
 
for Traumatic Brain Injury: Proteomic Data Mining., 
Data Mining in Biomedicine , 7, 363-387  
6. Cohen, H., Benjamin, J., Geva, A.B., Matar, M.A., 
Kaplan, Z., Kotler, M., 2000. Autonomic 
dysregulation in panic disorder and in posttraumatic 
stress disorder: Application of power spectrum 
analysis of heart rate variability at rest and in response 
to recollection of trauma or panic attacks. Psychiatry 
Research, 96(1), 1–13. 
7. Dolce,G., Riganello, F., Quintieri, M., Candelieri, A., 
Conforti, D., 2008a. Personal interaction in the 
Vegetative State: a Data Mining Study. Journal of 
Phycophisiology, 22(3), 150-156. 
Dolce, G., Quintieri, M., Serra, S., Lagani, V., Pignolo, L., 
2008b. Clinical signs and early prognosis: a decision 
tree, data minino study, Brain Ingury, 22:7, 617-623. 
Dolce, G., Sazbon L., 2002. The posttraumatic vegetative 
state. Stuttgard, Thieme. 
Draper, K., Ponsford, J., Schönberger, M., 2007. 
Psychosocial and emotional outcomes 10 years 
following traumatic brain injury. Journal of Head 
Trauma Rehabilitation, 22, 278–287. 
Eibe, F., 2004. Machine learning with WEKA. 
Department of Computer Science, University of 
Waikato, New Zealand. RETRIEVED 2006 from 
http://puzzle.dl.sourceforge.net/sourceforge/ 
weka/weka.ppt 
Giacino, J.T., Ashwal, S., Childs, N., Cranford, R., 
Jennett, B., Katz, B.I., Kelly, J.P., Rosemberg, J.H., 
Whyte, J., Zafonte, R.D., Zasler, N.D., 2002. The 
minimal Conscious State: Definition and Diagnostic 
Criteria. Neurology, 58, 349-353. 
Herskovits, H. E., Joan, P. G., 2003. Application of a data-
mining method based on Bayesian networks to lesion-
deficit analysis,  NeuroImage, 19(4),1664-1673. 
Holte, R.C., 1993. Very simple classification rules 
perform well on most commonly used datasets. 
Machine Learning, 11, 63–90. 
Imberty, M. 1997. Epistemic subject, historical subject, 
psychological subject: Regarding Lerdhal and 
Jackendoff’s generative theory of music. In I. Deliege 
& J.A. Sloboda, Perception and cognition of music. 
Hove, UK. Psychology Press, 429-432 
Jain, A. K., Jianchang, M., Mohiuddin, K. M., 1996. 
Artificial neural networks: a tutorial. Computer, 29(3), 
31-44. 
Jennett, B., 2002. The vegetative state. Cambridge, UK, 
University Press. 
Keren, O., Yapatov, S., Radai, M.M., Elad-Yarum, R., 
Faraggi, D., Abboud, S., Ring, H., Grosswasser, Z., 
2005. Heart rate variability of patients with traumatic 
brain injury during postinsult subacute period. Brain 
Injury, 19, 605–611. 
Laureys, S., Boly, M., 2007. What is it like to be 
vegetative or minimal conscious? Current Opinion in 
Neurology, 20, 609-613. 
Lee, C., Yoo, S.K., Park,Y., Kim, N., Jeong, K., Lee, B., 
2005. Using Neural Network to Recognize Human 
Emotionsfrom Heart Rate Variability and Skin 
Resistance. Proceedings of the 2005 IEEE Engineering 
in Medicine and Biology , 5, 5523-5525. 
Nikki, S.R., 2004. Intense emotional response to music: A 
test of the physiological arousal hypothesis. 
Psychology of Music, 32, 371–388. 
Niskanen, P.J., Tarvainen, M.P., Ranta-aho, P.O., 
Karjalainen, P.A., 2004. Software fo Advanced HRV 
analysis. University of Kuopio Departement of 
Applied Physics. Computers Methods and Programs in 
Biomedicine, 76(1), 73-81 
Riganello, F., Quintieri, M., Candelieri A., Conforti D., 
Dolce, G., 2008. Heart Rate response to music. An 
artificial intelligence study on heathy and traumatic 
brain injured subjects. Journal of Psychophysiology, 
22:4, 166-174.  
Robert, C., Arreto, C.D., Azerad, J., Gaudy, J.F., 2004. 
Bibliometric overview of the utilization of artificial 
neural networks in medicine and biology. 
Scientometrics, 59(1), 117-130 
Tarasti, E., 1994. A theory of musical semiotics. 
Bloomington, IN. Indiana University Press. 
Task Force of European Society of Cardiology and the 
North American Society of Pacing and 
Electrophysiology of Circulation. 1996. Heart Rate 
Variability: standard of measurement, physiological 
interpretation, and clinical use, Circulation, 93, 1043-
1065. 
Urakawa, K., Yokoyama, K., 2005. Music can enhance 
exercise-induced sympathetic dominancy assessed by 
HRV. Tohoku Journal of Experimental Medicine, 205, 
213–218. 
van Bemmel, J.H., Munsen, M.A., 1997. Handbook of 
medical informatics. Berlin: Springer-Verlag. 
Wijnien, V.J., Heutinl, M., van Boxtel, G.J., Eilander, 
H.J., de Gelder, B., 2006. Autonomic reactivity to 
sensory stimulation is related to consciousness level 
after severe traumatic brain injury. Clinical 
Neurophysiology, 117, 1794-1780. 
Witten, H.W., & Eibe, F., 2005. Data mining – Practical 
machine learning tools and techniques with Java 
implementations. San Francisco, CA. Morgan 
Kaufman.  
DATA MINING AND THE FUNCTIONAL RELATIONSHIP BETWEEN HEART RATE VARIABILITY AND
EMOTIONAL PROCESSING - Comparative Analyses, Validation and Application
165