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Abstract: Thoracic Electrical Impedance Tomography (EIT) is a non-invasive technique which attempts to reconstruct 
a cross-sectional image of the internal spatial distribution of conductivity from electrical measurements 
made by injecting small alternating currents via an electrode array placed on the surface of the thorax. 
Because air is highly resistive to electric currents whereas fluids and blood are good conductors, it is 
possible to detect changes in lungs air content with EIT enabling the assessment of ventilation distribution.  
This paper presents a physiological model which integrates a previously developed gas exchange model 
with a model of the lung mechanics. This model is combined with a two-dimensional (2D) finite element 
mesh of the thorax to simulate EIT image reconstruction in patients with acute Respiratory Distress 
Syndrome (ARDS) under mechanical ventilation. The model was able to track lung ventilation distribution 
under various simulated ARDS conditions and ventilator settings. 

1 INTRODUCTION 

Mechanical ventilation is an essential component in 
supportive therapy of patients with Acute 
Respiratory Distress Syndrome (ARDS): a 
potentially severe form of respiratory failure.  
Although, mechanical ventilation can be a lifesaving 
intervention for many patients in the Intensive Care 
Unit (ICU), it has been associated with potential 
complications causing secondary lung damage 
known as Ventilator-Induced Lung Injury (VILI) 
(Tremblay and Slutsky, 2006). Selecting appropriate 
ventilator settings can reduce the risk of VILI. 
However, known bedside measures to guide the 
clinician when adjusting mechanical ventilation to 
provide adequate gas exchange whilst minimising 
any adverse effects to the patient’s lungs are limited. 
Current methods available for assessing the lung 
function in mechanically ventilated patients include 

arterial blood gas analysis and graphic waveforms 
displayed on the ventilators (flow, pressure, volume 
over time as well as airway pressure-volume 
curves). However, these can give only an indication 
of the overall lung function and fail to provide full 
information on the regional lung behaviour.  
Currently, chest Computed Tomography (via a CT 
scanner) is the most reliable technique for the 
clinical assessment of regional lung recruitment and 
ventilation distribution in patients with ARDS. 
However, CT exposes the patient to radiations and is 
not a routine bedside technique.  

The aim of Electrical Impedance Tomography 
(EIT) is to produce a cross-sectional image of the 
internal distribution of conductivity, or alternatively 
resistivity of the lungs from electrical measurements 
made by injecting small alternating current patterns 
via surface electrodes and recording the resulting 
boundary voltages. EIT offers a very promising tool 
for monitoring the pulmonary function.  However, 
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the technique suffers from some limitations that may 
prevent its adoption for routine medical diagnosis.  

The first clinical images obtained with EIT were 
produced by the Sheffield group (Brown et al., 
1985), who developed a system that used the 
electrical impedance of various tissues within the 
human body to produce tomographic image maps of 
the resistivity distribution. The Sheffield Research 
Group produced the first images of the pulmonary 
function using a simple back-projection algorithm to 
reconstruct cross-section images of the thorax 
(Brown et al., 1985). Many current ongoing research 
studies are being directed at demonstrating the 
ability of EIT to image regional lung ventilation in a 
clinical setting (Victorino et al., 2004; Putensen et 
al., 2007).  Comprehensive literature reviews in this 
field can be found in (Frerichs et al., 2000) and 
(Panoutsos et al., 2007). Recently a software 
package (EIDORS) implementing different methods 
for the solution of the forward and inverse problems 
in EIT using finite elements modelling techniques 
has been made available for public use (Adler and 
Lionheart, 2006). 

The purpose of this study is to present a 
comprehensive physiological model of patients 
under mechanical ventilation. The model combines a 
blood gas model (SOPAVent) (Wang et al., 2006) 
and a model of the lung mechanics with a 2D finite 
element model of the thorax to simulate EIT current 
injection and image reconstruction. The 
physiological model is intended to provide the 
foundation for the validation of a new EIT-based 
clinical decision support system for optimising 
mechanical ventilator settings in ARDS patients. 

The rest of the paper is organised as follows. 
Section 2 focuses on the description of the 
physiological model and its principal components. 
The approach used to combine SOPAVent model 
with the lung mechanics and EIT is presented. 
Section 3 presents a simulation study with 
constructed scenarios of ARDS lungs.  

2 OVERVIEW OF THE 
PHYSIOLOGICAL MODEL 

The structure of the simulation model is depicted in 
Fig. 1. The model inputs are the ventilator 
parameters: the Fraction of Inspired Oxygen (FiO2), 
the Tidal Volume (VT), the Peak End-Expiratory 
Pressure (PEEP), the Peak Inspiratory Pressure 
(PIP), the Respiratory Rate (RR), the inspiration to 
expiration time ratio (I:E). The outputs are the 

predicted blood gases: the arterial partial pressure of 
oxygen (PaO2), the arterial partial pressure of carbon 
dioxide (PaCO2) and EIT image of the lung 
resistivity distribution. 

 
Figure 1: Schematic overview of the simulation model. 

2.1 Blood Gas Model (SOPAVent) 

The blood gas model SOPAVent (Wang et al., 2006) 
describes the relationship between the ventilator 
settings (FiO2, PEEP, PIP, RR, Tinsp) and blood gas 
(PaO2, PaCO2). In the model, the lung is divided into 
three compartments: The effective compartment 
(ventilated and perfused), the alveolar dead-space 
(DSalv) compartment (ventilated but unperfused) and 
the alveolar shunt (SHalv) compartment (perfused but 
unventilated). The model is assumed to have an 
anatomical dead-space and no extra-pulmonary 
shunt. On inspiration, CO2 gas retained in the 
anatomical dead-space from previous expiration is 
assumed to re-enter all ventilated alveoli in 
proportion to their ventilation. 
Following Workman et al. (1965), the volume of 
mixed expired gas from the alveolar 
component A

expV , is the contribution of the effective 

compartment E
expV , and the alveolar dead-space 

compartment
alvDS

expV .  

   
alvDS

exp
E

exp
A

exp VVV +=               (1) 
The ratio of the volume expired from the alveolar 
dead-space compartment to the volume expired from 
all ventilated alveoli can obtained as: 
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Where 
2CO

A
exp )P( is the partial pressure of CO2 in 

the alveolar component of expired gas and 

2COexp)P( is the partial pressure of CO2 in the mixed 
expired gas. 
     Similarly, the contribution to the arterial blood 
flow from all perfused alveoli, both ventilated and 
unventilated is made up of the arterial blood flow 
from the effective compartment plus the arterial 
blood flow from the alveolar shunt compartment. 
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The perfusion of the alveolar shunt compartment as 
a fraction of the total pulmonary perfusion is 
obtained from the shunt equation: 
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Where 
2O

E
a )S( is the oxygen saturation contribution 

to mixed arterial blood from the effective 
compartment, 

2Oa )S( is the oxygen saturation from 

the mixed arterial blood and 
2Ov )S( is the oxygen 

saturation of the mixed venous blood. 
With the assumption that all ventilated alveoli have 
equal ventilation and all perfused alveoli have equal 
perfusion; Workman et al. (1965) defined the 
fraction of total number of alveoli that are 
unperfused but ventilated as follows: 
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And the fraction of total number of alveoli that are 
unventilated but perfused as: 
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Equations (5) and (6) define the link between the gas 
exchange and lung mechanics models. 

2.2 Lung Mechanics Model 

The lung mechanics model used in this study has 
been adapted from Hickling (2001). The lung is 
modelled as multiple units or alveoli which are 
distributed into compartments characterized by 

different superimposed pressure (gravitational 
pressure due to lung weight). In the supine position 
the superimposed pressure increases from the ventral 
compartment (independent region) to the dorsal 
compartment (dependant region). The lung units are 
described by their compliance curve which gives a 
nonlinear relationship between the applied pressure 
and the lung unit volume. The following equation is 
used to model this relationship (Salazar and 
Knowles, 1964): 

))h/2(LogPexp(1(VV 0 −−=                               (7) 

Where V is the lung volume, V0 is the maximum 
volume at high pressure, P is the pressure and h is 
the half-inflation pressure. In the model, the lung 
unit can assume only two possible states: recruited 
(or open) and de-recruited (or closed). These two 
states are governed only by the Threshold Opening 
Pressure (TOP) which the critical pressure above 
which the lung unit pops open and Threshold 
Closing Pressure (TCP) below which the unit 
collapses. 

The model uses normally distributed TOP and 
TCP pressures (Crotti et al. (2001)). The Mean (μ ) 
indicates the pressure at which the maximum of 
recruitment (TOP) and derecruitment (TCP) of the 
lung units occur, whereas the Standard Deviation 
(SD) describes the spread of the lung units’ 
population with respect to the TOP and TCP (Yuta 
et al., 2004).  Therefore, μ and SD may be adjusted 
to reflect the heterogeneous characteristic of alveoli 
under different abnormal lung conditions such as 
ARDS (Table 3) (Markhorst et al., 2004).   
The model parameters used throughout are listed in 
Table 1 (Hickling , 2001). 

Table 1: Lung mechanics model baseline parameters. 

Parameters Value 
No. of alveoli per compartment 
Ncalv

9000 

Number of compartments Nc 30 
Gravitational pressure Pg cmH2O) 0 to 

14.5 
Lung volume V (litres) 6 
V0 (litres) 3.8 
h 5 

2.3 EIT Model 

A typical EIT system uses a set of 16 electrodes 
attached to the surface of the thorax to inject a small 
alternating current and record the resulting voltages 
to reconstruct a cross-sectional image of the internal 
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distribution of the conductivity or resistivity. The 
most popular data collection strategy is the so-called 
adjacent or four-electrode where current is applied to 
an adjacent pair of electrodes and the resulting 
voltages between the remaining 13 pairs of 
electrodes are measured. The type of reconstruction 
algorithm ranges from a simple linearised single-
step method to a computationally intensive iterative 
techniques. The EIT problem is often approximated 
by Laplace’s equation and Newman type boundary 
conditions given by (8) as long as the frequency is in 
the range of 0-10 kHz in which biological tissue 
exhibits distinct conductivity values (Brown et al., 
1985). However, solutions to the full Maxwell’s 
equations have also been investigated (Soni et al. 
2006). 

0)uσ( =∇⋅∇   

⎪⎩

⎪
⎨
⎧

=
∂
∂

elsewhere                       0 
electrodes under theJ

n
uσ        (8) 

Where σ  is the conductivity, u is the potential, J is 
the density of the injected current and n is the 
normal vector to the surface. A systematic approach 
for solving the reconstruction problem is to solve the 
forward problem which consists of finding a unique 
effect (voltages) resulting from a given cause 
(currents) via a mathematical or physical model 
(conductivity distribution). The process of 
recovering the conductivity distribution within the 
body from the applied currents and measured 
boundary potentials is known as the inverse problem 
in EIT. There exist two approaches for solving the 
image reconstruction problem in EIT. Static 
reconstruction produces an image of the absolute 
conductivity distribution of the medium based on 
one set of measurements. Dynamic or difference 
imaging attempts to recover the change in resistivity 
based on measurements made at two different time 
periods. In this paper, difference imaging was used 
and the finite element (FE) method was employed 
for the numerical solution of equation (8). The FE 
model used to simulate the subject’s cross-section of 
the thorax (adapted from Adler and Lionheart, 2006) 
was divided into four regions of different 
conductivities which were fixed to their basal values 
except those of the left and right lung that were 
updated based on the instantaneous lung volume 
generated from the lung mechanics model.   

The relationship between changes in the basal 
conductivity of the lungs and the inspired fraction of 
air is described by a parametric model. The data 
used to derive this model were obtained from EIT 
and spirometry measurements recorded from a 

human subject during a respiratory cycle (Smulders 
and van Oosterom, 1992). The left (σL) and right 
(σR) lung relative conductivities estimated from a 
thorax model for different inspiration levels are 
listed in Table 2. The inspiration fraction F is 
defined as: F = (Vinsp – Vmin)/(Vmax – Vmin), where 
Vinsp represents the tidal volume, Vmin and Vmax are 
respectively the minimum and maximum volumes 
assumed during tidal breathing. 

Table 2: Left and right lung conductivities (σL, σR) for 
different inspiration levels (F). 

 F (%) σL σR 
0 0.8 0.8 

20 1.0 0.8 
40 0.9 0.7 
60 0.7 0.6 
80 0.5 0.6 
100 0.4 0.5 

In this simulation study, the back-projection 
algorithm (Brown et al., 1985) was used for image 
reconstruction. The image reconstruction process is 
illustrated in Fig. 2. At each pressure step, the 
calculated lung volume is used to set the left and 
right lung conductivities on the FE thorax model. 
EIT data (assumed to be the real measurements) are 
then generated using adjacent drive patterns with an 
injected current of 5 mA and matched with the 
model predicted data set using the backprojection 
matrix until some precision is reached. 

 
Figure 2: Image reconstruction based on the 
backprojection. 
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3 SIMULATION STUDIES 

In ARDS, the lungs become stiffer and the lung 
units tend to open and collapse at higher pressures. 
To reproduce these conditions in the model, μ and 
SD which are related to TOP and TCP pressures 
were given the values shown in Table 3 (Markhorst 
et al., 2004).  

Table 3: Simulated ARDS scenarios. 

Estimated values for FRC under the degrees of 
ARDS conditions considered are listed in Table 3. It 
is worth noting that, the amount of collapsed alveoli 
associated with the shunt fraction are taken into 
account in the model . 
In this initial simulation study, the estimated values 
for Fuv,p (Table 3), expressed as a percentage of the  
a priori known total number of alveoli, are used to 
simulate the number of collapsed alveoli in these 
ARDS scenarios. A tidal breathing cycle is 
simulated by traversing up (inflation) and then down 
(deflation) the airway pressure range in small steps 
from 0 cmH2O to PIP=40 cmH2O and then back 
from PIP to 0 cmH2O respectively.  
The simulated ARDS scenarios presented in Table 3 
are reproduced on the physiological model where the 
shunt fraction is assumed to quantify the fraction of 
collapsed alveoli Fuv,p (Smith et al., 2005). Fig. 3 
shows the sequence of reconstructed images during a 
breathing cycle (progressing from left to right and 
top to bottom) for simulated moderate ARDS 
scenario.  

 
Figure 3: Reconstructed images for moderate ARDS 
scenario during a breathing cycle. 

The patient’s blood gas model SOPAVent has been 
validated in a previous study with clinical data 
gathered from a group of ICU patients (Wang et al., 

2007). Table 4 gives the ventilator and model 
parameters relating to one of the patients.  

Table 4: Ventilator settings and SOPAVent predictions. 

FiO2  
(%) 

PEEP 
(cmH2O) 

RR 
(breath/min) 

PIP 
(cmH2O) 

65 10 14 28 

 
Estimated parameters Predicted blood gases 

Shunt 31.8 PaO2 (kPa) 10.3 
Dead space 26 PaCO2 (kPa) 5.4 
CO (litres) 7.4     
VCO2 ( ml/min) 138.9   
VO2 , (ml/min) 173.6   

The shunt fraction and relative dead-space in Table 
4 have been assumed here to approximate the 
alveolar shunt (SHalv) and alveolar dead-space 
(DSalv) respectively and are used to update equations 
(5) and (6) in the physiological model. The model is 
cycled through a tidal expiration from FRC to a tidal 
inspiration and the results are shown in Fig. 4. The 
fraction of collapsed alveoli obtained from (6) was 
25.72% therefore the lungs were ventilated with 
over 200,000 alveoli. Fig. 4b shows the collapsed 
lung regions assumed in the model to occur in the 
dependant sections of the lungs subjected to the 
gravitational pressure.  

 
Figure 4: PV curve and EIT images showing end 
expiration (a) and end inspiration (b) reproduced from this 
patient’s data. 

4 CONCLUSIONS 

EIT is an established monitoring technique with the 
potential of becoming a valuable bedside tool for the 

Degree of 
ARDS 

TOP 
(cmH2O) 

TCP 
(cmH2O) 

FRC 
(litres) 

Fuv,p 
(%) 

normal 4.5 ± 2 2 ± 2 2.4 0 
mild 10 ± 2.9  2.5 ± 2.4 2.2 15 
moderate 14.5 ± 3.8 4.5 ± 2.9 1.8 25 
severe 24.5 ± 4.8 13 ± 3.8 1.5 35 
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assessment of the pulmonary function in ICUs. EIT 
is also capable of tracking local changes in 
pulmonary air contents and thus, can be used to 
continuously guide the titration of ventilation in 
ARDS patients whilst minimising the risk of VILI. 

A physiological model which combines a blood 
gas model with a model of lung mechanics has been 
developed and used to demonstrate the principles of 
EIT image reconstruction on simulated scenarios of 
ARDS lungs under mechanical ventilation.  The 
model leads to a good understanding of respiratory 
physiology in ARDS affected lungs. After its 
validation against clinical data recorded on real-
patients, the model can therefore be used to evaluate 
a new EIT-based decision support system for 
effective therapy which is currently being developed 
by the Sheffield Research Group.  
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