
INVOLVING WEB-TRADING AGENTS & MAS
An Implementation for Searching and Recovering Environmental Information

L. Iribarne, N. Padilla, J. A. Asensio, F. Muñoz and J. Criado
Applied Computer Group, University of Almeria, Spain

Keywords: Software agents, Web-trading, Ontology, MAS, WIS, EMS.

Abstract: The Web-based Information Systems appear to facilitate the access of user(s) to different kind of informa-
tion geographically distributed in different regions (both data and users). In a web system, we have the pos-
sibility to use components called traders that improve the interoperability with agents or even trading sys-
tems. This paper describes details for a Web Trading Agent in a Multi-Agent System, which implements a
distributed information system, called SOLERES. Besides, it presents the communication system based on
ontologies through which the system agents communicate with each other and with the trading agent inside
the SOLERES system (i.e., an Environmental Management System). This architecture is based on a “Query-
Searching/Recovering-Response” model. For the implementation it uses: an interface user agent and the
trader agent, “processes” ontologies for the agent communication, “data” ontologies for the information sto-
rage, SPARQL notation for queries and the JADE platform for the implementation.

1 INTRODUCTION

Web-based Information Systems (WIS) are an exam-
ple of distributed information systems that facilitate
the information access, decision-making, etc. (Ly-
tras, 2005). WIS facilitates the access of users to dif-
ferent kind of information geographically distributed
in different regions (both data and users). In this
type of system, interactions are made between
“agents” of the system (Web components, subsys-
tems, humans) working in the same ambient (com-
puting space), or even through trading agents (i.e.,
mediation components).

Mediation components (i.e., traders) enrich the
component interoperability in WIS, so system agents
must use a common vocabulary to allow the com-
munication between them. This interaction is for-
mally defined by means of ontologies.

Environmental Management Systems (EMS) are
an example of WIS. In this kind of information sys-
tems, the software agents are applied in four differ-
ent contexts:
(a) information management context: for searching,

filtering, recovering and spreading information;
(b) in control and supervision processes context:

monitoring an element or an activity;

(c) in cooperative or work group applications con-
text: to flow information for the member inte-
raction; and

(d) as personal assistants: to represent a user if he
knows his preferences beforehand.

The SOLERES system (a spatio-temporal envi-
ronmental management system based in neuronal
networks, agents and software components; availa-
ble at http//:www.ual.es/acg/soleres) is our particular
EMS system, which follows a WIS approach. This
system has been designed inside a Multi-Agent Sys-
tem (MAS) based on a trader agent paradigm (Asen-
sio et al., 2008). The implementation follows a
“QuerySearching/RecoveringResponse” model, and
it uses:
(a) an interface user agent and a trader agent,
(b) “processes” ontologies for the agent communi-

cation,
(c) “data” ontologies for the information storage,
(d) SPARQL notation for queries and,
(e) the JADE platform for the implementation.

In the next section we will present a review of
the SOLERES system, and specifically the web trad-
ing agent, showing some communication implemen-
tation details by using Multi-Agent System ap-
proaches (Shiyong et al., 2007) (Tweedale et al.,
2007). After that, we conclude the paper with some
future work.

268
Iribarne L., Padilla N., Asensio J., Muñoz F. and Criado J. (2010).
INVOLVING WEB-TRADING AGENTS & MAS - An implementation for Searching and Recovering Environmental Information.
In Proceedings of the 2nd International Conference on Agents and Artificial Intelligence - Agents, pages 268-273
DOI: 10.5220/0002705202680273
Copyright c© SciTePress

2 SOLERES TRADING SERVICE

SOLERES follows a “QuerySearching / Recoverin-
gResponse” model (QS/RR) for the implementation
of the web-based trading agent using four contexts
(Figure 1) (Russ and Jones, 2006). On this model,
the queries made by a user are interpreted by using
the interface agent, which interacts with the user in-
terface and performs the query to the SPARQL lan-
guage. The monitoring process is made by the con-
trol agent named “IMIAgent” which receives the
query. This intermediary agent asks the trader agent
(“TradingAgent”) to find out the data localization
(searching). Later, the intermediary agent recovers
the information (recovering) through the resource
agent and replies to the interface agent which made
the query (response).

Figure 1: QuerySearching/RecoveringResponse Paradigm.

In an object-oriented programming (OOP) view,
a trading service (trader) is a software object that
serves as a mediator between objects providing cer-
tain capacities (exporters) and objects requiring a
dynamical use of these capacities (importers).

A trading object (ISO/IEC, 1996) uses five inter-
faces for the interaction with client objects (expor-
ters and importers): Register: allows clients to ex-
port service offers in the trader. Lookup: allows
clients to inquire trader about the service offers
stored in the trading service. Link: allows the trader
to be connected to other traders for the propagation
of request in a network. Admin: allows administra-
tors to configure the trader. Proxy: is used to allow
legacy systems properties in federated trader system.

In our work, we use traditional traders’ behavior
(ISO/IEC, 1996) (Iribarne et al., 2004) to adapt it in
order to replace objects (or software components) by
software knowledge-based agents. We use the JADE
platform for the MAS implementation of SOLERES,
since it simplifies the process through a middleware
and provides a tool set as support for checking and
debugging. Besides, the system manages two kinds
of ontologies, both of them written in OWL format:

data and functional. The first type is used to
represent the environmental information stored in
the documents of the trader. The second one is re-
ferred to the trader functionality, that is, the agent
tasks.

The trading service represents the main agent in
the SOLERES system architecture. As we can see in
the Figure 2, basically two mainly components take
part in the model: the user or user group represented
by an interface agent, and the trading service which
has the access to the information.

Figure 2: Web Trading Agent architecture.

3 IMPLEMENTATION DETAILS

The implementation follows the QS/RR model, in
which appear two roles basically. These roles are the
client and the server, having in mind that server will
be waiting the reception of query messages sent by
clients, solving next them and answering with the re-
sultant information to the clients.

In our system, these roles have been developed
by means of two agent objects: “AppletAgentQI”
and “TraderAgent” in Figure 3. The first one is cre-
ated from the class “ClientContainer” and the second
one from the class “ServerContainer”, being both of
them an “AgentContainer” agent class. These con-
tainers are created by the launcher classes “QIAp-
plet” and “Trader”, respectively. Besides, in our sys-
tem exist: the “SPARQLParser” (an agent for trans-
lating the interface queries to SPARQL), the inter-
face “Lookup” (one interface of the trader) and the
EID repository (i.e., the OWL repository containing
de metadata information of the system).

INVOLVING WEB-TRADING AGENTS & MAS - An implementation for Searching and Recovering Environmental
Information

269

<<Agent>>
AppletAgentQI

<<Applet>>
QIApplet

<<JFrame>>
QI

<<Agent>>
SPARQLParser

<<AgentContainer>>
ClientContainer

<<AgentContainer>>
ServerContainer

<<main>>
Trader

<<Agent>>
TraderAgent

<<Interface>>
Lookup

<<OWL repository>>
EID

<<use>>

Figure 3: Class diagram of the example.

To execute the example, it is necessary to follow
the next steps. First, we must execute the server
process on the computer containing the hosting ser-
vice. This process will create the agent into an agent
container of the JADE platform, which (“Trader-
Agent”) will initialize its behaviour waiting for re-
sponse sub-behaviour for the query messages (Fig-
ure 4). On the other hand, each user will access to
our application through a web page. This web page
will initialize an applet that represents the user inter-
face. The applet creates an interface agent and adds
its behaviour (Figure 5).

Once we have launched both processes, both
agents are created living in a JADE Platform and
contained in an independent container (Figure 6).
This feature allows us to check the communication
between users executing the application in different
places, by means of sending and receiving messages
from autonomous containers and JADE Platform.

Figure 7 describes the communication query
process of the web trading agent, since the client
user or the client user group have finished the query
in the query user interface until results are shown.

In this implementation example, two main agents
appears in the process, i.e., an interface agent (“Ap-
pletQIAgent”) and a trader agent (“TraderAgent”),
using the Lookup ontology to establish the commu-
nication. It is necessary to emphasize that the exam-
ple does not implement the monitoring agent (“IM-
IAgent”) to simplify the query process.

Query process follows the next steps. The client
user builds the query making use of the user inter-
face (steps #1 and #2). Figure 8 shows the query us-
er interface window. We used a tree representation
to show the data to be inquired (“Tree Model”) and
the query (“QueryTree”).

1: start
2: createAgent

4: addBehaviour

3: createNewAgent

<<user>>
server

Trader : Main TraderAgent : Agent TAgentBehav : Behaviour ContServer : AgentContainer

Figure 4: Server process initialization.

1: init
2: createAgent

4: addBehaviour

3: createNewAgent

<<user>>
client

QIApplet : Applet AppletAgentQI : Agent AAgentQIBehav : Behaviour ContClient : AgentContainer

Figure 5: Client process initialization.

Figure 6: JADE Platform after initialization.

Besides, queries can be manual or supervising. A
manual query allows the user to write directly the
query into the “Query” section. The supervising one
makes possible to build the query selecting the va-
riables from the interface, values and operators.
Once the query is built, the user sends it from the
user interface to the interface agent (steps #3 and
#4). This agent sends the query (written in the inter-
face language) to the SPARQL agent in order to
translate it (step #5).

Then, the parser agent converts the query to the
SPARQL language (#step 6). The query is stored in
a text file in the server directory that contains the
trading agent (step #7). Then, the “Lookup” ontolo-
gy communication message is built (steps #8, #9,
#10, #11 and #12).

ICAART 2010 - 2nd International Conference on Agents and Artificial Intelligence

270

6: query parsed

5: parse query
3: send query

1: construct query

21: query result

4: send query

20: show query result

2: add sentences

13: send message

10: get communication ontology

9: save communication ontology

7: save query

19: query answer

12: construct message

11: communication ontology

8: construct communication ontology

17: execute query

15: request query file (uri)

18: query answer

16: query file

14: read message information

SPARQLParser: Agent

<<user>>
client

QIApplet : Applet AppletAgentQI : Agent TraderAgent : Agent EID : OWL repository ServerFiles : Database

Figure 7: Communication process.

Figure 8: The Query User Interface.

INVOLVING WEB-TRADING AGENTS & MAS - An implementation for Searching and Recovering Environmental
Information

271

For the communication ontology (Lookup) im-
plementation, we used the XML format; The client
fills the necessary fields with the correspondent in-
formation before send the message (Figure 9). The
server (trader) will receive the XML content file and
will extract the data from the fields it needs. These
operations have been possible making use of the
Jdom, Saxon, and other XML libraries.

Figure 9: The XML Lookup ontology file.

visualize query

construct the query

apply changes

modify partial query

select a query node

show query result

send query

clear query

visualize complete query

visualize query tree

visualize tree model

modify the query directly

add value to query

introduce value for a variable

add operators

add variables

client interface agent trader agent
Figure 10: Use Case Diagram.

The next step is to send the message from the in-
terface agent to the trading agent (#13). The trading
agent extracts the information from the message:
query path, source agent, etc. (#14), and later recov-
er the query file content (#15 and #16) and execute it
to the EID repository (#17 and #18). The execution
of the SPARQL query to the OWL file is possible by
the use of the Jena library. The query result is sent

from the trader agent to the interface agent (#19) and
it shows this information in the user interface into
the “Query Result” field (#20 and #21). Figure 10
summarizes, through a use case diagram, the func-
tional options of the user interface and the connec-
tion with the other actors.

We included to the software agents behaviours
for autonomous and intelligent functionality in order
to solver the task they have been developed for. The
interface agent has the task of recovering the query
from the user interface and sending it to the agent
who can solve it. Later, the query result is obtained
and shown to the user. This complex behaviour is
divided in sub-behaviours as shown in Figures 11
and 12.

On the other hand, the trader agent has the re-
sponse of the user messages main task. This task has
been divided in four main sub-tasks corresponding
with the sub-behaviours we have implemented for
the agent (see Figure 12).

Exit

Response of Trader Agent

Response of Parse Agent

Query Obtained

Button Send Query pressed

Show query on the Query Interface

Waiting for response of Trader Agent

Send query parsed to Trader Agent

Waiting for response of Parse Agent

Send query to Parse Agent

Obtain query from Query Interface

Waiting for send query

Figure 11: Interface agent behaviour.

Receive message from a client

Information obtained correctly

Waiting for a client user query

Obtain information about query

Execute query to the EID repository

Send result of the query to the client

Figure 12: Trader agent behaviour.

A simple query example involved in the QS/RR
process is shown in the next code. To explain this
situation, let’s suppose the following query in natu-
ral language: “We wish the classifications made in
Almeria that describes lithology variables, specifi-

ICAART 2010 - 2nd International Conference on Agents and Artificial Intelligence

272

cally about the sand area”. This request is repre-
sented in the Query section (Figure 8) as follows:

?classif: geo.name = “Almeria” & layer.name
= “lithology” & layer.variable.name = “sand”

The SPARQL translation for this example is:

PREFIX onto : <http://…/acg/soleres/owl#>
SELECT ?classif
WHERE {
 ?classif onto:classification_shows_geo ?g.
 ?g onto:geography_name "Almeria".
 ?classif onto:classification_uses_layer ?l.
 ?l onto:layer_has_variable ?v.
 ?l onto:layer_name "lithology".
 ?v onto:variable_name "sand".
}
ORDER BY ?year

The obtained result by the query process is the
classification “classif”. At this record, we can find
information about a classification, like the identifica-
tion number, the name of the classification, the layer
and the satellite images it uses or the start and end
time of the classification. This kind of information is
an OWL environmental information that agents of
the SOLERES-MAS manage.

4 CONCLUSIONS

In this paper we have presented an implementation
of the web trading agent methodology for “searching
and recovering” process used by SOLERES system.

The web service reviewed is based on the “Que-
rySearching/RecoveringResponse” model issue. It
uses the SPARQL language to represent the queries,
and the OWL notation to describe data and function-
al ontologies.

In this work we also show a MAS structure case
study for requiring the information of trading agent
from an interface agent. The communication is made
through our developed Lookup ontology.

As a future work, we are interested in federation
of web-trading agents in MAS by means of the ex-
tension of the trader’s Link interface. We are also
studying the application of this kind of trading agent
behavior for evolvable user interface development.

More implementation details of the Web Trading
agent, “processes” and “data” ontologies are availa-
ble at http://www.ual.es/acg/soleres/wt.

ACKNOWLEDGEMENTS

This work has been supported by the EU (FEDER)

and the Spanish MICINN Ministry under grant of
the project I+D TIN2007-61497: “SOLERES. A Spa-
tio-Temporal Environmental Management System
based on Neural-Networks, Agents and Software
Components”.

REFERENCES

Anghel, C., Salomie, I., 2003. JADE Based solutions for
knowledge assessment in eLearning Environments.
TILAB & University of Limerick.

Asensio, J., Iribarne, L., Padilla, N., Ayala, R., 2008. Im-
plementing trading agents for adaptative and evolutive
COTS components architectures. In Proceedings of
the International Conference on e-Business. Porto,
Portugal, pp. 259-262.

Iribarne, L., Troya, J., Vallecillo, A., 2004. A trading ser-
vice for COTS components. The Computer Journal
47(3): 342-357.

ISO/IEC DIS 13235-1: IT, 1996. Open Distributed
Processing: ODP Trading Function Part 1: Spec.

Lytras, M., 2005. Semantic web and information systems:
An agenda based on discourse with community lead-
ers. International Journal of Semantic Web and Infor-
mation Systems 1(1).

Odell, J., Van Dyke Parunak, H., Bauer, B., 2001. Agent
UML: A formalism for specifying multiagent software
systems. International Journal of Software Engineering
and Knowledge Engineering 11(3): 207-230.

Polleres, A., 2007. From SPARQL to rules (and back). In
Proceedings of the International Conference on World
Wide Web (WWW), pp. 786-796.

Russ, M., Jones, J., 2006. Knowledge-based strategies and
information system technologies: preliminary findings.
International Journal of Knowledge and Learning 2(1):
154-179.

Shiyong, D., Xueqiang, F., Jie, Y., Runbo, M., 2007. Re-
search for the Communication and Cooperation Me-
chanism of Multi-Agent System. In: Electronic Mea-
surement and Instruments, 2007. ICEMI'07.

Tweedale, J., Ichalkaranje, N., Sioutis, C., Jarvis, B., Con-
soli, A., Phillips-Wren, G., 2007. Innovations in multi-
agent systems. Journal of Network and Computer Ap-
plications 30(3): 1089-1115.

INVOLVING WEB-TRADING AGENTS & MAS - An implementation for Searching and Recovering Environmental
Information

273

