): static value in cell k) 
  dmax = max{ t(k) : k ∈ O } 
  // For each node in the open list, if the dynamic list does  
  // not contain the dynamic value of node k, add it to D(k) 
  for each k ∈ O 
  { 
   d(p, k) = dmax 
   if d(p, k)∉ D(k) then D(k) = D(k)∪d(p, k) 
  } 
 } 
} 

Figure 8: Pseudocode for an agent movement. 

6 SIMULATION 

6.1 3D Data Model Construction 

For the simulation, we constructed a 3D model of a 
real campus building following the proposed 
approach described in the previous section. The 
building has two main exits; the one in the front is 
wider than the side exit. We first simplified the CAD 
floor plans for the test purpose and they were 
converted to shapefiles, then stored into the PostGIS. 
The stairs were simplified and decomposed into 
several connected polygons and also stored in the 
DBMS. Once all data are stored, all connected floor 

surfaces now can be retrieved simply by SQL 
queries. Finally, the queried surface data were then 
converted to grid cell data for simulation. We set the 
cell size to 40cm × 40cm considering the human 
physical size. 

We developed a simulator using the C# language 
and the OpenGL library. Figure 9 shows the 
interface of the simulator and the 3D model used in 
the simulation. The simulator reads in the data from 
the PostGIS or the cellularized surface data. Once 
the data are read in, they can be visualized in 2D or 
3D in OpenGL-based display module. In the 
simulator, we can input parameters such as ks, kd, 
dmax, time step, the number of agents, the number of 
iterations and the increments of the agents number in 
the iterations. 

 
Figure 9: The pedestrian simulator and the 3D model used 
in the test. 

6.2 Results 

The simulator first constructs the static field 
computing the shortest distance from the two main 
exits to each cell in the building. We used varying 
numbers for the parameters. Figure 10 shows the 
two extreme cases; ks = 0 and kd = 0. As can be 
easily guessed, ks = 0 makes the agents wander 
around the space herding towards nearby agents 
without any clue of direction to exits. On the other 
hand, Kd = 0 causes the agents flow directly towards 
exits without any herding behaviors. 

(a) (b) 

Figure 10: Snapshot of two extreme cases; ks = 0(a) and kd 
= 0(b). 
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Figure 10 shows the effect of varying kd values. 
While kd = 0 correctly leads the agents to exits 
where the agents are belonged to based on their 
static values, kd > 0 begins to show the herding 
behaviors. When a few agents happen to leave the 
group, others begin to follow them, leading to 
increasing the use of the side exit. 

(a) (b) 

Figure 11: The effect of varying kd; kd = 0(a) and kd/ks = 
0.5. 

We further investigated the effect of the dynamic 
term kd using varying values. Table 1 shows the 
effect of Kd on the evacuation time and the use rate 
of the side exit (Exit 1). 2000 agents were used for 
the test. We observed that the use rate of the side 
exit gets increased in proportion to kd. However, 
using kd>0 slightly decreased the total number exited 
and then didn’t change it significantly thereafter. 
This was because Exit 2, the main exit, is wider 
around twice as much as Exit 1. This indicates that 
using wider second exit can help decreasing the 
number exited. 

Table 1: The effect of Varying Kd on evacuation time 
and use of the side exit. 

kd=0 kd=0.05 kd=0.1 kd=0.25 kd=0.5 kd=1.0 
Exit1 120 351 422 484 566 689 

Exit2 1880 1649 1578 1516 1434 1311 
evactime 945 723 702 688 670 632 

Another experiment was carried out to measure 
the time escaped with increasing agents and varying 
kd/ks. The results are provided in Figure 12 showing 
the number of outgoing agents and the time taken 
with 6 sets of kd/ks. The (kd, ks) value pairs in the 
test were (0, 0.3), (1, 0.1), (0.25, 0.5), (0.1, 0.1), 
(0.05, 0.1), and (0.1, 1). The number of agents used 
were 500~5000. We observed that kd = 0 made the 
curve almost linear increase while using different kds 
that are greater than 0 did not cause significant 
differences. However, the result shows leading 
people to alternative exit definitely decrease the 
overall escape time. 

 
 

 
Figure 12: Time take for escape of varying number of 

agents with different sets of kd/ks. 

7 CONCLUDING REMARKS 

In this study, we suggested a process to develop a 
3D evacuation simulator instead of trying to improve 
the scientific investigation of crowd behaviors. In 
order to be able to integrate our system with real-
time evacuation or rescuers’ guidance, we suggested 
a less complex 3D indoor model focusing on the 
semantic information and navigation taking place on 
the floor surface. We also implemented the proposed 
model using a SDBMS and 3D visualization.  

We also suggested a modified floor field 
pedestrian model using Kirchner’s model. His model 
has demonstrated the ability to represent different 
pedestrian situations while maintaining basic 
MAS(multi-agent system) rules of autonomy and 
localization. However, his model is unable to 
capture the differences in dynamic values of 
different agents. 

We have improved the floor field model in order 
for an agent to be able to exclude the influences of 
its own dynamic values by changing the data 
structure of dynamic field, which better conforms 
the analogy of ant pheromones. Also, by turning his 
constantly increasing and decreasing dynamic term 
D into dynamically changing term around agent’s 
nearby static values, our model has shown the 
flexibility to more complex indoor configurations. 

We currently keep improving the model by 
incorporating visibility effects and multiple 
velocities. Also, we focus on relating our model to 
real world applications. In this paper, we briefly 
introduced the use of spatial DBMS and 3D 
structures. However, with some refinements, we 
believe that our model can be adapted to real world 
3D indoor applications equipped with indoor 
localization sensors. Then, we will be able to use the 
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real distribution of indoor pedestrians captured by 
sensors instead of using randomly generated agents. 
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