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Abstract: We present our preliminary work on our framework for building self-motivated, self-aware agents that plan
continuously so as to maximize long-term rewards. While such agents employ reasoned exploration of feasible
sequences of actions and corresponding states, they also behave opportunistically and recover from failure,
thanks to their quest for rewards and their continual plan updates. The framework allows for both specific
and general (quantified) knowledge, epistemic predicates such asknowing-thatand knowing-whether, for
incomplete knowledge of the world, for quantitative change, for exogenous events, and for dialogue actions.
Question answering and experimental runs are shown for a particular agentME in a simple world of roads,
various objects, and another agent, demonstrating the value of continual, deliberate, reward-driven planning.

1 INTRODUCTION

Our interest is ultimately in intelligent, linguistically
competent agents. Such agents must be capable of
planning in an incompletely known world, inference
over a substantial knowledge base (including a self-
model), dialogue, and unceasing pursuit of their own
rewards. Many AI systems have demonstratedsome
of these abilities, but none to our knowledge have in-
tegrated them all. We present a simple framework
for defining such self-motivated cognitive agents in
simulated worlds and exemplify this with an agent
dubbedME (for Motivated Explorer). Future work
will move the domain to the real world (rather than
more elaborate simulated worlds) and emphasize di-
alogue.ME can plan and think ahead (where actions
produce gradual change over time), deal with unfore-
seen events, make inferences about states (including
its own and other agents’ knowledge and wants), en-
gage in question-answering with the user and other
agents, and do so indefinitely and autonomously,
driven by the expected cumulative rewards or costs of
its contemplated sequences of actions and anticipated
future states.

Unlike the type of self-motivated agent described
here, traditional planners have been constrained to act
and react in accord with user-specified goals, con-
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straints and preferences. Self-motivation would seem
to lead to single-minded, self-indulgent behavior, but
this is not at all so. If the agent “enjoys” acquir-
ing knowledge, exploring its environment, convers-
ing, and satisfying perceived user goals, then it can
appear curious, interactive, and helpful. It may also
seem that such an agent could do no more than typ-
ical reinforcement learning (RL) agents. In fact, the
kind of agent envisaged and illustrated here conceives
of its world and its actions in logical descriptive terms
– it is a cognitiveagent and thus able to plan ahead,
entertain beliefs about itself and other agents, and en-
gage in question-answering dialogue.

In Section 2, we describe what we mean by a
self-motivated cognitive agent, and our development
framework for implementing such agents. In Section
3 we detail how actions are defined for an agent, the
planning process, and the somewhat altered syntax
and meaning of action definitions when we are speci-
fying “actual” actions (as carried out when “running”
the simulated world). In Section 4 we focus on the
reasoning (including introspection) performed by the
agent.

In Section 5, we instantiate the agentME in a par-
ticular simulated world in order to demonstrate and
experiment with our framework. The simple sam-
ple world suffices for illustrating and supporting the
points we wish to make. In Section 6 we then pro-
vide examples of question-answering byME, and re-
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port results of various “runs” of the agent in the sim-
ulated world, showing the advantages for the agent of
its deliberate, self-motivated style of continual plan-
ning. We conclude with a summary, a contrast with
related work, and future directions.

2 SELF-MOTIVATED COGNITIVE
AGENT FRAMEWORK

We conceive of a self-motivated cognitive agent as
one whose activity is governed by continual reasoned
elaboration and execution of a life plan (as suggested
in (Morbini and Schubert, 2008); see also (Liu and
Schubert, 2009)). It is not assumed to have com-
plete knowledge either about the current world state
or about exogenous events, but it observes new or al-
tered facts as it goes. Such an agent manifestsoppor-
tunistic behavior; i.e., as new facts become apparent
to it or actions fail, its continual planning will deal ap-
propriately with unanticipated opportunities and haz-
ards.

Accordingly, the framework and (Lisp-based)
platform treat planning as continual construction,
evaluation and partial execution of sequences of po-
tential actions. The evaluation assumes that both ac-
tions and states can be intrinsically rewarding or odi-
ous, where the extent of such utility or disutility de-
pends on the exact action parameters involved and
on arbitrary descriptive or numerical features of the
world and the agent. Actions and states with large
expected utility will tend to be favored by the plan-
ning process, which is designed to add up total utili-
ties over courses of action, and propagate these back
to allow a current choice of action that is seemingly
optimal “in the long run”.

To becognitive, an agent should plan and do so
within an expressively rich language for describing,
and making inferences about, actions and the world.
We might have chosen a situation calculus-based
framework like Golog (e.g., (Ferrein et al., 2004)),
but both for ease of use in implementing a set of op-
erators and for planning efficiency we chose a more
STRIPS-like representation of actions and states. The
action representation allows for quantitative precondi-
tions and effects, handled by a general procedural at-
tachment syntax. The logic of state descriptions also
allows for propositional attitudes such asknowing-
that, knowing-whetherandwanting. This is essential
for formalizing knowledge-acquisitionactions and for
answering questions about the agent’s own attitudes.

The current framework confinesME to a simu-
lated grid world. This consists of an arbitrary user-
defined set of named locations, and named roads con-

necting some or all of these locations. Animate and
inanimate entities of specified types can be placed at
various locations. For animate entities (agents), the
specified ground literals may include ones like beliefs
and preferences. The types assigned to entities are
separately specified, allowing shared properties of en-
tities of that type to be listed. WhileME is mobile and
exploratory, interacting with the user and other enti-
ties, all other entities are stationary and merely reac-
tive in their interactions withME.

Aside from the general knowledge implicit in type
specifications, grid worlds allow for specification of
arbitrary conditional knowledge, such as that every
sasquatch has an IQ of 50, or that if someone knows
p is true thenp is true. These general facts are stated
in Horn clause-like form, with the important general-
izations that the antecedent conditions of the clause
may be positive or negative literals, and literals may
be based on attitudinal predicates likeknows, with rei-
fied arguments like(that (is edible f ruit3)). These
clauses are used for bounded forward inference in
elaborating world state descriptions.

ME’s knowledge base is initialized so that it con-
tains the geographical knowledge about the world and
the general quantified conditional facts. Its world
model is also augmented with specific facts about it-
self, its initial location, and about the entities at that
location. ME’s knowledge is incomplete even about
entities at its current location. In particular, certain
predicates are marked as beingoccludedfor ME. For
example, the predicateis in might be occluded, so if
(is in key1 box1) holds,ME does not know this even
when standing next tobox1. Similarly knowswould
generally be occluded, so that what another agent
knows is not immediately apparent toME. However,
self-referential facts aboutME such as(has ME key1)
and(not (knows ME(whether(is edible f ruit3))))
are evident toME (and thus added toME’s world
model), despite the general occlusion ofhas and
knows. Also, ME may find out and remember a fact
that would otherwise be occluded, perhaps because it
asked a question, read a note containing the fact, or
inferred it.

The incompleteness ofME’s knowledge has sev-
eral important consequences for the design of the cog-
nitive agent framework. One is that a distinction
needs to be made between the simulated world and
ME’s model of it, in terms of both the effects and the
termination conditions of actions (which may be de-
termined by external events, not anticipated byME).
Another is that under conditions of incomplete knowl-
edgeME cannot use a full closed-world assumption
(CWA), and thus must be careful not only in its evalu-
ation of the truth or falsity of action preconditions and
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effects, but also in its introspections concerning what
it knows and doesn’t know.

3 ACTIONS, PLANNING, AND
SIMULATION

Operators, or action types, are defined forME in a
STRIPS-like syntax, with a list of parameters, a set of
preconditions and a set of effects; an action also has
an anticipated reward value and an expected duration.
Consider the followingdrink operator with formal pa-
rameters ?h for ME’s thirst level, ?x for the item to be
drunk, and ?y for the location of the item. FromME’s
perspective, if it is thirsty and at the same location as a
potable item, knows whether the item is potable, and
there is no adverse environmental event, thenME can
drink the item for 1 time unit and completely relieve
its thirst.
(setq drink

(make-op :name ’drink :pars ’(?h ?x ?y)
:preconds ’((is_thirsty_to_degree ME ?h)

(> ?h 0) (is_at ME ?y)
(is_at ?x ?y) (potable ?x)
(knows ME (whether (potable ?x)))
(not (there_is_adversity)))

:effects ’((is_thirsty_to_degree ME 0)
(not (is_thirsty_to_degree ME ?h)))

:time-required 1 :value 50))

A plan consists of a sequence of actions. An ac-
tion is created by replacing the formal parameters of
an operator with actual values obtained by unifying
its preconditions with facts inME’s knowledge base.
An action can be created in a given state only ifME
finds its preconditions to be true according toME’s
knowledge in that state; such an action isapplicable
thoughME might not elect to perform it.ME plans
by first doing a forward search from a given states,
followed by back-propagation tos of the anticipated
rewards and costs of the various actions and states
reached, to determine a/the seemingly best sequence
of actions. The forward search is bounded by a pre-
specified search beam, which specifies the number of
lookahead levels (the length of the contemplated se-
quences of actions), the branching factor and the al-
lowable operators at each level. Informed by the pro-
jective lookahead,ME will execute the first action of
a/the seemingly best plan and update its knowledge
with the action effects and its new observations of
non-occluded local facts.

SinceME’s knowledge of the world is incomplete,
the actual effects of its actions may diverge from the
effects expected by the agent. For example, if we
model traveling (fromME’s perspective) as a multi-
step action, but also allow for spontaneous fires that

bring travel to a halt, thenME may not reach its ex-
pected destination. Given this divergence between ex-
pectations and reality, we clearly need to distinguish
betweenME’s conception of its actions and the “ac-
tual” actions in the simulated world. Space does not
permit the illustration of “actual” operators, but their
syntax is much like that ofME’s operators, except
that precondsandeffectsare replaced bystartconds,
stopconds, deletes, andadds.

In the simulation, actual actions and exogenous
events may be tracked in parallel in unit time steps.
An active actual action will continue for another
time step iff none of its stop conditions as given by
stopcondsare true in the current world state. The ac-
tion will terminate immediately if any one of them
is true in the current world state. In either case, the
world state will be updated, by computing the effects
as given bydeletesandadds, followed by bounded
forward inference in conjunction with general world
knowledge. At the same time,ME’s world model will
be updated by computation ofME’s observation of
the non-occluded local facts in the new state.

When an action stops, whether successfully or
unsuccessfully,ME performs its plan search and
chooses a step to execute, as already described. This
makes its planning opportunistic and robust in the
event of failure – it always bases its choice of the next
action on a seemingly best course of action starting in
the situation at hand.

The uniform procedural attachment technique is
used in both preconditions and effects of actions. It
enables both quantitative reasoning and dialogue.
Some action preconditions and effects may con-
tain evaluable terms (those whose operators are
among+, −, ∗, /, <, <=, =, >=, >, random,
and function names ending in ?). The system
will evaluate these terms when verifying precon-
ditions and when applying effects. For example,
(is tired to degree ME(+ ?f (∗ 0.5 (elapsedtime?)))),
an effect ofwalk.actual, specifies that the increase
in ME’s fatigue level as a result of the walking
action will be half the distance it walks. Similarly
(knows USER(that (answerto ynq? ?q))), an effect
of answerynq, will have (answerto ynq? ?q)
evaluated as an answer formula when ap-
plied; the result might for example be
(knows USER(that (not (can f ly guru)))).

4 REASONING ABOUT WORLD
STATES AND MENTAL STATES

Since ME does not generally know all the current
facts, it cannot make full use of the CWA (unlike
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many traditional planners). But we do not want to
abandon the CWA altogether, as it would be ineffi-
cient to enumerate and maintain all the negative pred-
ications that hold even in simple worlds. Thus,ME
uses the CWA only for (non-epistemic) predications
in which ME is the subject of the predication. In this
respect its self-knowledge is assumed to be complete.
But when the predication concerns a non-ME subject,
ME applies the CWA only for (1) predications about
road connectivity and navigability (and even here the
CWA could easily be weakened), and (2) (a) when
the subject is a local entity currently colocated with
ME or oneME has visited, and (b) the predication
is non-occluded. In all other cases, the mere absence
of a predication from the world model is not inter-
preted as supporting its negation – its truth value may
simply be unknown. Of course,ME may learn that
(not p) holds for some predicationp even if p is not
subject to the CWA. In such a case, it stores that nega-
tive literal in its world model. Therefore, in checking
whether a literalp is true or false, wherep is not sub-
ject to the CWA,ME will not conclude “unknown”
merely becausep is absent from its world model – it
also checks whether the negation is explicitly known.
ME updates its knowledge of the non-occluded prop-
erties of an entity only when it (re)visits its location,
and its knowledge of the occluded properties of that
entity when it takes appropriate actions to (re)discover
them.

In the case of autoepistemic predications,ME
judges their truth value by an introspection algorithm
rather than closed-world inference. In evaluating a
predication of form(knows SUBJ(that p)) (e.g.,
(knows ME(that (can talk guru)))), the algorithm
considers the two casesSUBJ= ME and SUBJ 6=
ME. In the first case,ME uses the methods in the
previous paragraph to determine whetherp is true,
false or unknown, and judges the autoepistemic pred-
ication to be true, false or false respectively (i.e., in
the latter two cases,ME does not knowp to be true).
In the caseSUBJ 6= ME, ME judges the epistemic
predication true only ifSUBJis identical to the sub-
ject of p (thus making a similar knowledge assump-
tion about other agents as for itself (Kaplan and Schu-
bert, 2000)), and false otherwise (a negative closure
assumption that could be weakened). The method for
predications of form(knows SUBJ(whether p)) is
much the same. But in the caseSUBJ= ME, when
p is found to be true, false or unknown, the autoepis-
temic predication is judged to be true, true or false re-
spectively. In the caseSUBJ6= ME, ME again judges
the epistemic predication as true only ifSUBJis iden-
tical to the subject ofp, and false otherwise.

ME’s inference capabilities are important in its

attempt to confirm or disconfirm action precondi-
tions, including knowledge preconditions in actions
like asking an agent whetherp is true (viz., not know-
ing whetherp is true, but believing that the agent
knows whetherp is true). Similarly, the inference
capabilities are crucial in answering questions, in-
cluding ones that testME’s introspective capabilities.
Given a question,ME will either inform the user if
it doesn’t know the answer, or otherwise verbalize its
answer(s) as English sentence(s).

ME also performs bounded forward inference for
any state that it reaches in its simulated world or
in its lookahead, based on all of its current factual
knowledge and all of its general quantified knowl-
edge. For example, from(knows guru(that p))
ME can infer bothp and(knows guru(whether p));
from (sasquatch moe) and general knowledge
((sasquatch?x) => (has IQ ?x 50)) where variable
?x is assumed to be universally quantified over the do-
main,ME can infer that(has IQ moe50).

5 EXPERIMENTAL AGENT

We implemented a version ofME in our framework to
demonstrate self-motivated question-answering, and
the benefits ofME’s opportunistic behavior resulting
from its continual, deliberate, reward-seeking plan-
ning.

5.1 Simulated World

We situateME in a very simple simulated world, yet
one sufficiently subtle to illustrate the above features.
This world is inhabited by animate agentsME and
guru, along with inanimate objectspizza, juice, note
and piano. There are four locationshome, grove,
plaza and company, with roadspath1, path2 and
path3 as shown in Figure 1. Objectpizzais edible and
at home; juice is potable and atplaza; note is read-
able, athome, and contains the knowledge whether
piano is playable; piano is playable and athome.
For demonstration purposes,pizzaand juice are pre-
sumed inexhaustible. Agentguru knows whether
pizzais edible, whethernoteis readable, and whether
juice is potable.

Initially ME is at home, not tired, and has a hunger
level of 4.0 and a thirst level of 2.0. In addition
to knowledge of the road network and the existence
of the objects athome, ME knows whetherpizza
is edible, that juice is at plaza, and thatguru lo-
cated atgrovecan talk and knows whetherjuice is
potable. ME has the following operators at its dis-
posal (where associated reward levels are indicated

ICAART 2010 - 2nd International Conference on Agents and Artificial Intelligence

260



pizza

juice

PLAZA

path1path2

path3

GROVE

COMPANY

HOME

piano

C 

C guru
L

note

Figure 1: The experimental world.

parenthetically):eat(2 * ME’s hunger level at the on-
set of the action),drink (50), walk (3 - ME’s fatigue
level at the onset of the action),sleep(ME’s fatigue
level at the onset of the action),play (3), read (5),
ask other agents whether something is true(3), and
answer the user’s yes/no and wh-questions(10).

Any states reached byME in its projective looka-
head has an inherent value, based on the following
criteria comparings with its parent state. Answer-
ing a user question yields 50 utility points; becom-
ing not bored gainsME 1 point; becoming more tired
(thirstier, hungrier) costsME points equal to the in-
crease inME’s fatigue (thirst, hunger) level. Con-
versely, leaving a user question unanswered costsME
20 points; becoming bored costsME 1 point; becom-
ing less tired (thirsty, hungry) gainsME points equal
to the decrease inME’s fatigue (thirst, hunger) level.
These criteria, along with the operators’ anticipated
rewards, suggest thatME likes drinking and answer-
ing user’s questions the most.

A potentially multi-step action faces the possibil-
ity of interference by two types of exogenous events,
namely rain and fire, but only fire may disrupt the ac-
tion (e.g., sleeping, traveling). Spontaneous rain has
a 33% chance of starting; once begun, it has a 25%
chance of stopping. As long as there is no rain, a
spontaneous fire has a 5% chance of starting; once
started, it has a 50% chance of dying by itself, and
also goes out when there is rain.

5.2 Question-Answering

ME’s dialogue interaction is handled uniformly via
ME’s planning and procedural attachment capabili-
ties. Input questions currently must be expressed in
the same syntax as that for symbolically representing
knowledge in the simulated world. A yes/no ques-
tion is prefixed withask-yn; a wh-question, withask-
wh. Though more than one question can be entered
at a time,ME handles questions independently, and
it may be some time untilME chooses to answer a
question as the next best action to perform.

The following example is self-explanatory.
>> (listen!)
((ask-yn user (is_tasty pizza))
(ask-yn user (not (is_bored ME))))

ACTION: (ANSWER_YNQ (IS_TASTY PIZZA))
Answer: (ME DOES NOT KNOW WHETHER PIZZA IS TASTY)

ACTION: (ANSWER_YNQ (NOT (IS_BORED ME)))
Answer: (IT IS NOT THE CASE THAT ME IS BORED)

A wh-question of the form(ask-wh user r) must
have at least one variable (indicated by prefix ?) inr.
For instance,(not (likes ME ?x)) corresponds to the
question “what doesME not like?” while(is at ?y ?z)
translates to “where is every entity located?”. In com-
puting the answer(s),ME attempts to unifyr with
facts in its current knowledge base; for each sets of
bindings found for the variables inr, ME forms the
corresponding answer by replacing variables inr with
bindings ins. ME uses the weakened CWA to verbal-
ize its responses as follows.
>> (listen!)
((ask-wh user (is_tired_to_degree ME ?x))
(ask-wh user (is_animate ?y))
(ask-wh user (is_bored ?z)))

ACTION: (ANSWER_WHQ (IS_TIRED_TO_DEGREE ME ?X))
ANSWER: (ME IS TIRED TO DEGREE 1.5)

ACTION: (ANSWER_WHQ (IS_ANIMATE ?Y))
ANSWER: (ME IS ANIMATE) (GURU IS ANIMATE)

ACTION: (ANSWER_WHQ (IS_BORED ?Z))
ANSWER: (ME DOES NOT KNOW WHETHER ANYTHING IS BORED)

6 RESULTS

We give further examples ofME’s question-
answering, and empirical results showing the advan-
tages ofME’s opportunistic behavior (due to its self-
motivated, deliberate, continual planning) in the con-
text of the simulated world in Section 5.1.

6.1 Extended Example of QA

The following, including knows-whether and knows-
that questions, is a concatenation of several dialogue
exchanges betweenME and the user, showing only
ME’s actions to answer user questions andME’s cor-
responding verbalized English answers while omit-
ting system output. The examples showcaseME’s
ability to introspect positively and negatively using
the relaxed CWA.
ACTION: (ANSWER_YNQ (KNOWS GURU

(WHETHER (LIKES GURU PIZZA))))
ANSWER: (GURU KNOWS WHETHER GURU LIKES PIZZA)
ACTION: (ANSWER_YNQ (KNOWS GURU

(WHETHER (LIKES ME PIZZA))))
ANSWER: (ME DOES NOT KNOW WHETHER GURU KNOWS

WHETHER ME LIKES PIZZA)
ACTION: (ANSWER_YNQ (CAN_FLY GURU))
ANSWER: (IT IS NOT THE CASE THAT GURU CAN FLY)
ACTION: (ANSWER_YNQ (KNOWS GURU

(THAT (CAN_FLY GURU))))
ANSWER: (GURU KNOWS THAT IT IS NOT THE CASE

THAT GURU CAN FLY)
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6.2 Opportunistic Behavior

We report experiments whereinME’s behavior shows
both opportunism and foresight. The success of a run
is measured in terms of thenet utility (NU), summed
over the entire sequence of actions and corresponding
states. We conducted ten independent runs ofME’s
opportunistic behavior, using a five-level lookahead
with a branching factor of 3 for state nodes at each
level. Each run was for 20 steps where at each step
ME choseandperformed a/the next best action.ME
obtained an NU of 181.30 averaged over the ten runs
ranging from NU 101.0 to NU 217.75.

The following showsME’s sequence of 20 actions
for one of the runs, wherein no spontaneous fire oc-
curred, andME’s NU was 191.0. Each action was
logged along with its first iteration, anticipated dura-
tion, and time in the simulated world when that iter-
ation began; also, each multi-step action was logged
again with its final iteration.
((EAT 4.0 PIZZA HOME) 1 1 0)
((WALK HOME PLAZA PATH2 0.0) 1 2 2)
((WALK HOME PLAZA PATH2 0.0) 2 2 3)
((WALK PLAZA HOME PATH2 1.0) 1 2 5)
((WALK PLAZA HOME PATH2 1.0) 2 2 6)
((SLEEP 2.0 0.0) 1 8.0 8)
((SLEEP 2.0 0.0) 4 8.0 11)
((WALK HOME GROVE PATH1 0.0) 1 2 13)
((WALK HOME GROVE PATH1 0.0) 2 2 14)
((ASK+WHETHER GURU (POTABLE JUICE) GROVE) 1 1 16)
((WALK GROVE HOME PATH1 1.0) 1 2 18)
((WALK GROVE HOME PATH1 1.0) 2 2 19)
((SLEEP 2.0 1.0) 1 8.0 21)
((SLEEP 2.0 1.0) 4 8.0 24)
((EAT 2.0 PIZZA HOME) 1 1 26)
((WALK HOME PLAZA PATH2 0.0) 1 2 28)
((WALK HOME PLAZA PATH2 0.0) 2 2 29)
((DRINK 2.0 JUICE PLAZA) 1 1 31)
((WALK PLAZA HOME PATH2 1.0) 1 2 33)
((WALK PLAZA HOME PATH2 1.0) 2 2 34)
((SLEEP 2.0 0.0) 1 8.0 36)
((SLEEP 2.0 0.0) 4 8.0 39)
((WALK HOME GROVE PATH1 0.0) 1 2 41)
((WALK HOME GROVE PATH1 0.0) 2 2 42)
((ASK+WHETHER GURU (READABLE NOTE) GROVE) 1 1 44)
((WALK GROVE HOME PATH1 1.0) 1 2 46)
((WALK GROVE HOME PATH1 1.0) 2 2 47)
((SLEEP 2.0 1.0) 1 8.0 49)
((SLEEP 2.0 1.0) 4 8.0 52)
((EAT 2.0 PIZZA HOME) 1 1 54)
((READ 0.0 NOTE) 1 1 56)
((WALK HOME PLAZA PATH2 0.0) 1 2 58)
((WALK HOME PLAZA PATH2 0.0) 2 2 59)

ME’s chosen seemingly best action in itself alone
may not be immediately rewarding toME, but rather
is anticipated byME to lead to a most rewarding se-
quence of actions. For example, thoughME might
not get a reward for walking fromhometo grove, it
may very well foresee a high reward resulting from
traveling togroveto meetguru, askingguru to learn
aboutnote’s readability (knowledge whichME does
not have), goinghomewherenoteis, and eventually
readingnote. Thus, the use of the reasoned, projec-
tive lookahead enablesME to exhibit foresight and

opportunism in its behavior.

6.3 Goal-Directed Behavior

We madeME purely goal-directed by modifying its
metrics of rewards and penalties for actions and states
in the lookahead calculation. We designated drink-
ing juice asME’s sole goal and madeME uninter-
ested in actions other than askingguru to acquire bev-
erage knowledge, traveling to reachguru and juice
and drinkingjuice. This was done by setting the an-
ticipated rewards of operators other thandrink and
ask+whetherto 0, leaving the anticipated reward of
the former unchanged at 50 and that of the latter at
3, rewarding the acquisition of knowledge and the
relieving of thirst in a state reached, while ignoring
other changes in a state reached.

ME’s sequence of actions was deterministic as
follows, yielding an actual NU of 61.0. This was man-
ually calculated using theME’s original (just as in the
opportunistic) metrics of rewards and penalties for ac-
tions and states reached. To find out about the pota-
bility of juice, ME must walk fromhometo grove
and askguru; with the projective lookahead, having
knowledge aboutjuice will incline ME to walk to
plazaand drink juice there.
((WALK HOME GROVE PATH1 0) 1 2 0)
((WALK HOME GROVE PATH1 0) 2 2 1)
((ASK+WHETHER GURU (POTABLE JUICE) GROVE) 1 1 3)
((WALK GROVE HOME PATH1 1.0) 1 2 5)
((WALK GROVE HOME PATH1 1.0) 2 2 6)
((WALK HOME PLAZA PATH2 2.0) 1 3 8)
((WALK HOME PLAZA PATH2 2.0) 2 3 9)
((WALK HOME PLAZA PATH2 2.0) 3 3 10)
((DRINK 4 JUICE PLAZA) 1 1 12)

Compared with the opportunistic behavior of Sec-
tion 6.2, the NU of 61.0 here is substantially lower.
Instead of doggedly pursuing the sole goal of drink-
ing juice, ME saw and seizedadditional opportu-
nities in Section 6.2, including eatingpizza to sate
hunger, askingguru to find outnote’s being readable,
sleeping to relieve fatigue, and readingnote for en-
joyment. The results establish thatME benefits from
awareness and exploitation of opportunities for imme-
diate rewards, not only distant ones.

7 CONCLUSIONS

Our framework has demonstrated the feasibility of
combining planning, inference and dialogue in a
completely self-motivated cognitive agent.ME as
exemplified empirically plans deliberately and con-
tinuously, and acts opportunistically in accord with
its reasoned expectations about future rewards and
penalties. It does so by drawing on its specific and
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Table 1: Domain-independent Capabilities [column - ME
agent, DS: dialog systems, GDP: goal-directed planners,
RLA: RL agents, CVR: cognitive (virtual) robots, GA:
game agents].

Mental

modeling

Self

motivation

Dialogue

Exogenous

events

Logical

inference

Logical

planning

Incomplete

knowledge

Probabilities

Plan

hierarchies

Learning

ME DS GDP RLA CVR GA

general knowledge about itself and its environment,
including both introspective (autoepistemic) knowl-
edge and knowledge about mental states of other
agents.

Table 1 summarizes the distinctive features of our
framework vis-à-vis five previously studied frame-
works.2 A cell is green to indicate that the surveyed
systems of that kind all exhibit that capability, red to
indicate that none of them have that capability, or yel-
low to indicate that some of them have (some of) that
capability.

In our future work, we expect to allow for de-
grees of uncertainty inME’s knowledge. As well,
we plan to implement learning by modification of
the agent’s anticipated utility for certain actions and
states, so as to favor rewarding action sequences and
avoid adverse sequences based on the agent’s past ex-
perience. Lastly, we expect to generalize the frame-
work to do hierarchical planning, which is essential
for dealing with the complexities of dialogue about
the real world.
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