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Abstract: Traditional sentence analysis refers to finding the sentence structure for a given sentence. A question 
different from this is: given a sentence Curry-Horwad isomorphic with a type, can we establish the proof 
tree representing the sentence? Therefore, this paper combines the extensional Kripke interpretation and 
MDS (Minimalist Deductive System); derives the Kripke model of MDS; provides the applicable inversion 
function such that we are able to obtain the proof tree of typed λ-terms which represents sentence structure; 
and demonstrates that the product-free proof trees obtained with inversion function of MDS enjoy the 
property of Church-Rosser equality. Application examples demonstrate that our work is valid. The main 
difference between our work and traditional sentence analysis approach is that the objects of analysis are 
different. The object of our work is: Kripke model of MDS and type of sentence satisfied by assignment. 
But the object of traditional sentence analysis approach is sentence. This paper enlarges the range of 
application of sentence analysis, improves sentence analysis approach, enhances natural language 
understanding, and thus is meaningful. Our work has not been seen in literature. 

1 INTRODUCTION 

In natural language understanding, parsing as logic 
deduction has become one of the hot topics of 
research. Minimalist Deductive System is a late 
approach (Lecomte, 2004). In MDS calculus, a 
sentence is Curry-Horwad isomorphic with a type. 
The feature of sentence analysis with MDS is that 
the establishment of proof tree is type-driven. Then 
we may naturally have the question: for a given type 
of sentence, can we establish the proof tree 
representing the sentence? This question is 
meaningful for the improvement of sentence 
analysis and natural language understanding. 

Coquand (2002) forwards inversion function of 
simple type λ-calculus. This inversion function is 
able to return typed λ-terms according to the given 
type. However, inversion function relies on specific 
Kripke model. The Kripke model of MDS has not 
been seen. Therefore, in order to obtain the inversion 
function of MDS, first we have to obtain the Kripke 
model of MDS. Now we already have Kripke model 
of intuitionnistic logic, and MDS is a fragment of 
partially commutative linear logic. Since the 
difference between linear logic and intuitionistic 
logic is the absence of contraction and weakening 
(Morrill, 1994), it is hopeful that Kripke model of 

intuitionnistic logic becomes the Kripke model of 
MDS. 

The work of this paper is: 1. combining the 
extensional Kripke interpretation and MDS to derive 
the Kripke model of MDS; providing the applicable 
inversion function for MDS calculus of types. 2. 
forwarding the method of representing the result of 
inversion function, i.e. typed λ-terms as a proof tree. 
3. demonstrating product-free  proofs obtained by 
inversion function enjoys the property of strong 
normalization. For MDS, the above-mentioned work 
has not been seen in literature.  

Comparison between the work of this paper and 
related work is as follows: 

The main difference between our work and 
traditional sentence analysis approach is that the 
objects of analysis are different. The object of our 
work is: Kripke model of MDS and type of sentence 
satisfied by assignment. But the object of traditional 
sentence analysis approach is sentence. 

The difference between our work and inversion 
function of simple type λ-calculus is: 1. The calculus 
is different. MDS calculus in this paper is linear 
logic calculus embodying the minimalist grammar, 
which is resource sensitive. Simple type λ-calculus 
is pure typed λ-calculus, which is intuitionnistic 
logic. Our work is applicable to Kripke model of 
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MDS and sentences satisfied by assignment, while 
the latter is applicable to pure typed semantic objects.  

The organization of the rest of this paper is: 2. 
Preliminaries, 3. Kripke model and Inversion 
function for MDS, 4. Representing the result of 
inversion function as proof tree, 5. Church-Rosser 
equality of the result of inversion function, and 6. 
Conclusion.  

2 PRELIMINARIES 

Definition 1. (Type) (Hindley & Seldin 1986) 
Assume that we have been given some symbols 
called atomic types; then we define types as follows: 

(a)each atomic type is a type; 
(b)if α and β are types, then (α →β) is a type. 

Each   type (α →β) is called a compound type. 

Definition 2. (Typed λ-terms) (Hindley & Seldin 
1986) For each type α, assume that we have 
infinitely: many variables v:α of type α, and perhaps 
some constants c:α of type α; then we define typed 
λ-terms as follows: 

(a) each v: α and c: α is a typed λ-term of 
type α; 

(b)  if N: α →β and N: α are typed λ-terms of 
types α →β and α respectively, then MN:β is a 
typed λ-term of type β; 

(c) if x: α is a variable of type α and M: β is a 
typed λ-term of type β, then (λx.M): α →β is  a  λ-
term of type α →β.  

Definition 3. (MDS) (Lecomte, 2004) MDS is 
composed of lexical entries and rules. 

Generally speaking, a lexical entry consists 
in an axiom 

├ w: T 
where T is of the following type: 
((F2\ (F3\…(Fn\( G1⊗ G2⊗…⊗ Gm⊗A)/))))/F1)    
where, 
m and n can be any number greater than or equal to 
0,  
F1, …, Fn are attractors, 
G1, …, Gn are features, 
A is the resulting category type. (Lecomte, 2004) 

There are nine rules in MDS, which are 
illustrated in Figure 1.  

 
Figure 1: Rules of MDS. 

Definition 4. (Ranta 1994) A context, in the 
technical sense of type theory, is a sequence of 
hypotheses of the form 

x1:A1, x2:A2(x1),…, xn:An(x1,…,xn-1). 
where the judgment x:A which introduces a 
variable, is a hypothesis. 

Definition 5. (Coquand 2002) The set of semantic 
objects is defined as usual in Kripke semantics:  

 
Force(ω, A)∈Set is written ω⊩ A, where T∈Set is 
the set of types and W is the set of possible 
worlds. 

Note that Kripke interpretation is sometimes 
called Kripke model. (Wang 1997) 

Definition 6. (Simpson 1992) The extensional 
Kripke interpretation is a sextuple:  

 
where 
•W is a set of possible worlds with a partial 

ordering, ≤. 
•{〚A〛ω} is a family of sets, with〚A〛ω , 

indexed by types, A, and possible worlds, ω. 
•{〚P〛ω} is a family of relations, 〚P〛ω⊆〚

A1 〛 ω× …×〚 A n 〛 ω , indexed by predicate 
symbols, P, with decorations, P: <A1,…, An > and 
possible worlds, ω. 

•  is a family of functions, :〚
A→B〛ω×〚A〛ω →〚B〛ω. 

•  is a family of functions, :〚A〛ω 
→〚A〛 ω’ , indexed by types, A, and pairs of 
possible worlds, ω′≥ω.  

The extensional Kripke interpretation is simply 
denoted as W. 
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An inversion function, given a semantic object 
in a particular Kripke model, returns a proof tree. 
The function is defined together with function val 
that intuitively takes a proof tree of the form of an 
variable applied to zero or more arguments. The 
definition is as follows. 

In this paper, the extensional Kripke 
interpretation is taken as the particular Kripke 
model.   

Definition 7. (Coquand 2002) Let a proof of type  
M∈[ ]├A1→A2…→An →o 

where Ai, i =1,2,…,n, is types. An inversion 
function, denoted as reify, is defined as  
reify([[M]])≡ λ(z1:A1)…λ(zn:An).{[[M]]val(z1)…val
(zn)} 
where z1…zn are fresh names, i.e. 
z1≡ gensym(Γ),  
…,  
zn≡ gensym([Γ,z1:A1,…, zn-1:An-1]) 
here gensym∈(Γ∈C)Name, C is set of contexts, 
Name is a countably infinite set, and  

[[M]]val(z1)…val(zn) 
is a proof tree of type o, atomic type. If x is a 
variable of type A1→ …→Ak →B, then  

val(x)=Λ([v1]…Λ([vk](x reify (v1)…(reify(vn))) 
where Λ is the simplified interpretation of 
abstraction. 

Note. The set of semantics objects ω ⊩ A in 
Definition 2 is the same as {〚A〛ω} in Definition 
3. It is denoted as    [[A]] in inverse function.  

Next, Definitions 8-10 define sentences 
satisfied by the extensional Kripke model and 
assignment.  

Definition 8. (Coquand 2002) Suppose C is the 
set of contexts. The set of environments is defined 
as 

 
where each variable in a context is associated with a 
semantic object. Force_env(ω, Γ)∈Set is written ω 
⊩ Γ. 

Note. Environment is sometimes called 
assignment. 

Definition 9. (Coquand 2002) The interpretation for 
proof tree of types in a given environment is defined 
as: 

[[ ]]term∈(Γ├A; ω⊩Γ)ω⊩A.  

Definition 10. (Wang 1997) It is inductively defined 
as follows that in the extensional Kripke 

interpretation of a formula of type, α, is satisfied by 
the environment ω⊩Γ at possible ω∈W (denoted by 
ω⊨α): 
(1)when α is P(A1,…, An) , where P is predicate 
variable, Ai , i =1,…,n, is a type, and [[P]]ω is 
defined in Definition 2, for all ω′≥ω, 

ω⊨P(A1, …, An)  iff  <[[A1]]term ,…, [[A 

n]]term  >∈[[P]]ω′   
(2)when α is α1∧α2,  

ω⊨α1∧α2 iff for all ω′≥ω, ω⊨α1 and ω⊨α2 . 
(3)when α is α1→α2,  

ω⊨α1→α2 iff for all ω′≥ω, if ω′⊨α1, then 
ω′⊨α2 . 

Definition 11.  (Wang 1997; Coquand 2002) Suppose 
α be a type lambda formula. If  ω⊨α, then α is 
called K-satisfiable.  

3 KRIPKE MODEL AND 
INVERSION FUNCTION FOR 
MDS  

3.1 Kripke Model for MDS 

It is composed of the following six components. 
(1) Possible worlds. The world of mind can be seen 
as a possible world. (Jiang & Pan 1998) The 
possible world is denoted as w, and W={ w}. 
Context is denoted as Γ. Contexts in Definition 4 is 
taken as possible worlds in Definition 6, that is, 
w=Γ. The possible world includes the set of typed λ-
terms representing words and sentences. 
(2) If Γ⊆Γ′, then w≤w′. 
(3) The set of semantic objects, 〚 A 〛 ω , in 
Definition 6 is λ-terms for lexical entries at w. And 
each variable in a context is associated with a 
semantic object. {〚A〛ω} is the set of 〚A〛ω in 
all possible worlds. 
(4)〚 P〛ω is the products of types in the possible 

world w, and they occur in rule 7-9 of MDS. {
〚P〛ω} is the set of 〚P〛ω in all possible 
worlds.  

(5) :〚A→B〛ω×〚A〛ω →〚B〛ω means 
Definition 2 (c ) at w. 

(6) :〚A〛ω →〚A〛ω’  means that if 〚A〛

holds at w, then 〚A〛holds for all w′≥w. 
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3.2 Inversion Function for MDS  

Definition 7 including symbols with the following 
denotations leads to the inversion function for MDS. 
1.[[M]].  
Given the type of sentence is M. Let 

M ∈[ ]├A1→A2…→An →o. 
For each Ai , i =1,…,n, its semantics object, [[Ai]] , 
is a variable zi which is a λ-term with type in any 
context w′≥w. At any w′≥w, type M is mapped to its 
semantics object, [[M]], which is λ-expression with 
type for sentence. 
2. reify([[M]]) 
reify([[M]])≡ λ(z1:A1)…λ(zn:An).{[[M]]val(z1)…val

(zn)} 
is λ-expression with n bound variables z1 ,…, zn: of 
types A1, …, An , respectively where val(x) ia as 
follows. If x is a variable of type A1→ …→Ak →B, 
then there are k bound variables in x, vi=[[Ai]], i 
=1,…,k at any w′≥w . Thus, 

val(x)=Λ([v1]…Λ([vk](x reify (v1)…(reify(vn))) 
is an variable x applied to k arguments v1,…,vk such 
that val(x) is semantics object at any w′≥w. 

3.3 Application of Inverse Function for 
MDS 

We take an example to show how the inverse 
function returns λ - expression with type 
representing a sentence. 

Let M∈[ ]├(t→t)→t→t be a type of sentence. 
From lexical entries of MDS, a list of lexical entries 
appeared in the example is as follows. 

α1=λv.seem(v): t→t                     (1) 
α2=α3α4= approach(mary): t                  (2) 

α3=λu.u(mary): (e→t) →t                (3) 
α4=λy.approach(y): e→t                     (4) 

α5=x: e                               (5) 
α4α5= approach(x): t                        (6) 

λα5. α4α5= λx.approach(x): e→t              (7) 
α3λα5. α4α5=approach(mary)                (8) 
α1α4α5= seem(approach(x)): t                 (9) 

λα5.α1α4α5=λx.seem(approach(x)): e→t         (10) 
α3(λα5.α1α4α5)=seem(approach(mary)): t        (11) 

λα5. α4α5=λx.approach(x): e→t                (12) 
From 3.2, 
reify([[M]]) ≡ λ(α1:t→t).λ(α2:t).[[α1α2]](α1=va

l(α1)α2=val(α2)) [[α1α2]]{α1=val(α1)α2=val(α2)} 
≡ app(val(α1), val(α2)) 
≡ app(Λ[v](α1 reify(v))), val(α2)) 
≡  α1 reify (val(α2))                   (13) 

where ‘app’ is for application of λ-calculu, and last 
equation above is due to that Λ[v](α1 reify(v))) is 
applied to val(α2). Because (2),in α2 ,there are two 
arguments, α3  and α4 , therefore 

reify(val(α2)) ≡ λ(α3: (e→t)→t).λ(α4: 
e→t).([[α3α4]] val(α3).val(α4))=[[ α3α4]]{ 
α3=val(α3), α4=val(α4)} 

≡ app(val(α3), val(α4)) 
≡ app(Λ[v](α3 reify(v))), val(α4)) 

      ≡  α3 reify(val(α4))                         (14) 

Because α4, e→t, in (4) is a compound type, its 
range is t and its domain is one argument, e. ∴ 

reify(val(α4))≡λ(α5: e).app(val(α4), val(α5)) 
         ≡λ( α5 :e)app(Λ([v] α4reify(v))), α5) 

≡λ(α5: e). α4 reify(α5) 
        ≡λ(α5: e)( α4α5)                           (15) 

‘reify(val(α4))’ in the result of (14) is replaced by 
(15), and ‘reify (val(α2))’ in the result of (13) is 
replaced by (14), it is obtained that 

Reify([[M]])= λ(α1: t→t).λ(α2: t).(α1α3          

                                                      λ(α5:e).α4α5)                    (16) 

α1 to α5 in (16) are replaced by (1)-(5),respectively, 
it is obtained that 

reify([[M]]) 

=(λv.seem(v): t→t) λ(approach(mary): t) 
λv.seem(v) λu.u(mary) λ(x:e) λy.approach(y) x 
=λ(λv.seem(v): t→t). λ(approach(mary): t) 
(λv.seem(v). approach(mary))                             (16′) 

The inverse function results in (16′), the typed λ-
expression representing a sentence.  (16′) is 
equivalent to proof tree of sentence. (16′) can take as 
the form of proof tree shown in the next section.  

4 REPRESENTING THE RESULT 
OF INVERSION FUNCTION AS 
PROOF TREE 

The method of representing the λ-terms obtained 
with inversion function as a proof tree is as follows: 
The λ-terms obtained in respective steps of the 
application of the inversion function are transformed 
into sub-proof trees. If the λ-terms obtained in a 
certain step are juxtaposition, then transform the 
result into a deductive sub-proof tree of application 
illustrated by Definition 2(b). If a certain step 
introduces a new variable, then transform the result 
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into a deductive sub-proof tree of abstraction 
illustrated by Definition 2(c). Combine all the sub-
proof trees and we have the final proof tree. 

We take（16）as an example to illustrate the 
process of the derivation of the proof tree. 

(13)/(16): 
reify([[M]])≡  (α1) reify (val(α2)) 

Its type is t. Since α1 and reify (val(α2)) are 
juxtaposition, then transform them into a deductive 
sub-proof tree of application. We have deduction 
(17) 

α1 : t→ t      reify (val(α2)): t 
α1α3 ( λα5. α4α5): t                      (17) 

From (14), 
reify(val(α2))= (α3)reify(val(α4) 

Its type is e→t. Since α3 and reify (val(α4)) are 
juxtaposition, we have similar situation. Then we 
have deduction (18) 

α3 : (e→t) →t     reify(val(α4): e→t 
  reify (val(α2)): t                         (18) 

Use reify(val(α4))= λ(α5: e)( α4α5) in (18), and 
we have deduction (19) 

α3 : (e→t) →t    λ(α5: e)( α4α5) : e→ t 
reify (val(α2)): t                           (19) 

Use (19) to substitute reify(val(α2)) in (17), and 
we have (20). 

α3 : (e → t)  → t   λα5. α4α5: e → t 
α1 : t→ t             α3 (λα5. α4α5): t 

α1α3 ( λα5. α4α5): t                       (20) 

λα5. α4α5: e→ t  in （15） and （20） can be 
obtained in proof (21). In （ 21 ） , the upper 
deduction is application, and the lower deduction is 
λ-abstraction.  

[α4: e → t]2     [α5:e]1 
α4α5 : t 

          λα5. α4α5: e → t                     (21) 

Combine（17）-（21）, and we have (22） 

                           [α4: e → t]2     [α5:e]1 
α4α5 : t 

         α3 : (e → t)→ t   λα5. α4α5: e → t 
α1 : t→ t             α3 (λα5. α4α5): t 

α1α3 ( λα5. α4α5): t                       (22) 

Replace α1 through α5 with the actual λ -terms 
representing the lexical items, and we have: 

 
which can be represented as the following proof 
tree: 

 
Figure 2: “It seems that Mary approaches”. 

5 CHURCH-ROSSER EQUALITY 
OF THE RESULT OF 
INVERSION FUNCTION 

Now refer to another proof which is equivalent in 
the sense of Church-Rosser equality. 

β1=λu.u(mary): (e→t) →t 
β2=λβ6. β3β5β6 = seem(approach(x)): e→t 
β3=λv.seem(v): t→t 
β4=β5β6= approach(x): t 
β5=λy.approach(y): e→t 
β6=x: e 
β3β5β6= seem(approach(x)): t 
β1 (λβ6. β3β5β6)=seem(approach(mary)): t 

Let M∈[ ]├((e→t) →t) →(e→t)→t be a proof 
tree of types. 
Then,   

Reify([[M]]) 
≡ λ(β1: (e→t) →t) λ(β2: e→t) ([[β1β2]] 
val(β1).val(β2)) 
≡  [[ β1β2]]{ β1=val(β1), β2=val(β2)} 
≡ app(val(β1), val(β2)) 
≡ app(Λ[v]( β1reify(v))), val(β2))= β1.reify(val(β2) 

reify(val(β2)) 
≡λ(β6:e).app(val(β3),val(β4)) 
≡λ(β6:e)app(Λ([v]β3reify(v))), β4) 
≡λ( β6: e). β3 reify(β4) 

∴reify(val(β4)) 
≡ λ (β5: e→t) λ(β6: e) [[β5. β6]] {β5=val(β5), 
β6=val(β6)} 
≡ app(val(β5), val(β6))=app(Λ[v]( β5 reify(v))), 
val(β6)) 
≡  β5 reify (val(β6))= β5β6 
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∴reify[[M]] 
≡  λ(β1: (e→t) →t) λ(β2: e→t) β1λ(β6:e) β3β5β6 

Replace β1 through β6 with lexical items, and 
we have: 

reify([[M]]) 
≡ λ(λu.u(mary):(e→t)→t).λ(seem(work(x)):e→t). 
(λu.u(mary)λ(x:e) λv.seem(v) λy.work(y) x) 

Now we transform the computational result of 
the inversion function into a proof tree. 

From reify[[M]]≡  β1.(reify(val(β2)): e→t), we 
have deduction (23) 

β1 : (e→t) →t   reify(val(β2)): e→t 
β1 (λβ6. β3β5β6): t                  (23) 

From reify(val(β2))= λ( β6: e). β3 reify(val(β4)), 
we have deduction (26) 

β1 : (e→t) →t   λβ6. β3 reify(val(β4)): e→ t 
 β1 (λβ6. β3β5β6): t                 (24) 

From reify(val(β4))= β5β6: t and (8), we have 
(25) 

β1 : (e→ t)→ t   λ( β6 :e). β3β5β6: e→ t 
β1 (λβ6. β3β5β6): t                              (25) 

where λ( β6 :e). β3β5β6: e → t can be derived 
from (26): 

               [β5: e → t]2     [β6:e]1 
β3: t→ t           β5β6 : t 

β3β5β6 : t 
              λβ6. β3β5β6: e→ t                          (26) 

∴From（25） and （26） we have （27） 

                           [β5: e → t]2     [β6:e]1 
β3: t→ t              β5β6 : t 

                     β3β5β6 : t 
β1 : (e→ t)→ t          λβ6. β3β5β6: e→ t 

β1 (λβ6. β3β5β6): t                         (27) 

Replace β1 through β6 with the actual λ -terms 
representing the lexical items, and we have: 

 
Figure 3: seem(approach(mary)): t. 

which can be represented as the following proof 
tree: 

 
Figure 4: “Mary seems to approach”. 

6 CONCLUSIONS 

This paper realizes the establishment of the proof 
tree representing the sentence according to the 
sentence type with inversion function. Our work is 
applicable to Kripke model of MDS and types of 
sentences satisfied by assignment. Application 
examples demonstrate that our work is valid. This 
paper enlarges the range of application of sentence 
analysis, improves the approach of sentence 
analysis, and enhances natural language 
understanding. Our work is meaningful.  
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