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Abstract: Cadiag2 is a well-known rule-based expert system that aims at providing support for medical diagnose in
internal medicine.Cadiag2 consists of a knowledge base in the form of a set ofif-thenrules that relate medical
entities, in this paper interpreted asconditional probabilistic statements, and an inference engine constructed
upon methods offuzzy set theory. The aim underlying this paper is the understanding of the inference in
Cadiag2. To that purpose we provide a (probabilistic) logical formalization of the inference of the system and
check its adequacy with probability theory.

1 INTRODUCTION

Cadiag2 (Computer Assisted DIAGnosis) is a well-
known rule-based expert system aimed at providing
support in diagnostic decision making in the field of
internal medicine. Its design and construction was
initiated in the early 80’s at the Medical University
of Vienna by K.P. Adlassnig – see (Adlassnig et al.,
1986), (Adlassnig et al., 1985), (Adlassnig, 1986) or
(Leitich et al., 2002) for more on the origins and de-
sign ofCadiag2.

Cadiag2 consists of two fundamental pieces: the
inference engine and the knowledge base. The in-
ference engine is based on methods of approximate
reasoning infuzzy set theory, in the sense of (Zadeh,
1965) and (Zadeh, 1975). In factCadiag2 is pre-
sented in some monographs as an example of afuzzy
expert system, (Klir and Folger, 1988), (Zimmer-
mann, 1991). The knowledge base,ΦCad, consists of
a set ofif-then rules intended to represent relation-
ships between distinct medical entities: symptoms,
findings, signs and test results on the one hand and
diseases and therapies on the other. The number of
rules inΦCad is approximately 50.000. The vast ma-
jority of them are binary (i.e., they relate single medi-
cal entities) and only such rules are considered in this
paper. The rules inΦCad are defined along with a
certaindegree of confirmationwhich intuitively ex-
presses thedegreeto which the antecedentconfirms
the consequent. For example,

IF suspicion of liver metastases by liver pal-
pation THEN may be pancreatic cancer with

degree of confirmation 0.30.1

As mentioned in (Adlassnig, 1986) we can iden-
tify such degrees of confirmation with probabilities
and the rules themselves with conditional probabilis-
tic statements. In (Adlassnig, 1986) it is stated that
such degrees of confirmation can be interpreted as
frequencies. An interpretation in terms ofdegrees of
belief of the doctor (or doctors) on the truth of the
consequent given that the antecedent of the rule holds
is also possible though. This fact motivates a prob-
abilistic interpretation ofCadiag2’s inference. Such
an interpretation leads to the primary aim of this pa-
per: formalise the inference inCadiag2 on probabilis-
tic grounds and check its adequacy with probability
logic (Halpern, 2003) or, more generally, with prob-
ability theory. We shall not expect big surprises in
this respect. The inference mechanism inCadiag2
proceeds in acompositionalway and thus it is bound
to be probabilistically unsound (as will be clarified
later). This was soon observed in earlier studies con-
cerning the celebrated expert system MYCIN – see
(Buchanan and Shortliffe, 1984) or (Shortliffe, 1976)
for a description of MYCIN and (Hajek, 1988), (Ha-
jek, 1989), (Hajek and Valdés, 1994), (Heckerman,
1986), (Valdés, 1992) for probabilistic approaches to
it. How far isCadiag2’s inference from probabilistic
soundness remains to be seen though.

It is worth mentioning here that, although the in-
terest among theoretical AI researchers in rule-based

1This rule is mentioned as an example in (Adlassnig
et al., 1986).
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expert systems seems to be lesser today than some
years ago, rule-based expert systems are still very
popular among AI engineers. ManyCadiag2-like
systems are in use and more are being built for fu-
ture implementation. Is is mainly for this reason that
we believe that further analysis and understanding of
Cadiag2-like systems is of relevance.

This paper is in some way a continuation of (Cia-
battoni and Vetterlein, 2009). In (Ciabattoni and Vet-
terlein, 2009) the inference mechanism ofCadiag2 is
formalised by means of a logical calculus,CadL, and
compared tot-norm-basedformalisms (Hajek, 1998).
It is shown thatCadLdoes not respond to any t-norm-
based (or to any fragment of a t-norm-based) logic.
As far as we know, (Ciabattoni and Vetterlein, 2009)
constitutes the first attempt at formalising and under-
standingCadiag2 in a logical way. The present paper
is the second.

This paper is structured as follows. In Section 2
we give some basic definitions and introduce most of
the notation used later in the other sections. In Sec-
tion 3 the inference process inCadiag2 is briefly de-
scribed. In Section 4 the formal systemCadPLis de-
fined and analysed in the light of probability logic.
CadPLis a formalization of the inference mechanism
of Cadiag2 based on a probabilistic interpretation of
it.

2 PRELIMINARY DEFINITIONS
AND NOTATION

Throughout we will be working with a finite proposi-
tional language,L = {p1, ..., pn}. We will denote by
SL its closure under classical connectives. Within the
context ofCadiag2 the languageL represents the set
of medical entities in the system.

Let LLit = {p ,¬p | p∈ L}⊂ SL, the set of literals
of the languageL.

Let ∆ = {φ1, ...,φk} ⊆ SL. We will denote by
∧

∆
the sentenceφ1∧ ...∧φk.

Definition 1. Let w: SL−→ [0,1]. We say that w is a
probability function on L if the following two condi-
tions hold, for allθ,φ ∈ SL:

• If |= θ then w(θ) = 1.
• If |= ¬(θ∧φ) then w(θ∨φ) = w(θ)+w(φ).2

We define conditional probability from the notion
of unconditional probability in the conventional way.
Forw a probability function onL andφ,θ ∈ SL,

w(φ|θ) =
w(φ∧θ)

w(θ)
.

2Here (and throughout)|= is classical entailment.

The statements we will be dealing with are primar-
ily of the form ’the probability ofθ givenφ is equal
to η’. Let F L = be the set of all the statements of
the formP(θ|φ) = η, for θ,φ ∈ SLandη ∈ [0,1]. Oc-
casionally we will refer to the setF L ≥, defined like
F L = but with ’≥’ in place of ’=’.

We will refer to φ in a statement of the form
P(θ|φ) = η as theevidenceand toθ as theuncertain
entityor event.

We will denote byF L =
s the subset of conditional

statements ofF L = where both the evidence and the
uncertain entity are literals, i.e. sentences inLLit . By
F L =

c we will denote the subset of conditional state-
ments ofF L = where the uncertain entity is a literal
and the evidence consists of a conjunction of literals
(we defineF L ≥s andF L ≥c analogously).

The binary fragment ofCadiag2’s knowledge
base,ΦCadBin, will be in principle regarded as a subset
of F L =

s . That is arguably the most natural interpreta-
tion of ΦCadBinwhen interpreting the rules probabilis-
tically.

Let Θ ∈ F L = andw a probability function onL.
We define satisfiability ofΘ by w (denoted|=w Θ) in
the obvious way. More specifically, forη ∈ [0,1] and
θ,φ ∈ SL,

|=w P(θ|φ) = η ⇐⇒ w(θ|φ) = η.

Satisfiability for statements inF L ≥ is defined
analogously. Such notion ofsatisfiabilityis extended
to subsets inF L = andF L ≥ in its trivial way. We
will sometimes identify the notion ofconsistencyof a
set of probabilistic statements with that of satisfiabil-
ity.

Definition 2. Let � be the partial ordering relation
on [0,1] defined as follows: For a,b∈ [0,1], a� b if
and only if0 < a≤ b or 0 < a < 1 and b= 0.

We define≺ from� in the conventional way.
As we will see later, the definition of≺ responds

to the use of both 0 and 1 as maximal values in
Cadiag2. The value 0 denotes certainty in the non-
occurrence of an event or falsity of a statement and
the value 1 denotes certainty in its occurrence or its
truth.

For the next definition let

D = [0,1]× [0,1]−{(0,1),(1,0)}.

Definition 3. The function max∗ : D −→ R is defined
as follows, for(a,b) ∈ D:

max∗(a,b) =

{

a i f b≺ a
b otherwise

The definition ofmax∗ is extended to more than
two arguments in its trivial way.
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3 THE INFERENCE IN CADIAG2

In this section we describe very briefly a generaliza-
tion of the inference mechanism inCadiag2. A more
detailed description and analysis of it can be found in
(Ciabattoni and Vetterlein, 2009).

Cadiag2 formally distinguishes between three dif-
ferent types of rules: typeconfirming to the degree d
(for d ∈ [0,1]), typemutually exclusiveand typeal-
ways occurring– see (Adlassnig et al., 1986), (Ad-
lassnig et al., 1985), (Adlassnig, 1986) or (Daniel
et al., 1997) for more onCadiag2’s rules. The last
two types mentioned areclassical in the sense that
the degree of confirmation for the rules of these types
is 1 and that the antecedent of such rules (or evidence
in our settings) needs to befully true (degree of pres-
ence or of truth1, see below) in order for these rules
to be triggered by the system. Such a distinction is not
taken into consideration in this paper and it is in this
sense that we say that our description of the inference
mechanism ofCadiag2 is actually a generalisation of
the real inference process. The inference engine in
Cadiag2 gets started with a set of symptoms, findings,
signs and diseases occurring inΦCadBin present in the
patient. LetΓ be the set of such medical entities.

Cadiag2 starts with an assignmentw0 on Γ that
gives a value in the interval[0,1] to each entity in
Γ. Such value is intended to represent the degree to
which the entity is present in the patient. The in-
tended interpretation of such values is based, in prin-
ciple, on fuzzy set theory. However, other interpreta-
tions can also be suitable, at least to some extent. In
fact, when defining the systemCadPL, the interpre-
tation to which we will commit will be probabilistic.
The assignmentw0 is then extended to negative state-
ments and logical equivalents according to the follow-
ing rule:

If w0(φ) = η thenw0(¬φ) = 1−η, for φ ∈ SL
andη ∈ [0,1].

After the initial assignment the inference rules in
ΦCadBin come into play. All the rules triggered by the
sentences inΓ are used during the inference process.
At each step in the inference process a rule is ap-
plied (that is done, in principle, in no particular order).
At the first step in the inference a rule of the form
P(θ|φ) = η in ΦCadBin is triggered, withη ∈ [0,1] and
θ,φ ∈ LLit . In order for that to happenφ or its negation
needs to be inΓ and the valuew0(φ) has to be strictly
positive. The application of the ruleP(θ|φ) = η gen-
erates a new assignment,w1, on {θ}. The value as-
signed toθ by it is calculated as the minimum be-
tweenη andw0(φ) and the value assigned to¬θ and
logical equivalents (if necessary for the inference) is
calculated fromw1(θ) as mentioned above forw0.

At the nth step in the inference process a new rule
of the formP(θ|ψ) = η in ΦCadBin will be triggered,
for η ∈ [0,1] andθ,ψ ∈ LLit . In order forP(θ|ψ) = η
to be triggeredψ must have been assigned at least one
value in(0,1] either by the initial assignment,w0, or
by any other assignment on{ψ} defined during the
inference process at some previous step. At thenth

step the application of this new rule will generate a
new assignment on{θ} that will giveθ the minimum
betweenη and the value ofψ considered for trigger-
ing the rule at this step in the inference (as above, this
value needs to be strictly positive). If the strictly posi-
tive values generated forψ before thenth step are mul-
tiple the inference mechanism inCadiag2 will call the
rule P(θ|ψ) = η again in further steps, if it has not
done so previously, until all the values forψ have been
used and all the possible values forθ generated. The
assignmentwn is defined to¬θ as mentioned above.

The inference process goes on until all the rules
triggered by all the sentences inΓ and its negations
have been used and all the possible assignments for
the sentences involved in the inference have been gen-
erated.Cadiag2 yields as an outcome of the inference
the set of medical entities inL occurring in the rules
triggered by the evidence inΓ along with themaxi-
mal value(with respect to the ordering� defined in
Section 2) assigned to them during the inference. If
a sentence is assigned both value 0 and 1 along the
inference process the system generates an error mes-
sage.

It is worth mentioning that the original inference
process inCadiag2 works in a slightly different way.
The update in the value of the distinct sentences in-
volved in the inference is done as soon as two differ-
ent values for the same sentence are produced by the
system. The value chosen in the update for atomic
sentences inL is the maximalone (with respect to
the ordering�). Notice though that this feature has
a highly undesirable result (unless further restrictions
on the rules or on the order in which the rules are ap-
plied are imposed), which is that the outcome of a run
of the inference mechanism can depend on the order
in which the rules are applied.

Such a drawback is easily avoided by assuming
that the update is only done at the end of the pro-
cess. There are other several undesirable features in
Cadiag2’s inference engine, most of them related to
the maximal value 0 and negated propositions. Maybe
the most evident concerning the maximal value 0 is
that a medical entity that at some step along the in-
ference process is assigned value 0 (that is to say, it
is considered false with certainty or impossible)trig-
gersany rules in which it occurs as evidence if any
other value other than 0 is assigned to it along the in-
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ference process. For a deeper analysis of such aspects
of the inference process inCadiag2 see (Ciabattoni
and Vetterlein, 2009).

We represent sentences together with the assign-
ments generated for them at each step in the inference
by pairs inSL× [0,1] along with a subscript indicat-
ing the step in the process at which such pairs have
been generated. As mentioned above, a step in the in-
ference process is given by the application of a rule in
ΦCadBin and the new assignments that it generates for
the sentences involved in the rule.

Let p∈ L andη ∈ [0,1] be the highest assignment
to p in a run of the inference mechanism inCadiag2.
We will use the subscriptmax∗ on the pair(p,η) –
that is to say,(p,η)max∗ – to denote thatη is themaxi-
malvalue assigned during the inference process forp
(with respect to the ordering�).

4 THE FORMAL SYSTEM CADPL

Some medical entities that occur in the rules of
Cadiag2 represent statements that arevague. For ex-
ample, inCadiag2 we have a medical entity given by
the following statement: ’reduced glucose in serum’.3

In such a statement the adjective ’reduced’ is vague.
Cadiag2 tackles vagueness by assigning values to

medical entities in the interval[0,1]. Such values
stand in principle for fuzzy membership within the
context of fuzzy set theory – see (Adlassnig et al.,
1986), (Adlassnig et al., 1985) or (Adlassnig, 1986).
In this paper we consider the possibility of interpret-
ing such values as probabilities, which can be done in
quite intuitive ways given the nature of the statements
we are dealing with.

Let us consider again the statement ’reduced glu-
cose in serum’. Let us assume that the value assigned
by the evaluation system inCadiag2 to the statement
’Patient A has reduced glucose in serum’ out of the
evidence given by the corresponding measurement of
the amount of glucose in Patient A isη, for someη ∈
[0,1]. As an example, we could interpret such value
as thedegree of beliefthat a medical doctor has in the
truth of the statement given the evidence. As suchη
could be interpreted as a probability. The probabilistic
interpretation is certainly favoured by thediscretiza-
tion applied to medical concepts inCadiag2 (for ex-
ample, the concept ’glucose in serum’ generates five
distinct medical entities inCadiag2: ’highly reduced
glucose in serum’, ’ reduced glucose in serum’, ’ nor-
mal glucose in serum’, ’ elevated glucose in serum’
and ’highly elevated glucose in serum’). Notice that

3This example is extracted from (Adlassnig et al., 1986).

such an interpretation places us within the subjective
probabilistic frame and thus, for the sake of coher-
ence, the knowledge baseΦCadBin should also be in-
terpreted subjectively. Other interpretations are also
possible though. For example, one could regard such
values as the ratio given by the number of doctors that
agree on the truth of the statement out of all the doc-
tors involved in the assessment. In order to accommo-
date such values into a coherent probabilistic frame
along with the statements inΦCadBinone could justify
them as beingsubjectiveprobabilities assessed by a
group of experts – see (Genest and Zidek, 1986) or
(Osherson and Vardi, 2006) for an analysis and justi-
fication of such concept.

Let φ ∈ LLit represent a medical entity present in
the patient and assume thatη ∈ [0,1] is the initial
value assigned to it at the start of a run ofCadiag2’s
inference process. We can formalise this by means
of a probabilistic conditional statement of the form
P(φ|κ) = η in F L =, whereκ ∈ SL is the evidence
that supports the presence ofφ in the patient. For sim-
plicity the sentenceκ will be assumed to be a literal
in LLit .

Next we are going to define the formal system
CadPL. Recall that the ultimate goal when doing so is
to define a system which represents the inference pro-
cess inCadiag2 when interpreted from a probabilistic
point of view. Although the inference inCadiag2 can
be closely related to probability theory (given the na-
ture of the rules of inference inΦCadBin) it is not based
on probabilistic methods and so the degree of free-
dom when choosing the rules of the systemCadPLis
high. We have chosen the rules by interpretingin the
most natural waythe steps along the inference pro-
cess within a probabilistic frame. The main idea be-
hind such interpretation consists of the identification
of the inference process with thepropagation of evi-
dencefacilitated by the rules inΦCadBin. For example,
from P(φ|κ) = η, wherek∈ LLit is evidence support-
ing the presence ofφ in the patient, andP(θ|φ) = ζ
in ΦCadBin we would inferP(θ|κ) = min(η,ζ), where
min(η,ζ) is the value (probability) assigned toθ given
the evidenceκ. We would have apropagationprocess
of this nature for each single piece of evidence. The
evidence would then be brought together inCadiag2
by what we call theRight conjunctionrule: given
two outcomes ofCadiag2’s inference process, say
P(p|κ1) = η andP(p|κ2) = ζ, for p∈ L andκ1,κ2 ∈
LLit , Cadiag2 combines the evidence given byκ1 and
κ2 by computingP(p|κ1∧κ2) = max∗(η,ζ). The in-
ference rules ofCadPLthat we next present formalise
this interpretation.A theoryT in CadPL is a finite
subset of sentences inF L =

s .
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For what follows letT = Ω∪Φ, with

Ω = {P(φ1|κ1) = η1, ...,P(φm|κm) = ηm},

for somem∈ N.
Let KΩ = {κ1, ...,κm} andΓ = {φ1, ...,φm}.
The setΩ is intended to represent the initial as-

signment in the inference process,Φ the set of rules of
the system,Γ the initial set of medical entities present
in the patient andKΩ the evidence in support of the
presence of the corresponding medical entities inΓ.

The formal systemCadPL is defined by the fol-
lowing inference rules:

Inference rules

• Reflexivity rule

For φ ∈ LLit , κ ∈ KΩ andη ∈ [0,1],

P(φ|κ) = η ∈ Ω
T ⊢ P(φ|κ) = η

• Negation rule

For φ ∈ LLit , ψ ∈ SLandη ∈ [0,1],

T ⊢ P(φ|ψ) = η
T ⊢ P(¬φ|ψ) = 1−η

• Equivalence rule

For ψ,φ,θ ∈ SLandη ∈ [0,1],

ψ ≡ φ T ⊢ P(φ|θ) = η
T ⊢ P(ψ|θ) = η

• Minimum rule
For θ,φ ∈ LLit , κ ∈ KΩ, η ∈ (0,1] andζ ∈ [0,1],

T ⊢ P(θ|κ) = η P(φ|θ) = ζ ∈ Φ
T ⊢ P(φ|κ) = min(η,ζ)

• Right conjunction rule

For p∈ L, K1,K2 ⊆ KΩ andη,ζ ∈ [0,1],

T ⊢ P(p|
∧

K1) = η T ⊢ P(p|
∧

K2) = ζ
T ⊢ P(p|

∧

{K1∪K2}) = max∗(η,ζ)

• Exhaustivity rule

For p∈ L, κ ∈ KΩ, K ⊆ KΩ andη ∈ [0,1],

T ⊢ P(p|
∧

K) = η ∀ζ ∈ [0,1] T 0 P(p|κ) = ζ
T ⊢ P(p|κ∧

∧

K) = η

Notice that theExhaustivityrule does not have any
bearing on thedecidabilityof whetherP(p|κ) = ζ is
provable fromT or not forζ ∈ [0,1], p ∈ L andκ ∈
KΩ. TheExhaustivityrule can only be applied after
its provability or non-provability has been decided.

Given a theoryT of CadPLand a statementΘ ∈
F L =

c , a proof ofΘ from T is defined as a finite se-
quence ofsequentsof the form

T ⊢ Θ1, ...,T ⊢ Θn

with Θn = Θ and where, fori ∈ {1, ...,n}, eachΘi in
T ⊢ Θi follows from T by the application of one of
the rules above, fromΘ j in a previous sequent (with
j < i) or fromΘ j ,Θk in previous sequents (withj,k<

i) by one of the rules above.
Let Θ be the statementP(θ|φ) = η, for someη ∈

[0,1] andθ,φ ∈SL. We say that there exists amaximal
proof of Θ from T if there exists a proof ofΘ from
T and there is no proof fromT of P(θ|φ) = ζ with
η ≺ ζ.

We say thatΘ followsmaximallyfromT (denoted
by T ⊢CadPL Θ) if there exists a maximal proof ofΘ
from T .

For the next proposition letT = Ω∪ΦCadBin, with

Ω = {P(φ1|κ1) = η1, ...,P(φm|κm) = ηm},

KΩ = {κ1, ...,κm}⊂ LLit andΓ = {φ1, ...,φm} a subset
of literals occurring inΦCadBin.

Proposition 4. Let p∈ L andη ∈ [0,1]. We have that

T ⊢CadPLP(p|
∧

KΩ) = η

if and only if (p,η)max∗ is the outcome of a run of
Cadiag2’s inference process onT .

Proof.4 In order to prove the left implication let us
consider a run ofCadiag2’s inference mechanism on
T . The inference starts from pairs of the form(φ,η)0
and(¬φ,1−η)0 for someη ∈ [0,1] for all φ ∈ Γ. In
CadPLa pair of the form(φ,η)0, for φ ∈ Γ, corre-
sponds to a sequent of the formT ⊢ P(φ|κ) = η, for
κ ∈ KΩ. The pair(¬φ,1−η)0 corresponds to the se-
quentT ⊢ P(¬φ|κ) = 1−η. The former corresponds
to an application of theReflexivityrule. The latter fol-
lows from the first one by an application of theNega-
tion rule.

Let us assume now that we are at thenth step of the
inference process and that a rule of the formP(θ|ψ) =
ζ is triggered, for someζ ∈ [0,1] andθ,ψ ∈ LLit . Let
us suppose that we have(ψ,µ)n−t , the pair that trig-
gers the rule at thenth step of the process, forµ∈ (0,1]
and t ≤ n− 1. In CadPL that would correspond
to a sequent of the formT ⊢ P(ψ|κ) = µ derived
from a previous step in the inference, forκ ∈ KΩ.
The inference mechanism inCadiag2 produces the
pairs (θ,min(ζ,µ))n and (¬θ,1−min(ζ,µ))n which,
in CadPL, corresponds to the sequentsT ⊢ P(θ|κ) =
min(ζ,µ) and T ⊢ P(¬θ|κ) = 1−min(ζ,µ) respec-
tively, which follow by an application of theMinimum
rule and, for the latter, an application of theNegation
rule on the former.

4For the sake of brevity we will deal with sentences as
if they were equivalence classes. If anything applies to a
sentence of the form¬φ, with φ ∈ LLit , we also assume that
it applies to any logical equivalent ofφ without mentioning
it.
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At the end of the processCadiag2 generates the
pair(p,η)max∗ for each sentencep∈ L involved in the
inference, whereη is the maximal value (with respect
to the ordering�) among those assigned top along
the inference. This maximization process is achieved
in CadPL by means of repeated applications of the
Right conjunctionrule. Instances of theExhaustivity
rule (if necessary) complete the inferential counter-
part ofCadiag2 in CadPL.

In order to prove the right implication let us sup-
pose that we have a maximal proof of the form

T ⊢ Θ1, ...,T ⊢ Θm,

whereΘm is the statementP(p|
∧

KΩ) = η, for some
η ∈ [0,1] andp∈ L.

The first sequent of the proof needs to respond to
an instance of theReflexivityrule,T ⊢P(φ|κ) = η, for
someφ ∈ Γ, κ ∈ KΩ andη ∈ [0,1]. The correspond-
ing counterpart of this sequent inCadiag2 is the pair
(φ,η)0.

Let us move now to thenth sequent, withn ≤ m.
Thenth sequent can be an instance of theReflexivity
rule, T ⊢ P(φ|κ) = η, for someφ ∈ Γ, η ∈ [0,1] and
κ ∈ KΩ. The counterpart for this sequent inCadiag2
is the pair(φ,η)0.

Thenth sequent can follow from a previous one in
the proof by an instance of theNegationrule. Let us
suppose that thenth sequent isT ⊢ P(¬θ|ψ) = 1−η
for someη ∈ [0,1], θ ∈ LLit and ψ ⊆ LLit and that
there is a sequentT ⊢ Θi , for somei < n, of the form
T ⊢ P(θ|ψ) = η. The latter corresponds to a pair of
the form(θ,η)t in Cadiag2 and the former to the pair
(¬θ,1−η)t , wheret is the step in the inference pro-
cess at which such pairs have been generated.

The nth sequent can follow from a previous one
by an instance of theMinimum rule. Let us assume
that thenth sequent isT ⊢ P(θ|κ) = min(η,ζ), for
someθ ∈ LLit , κ ∈ KΩ, η ∈ [0,1] andζ ∈ (0,1], that
T ⊢P(ψ|κ) = ζ is a previous sequent in the proof and
thatP(θ|ψ) = η ∈ ΦCadBin. The latter corresponds in
Cadiag2 to the pair(ψ,ζ)t and the former to the pair
(θ,min(η,ζ))t+k, wheret, t + k indicate the steps at
which the pairs have been generated by the inference
process.

Thenth sequent can follow from previous sequents
by an application of theRight conjunctionrule. The
counterpart inCadiag2 of such an outcome consists
of the maximization process at the end of the infer-
ence. Instances of theExhaustivityrule are irrelevant
to the inference inCadiag2.

This completes the proof. �

It is worth commenting on some features of the in-
ference rules ofCadPLin connection with probability
theory.

Soundnesswith respect to probabilistic semantics

of the Reflexivity, NegationandEquivalencerules is
clear. TheMinimumrule is certainly not sound with
respect to such semantics. TheRight conjunction rule
is not sound and it can generate probabilistic conse-
quences that areinconsistentwith its premises and
the theoryT (in the sense that such consequences
along with the premises and the theory are not si-
multaneously satisfiable by a probability function).
TheExhaustivityrule assumes some probabilisticin-
dependenceamong sentences that may not actually
be independent. Overall,CadPLdoes not score well
within probability theory. This is no surprise. The
computation of conditional probabilistic statements in
a compositional way, as done byCadiag2 primarily
by means of themin andmax∗ operators, is clearly
bound to be probabilistically unsound. One may won-
der though what could be done in order to improve
the inference on probabilistic grounds from a knowl-
edge base likeΦCadBin. The answer seems to be ’not
much’. Certainly aΦCadBin-like knowledge base (i.e.,
a knowledge base given by some binary probabilistic
conditional statements) is not the most convenient for
inferential purposes in probability theory for medical
applications likeCadiag2. As is well known, there
are other knowledge-base structures better suited for
that purpose, Bayesian networks being the most cel-
ebrated among them, see (Castillo et al., 1997) or
(Pearl, 1988).

In terms of consistency, it is worth noting that
CadPL satisfies what we can callweak consistency
– calledweak soundnessin (Hajek, 1988) –, defined
as follows: if there is a maximal proof inCadPLof a
statement of the formP(φ|

∧

∆) = 1 (orP(φ|
∧

∆) = 0)
from a certain theoryT , with φ ∈SLand∆ ⊆SLthen,
if there is a maximal proof inCadPLof a statement
of the formP(φ|

∧

∆∗) = η, with ∆ ⊂ ∆∗, thenη = 1
(or η = 0 respectively). That is to say, ifCadPLcon-
cludes certainty about the occurrence of some event or
about the truth or falsity of some sentence then adding
new evidence does not alter this certainty. Weak con-
sistency is provided inCadPLand so inCadiag2’s in-
ference mechanism by the operatormax∗ defined over
the ordering�.

It is also worth noting that one could guaran-
tee consistency (i.e., satisfiability) by considering
ΦCadBina subset ofF L ≥s (in place ofF L =

s , regarding
the values of the conditional statements aslower prob-
ability boundsrather than asexactprobabilities) and
by restricting the system to apositive fragmentof LLit
(i.e., only one ofp, ¬p can occur inΦCadBin). This
way consistency is trivially guaranteed forΦCadBin
together with any outcomes produced by the system
during the inference process.

In terms of soundness there does not seem to be
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much that one can do in order to improve the infer-
ence mechanism for knowledge bases likeΦCadBin, or
at least not much that one can do that does not come
at the price of generating probabilistic statements
with very low probabilistic bounds (when working
in F L ≥), which would makeCadiag2 potentially
useless for practical purposes. There is some room
for improvement for some steps in the inference that
come by the addition of some independence assump-
tions among some of the medical entities inΦCadBin.
Under such independence assumptions theproduct
operator in place of themin operator could yield
soundness for the inference steps referred.

5 CONCLUSIONS

Cadiag2 is a reasonably well-performing medical ex-
pert system (Adlassnig et al., 1986), but how it is so is
far from clear. The inference engine ofCadiag2 was
built with methods of approximate reasoning in fuzzy
set theory but, as such, it was not based on any logical
formalism or theory embedded with a clear semantics.
This fact motivated the main aim of this paper, which
was no other than theunderstandingof Cadiag2 in a
logical way.

The natural interpretation of the inference rules of
Cadiag2 (i.e., probabilistic) placed us upon the at-
tempt of interpreting the inference itself probabilis-
tically. We formalised this interpretation by means of
the systemCadPL, the logical (probabilistic) coun-
terpart of the inference engine ofCadiag2. The un-
soundness of some of the rules ofCadPL (and thus
of some inference steps inCadiag2) and the inconsis-
tency of the calculus (and thus of the inference pro-
cess inCadiag2) was made clear. Apart from these
drawbacks, otherwise expected, some other aspects of
CadPLwere also stressed and analysed. At the end of
the paper some possibilities for an improvement of
Cadiag2 in terms of soundness and consistency were
also mentioned.
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