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Abstract: One of the key challenges in affective computing is the interpretation of physiological signals into affect. 
Mood, as a subclass of affect, is known to be reflected in skin conductance. While most reports concern 
strictly controlled laboratory settings, daily life situations pose more challenges in interpreting physiology 
because more bodily and cognitive processes that influence skin conductivity are involved; for example 
temperature regulation or physical and mental activity. Existing techniques to reduce the effects of these 
processes in order to extract mood from skin conductance are rather crude and leave room for improvement. 
We introduce a more sophisticated method based on skin conductance response subtraction that provides 
better resemblance with mood. Validation of our method, using comparison with two alternative methods, 
shows our method excels in differentiation between positive and negative moods from skin conductance. 
Our method thereby enhances mood extraction from skin conductance, thus improving robustness of mood 
measurements. 

1 INTRODUCTION 

The role of technologies in our daily life is changing 
rapidly. It is expected that technologies more and 
more help us to balance our mind and body state as 
well. The importance of our mood is also 
increasingly recognized namely, being in a positive 
mood has the advantage to increase, among others, 
optimistic feelings to dominate our cognitive 
flexibility, problem solving capabilities (Lewis & 
Haviland-Jones, 2000), as well as our health and 
longevity (Salovey et al., 2000; Pressman & Cohen, 
2005). Therefore it will not take very long before 
technologies that measure and that react to the 
affective state of the user will appear, e.g., a music 
player that plays music that suits or directs the mood 
state of the user (Janssen et al., 2009; Schroeder et 
al., 2008).  

Mood is seen as our baseline body state, it is a 
tonic state which varies over minutes to days 
(Thayer, 1996). Changes in mood are accompanied 
by changes in our skeletal-muscular system 
(Cacioppo, 2000) as well as in our autonomic 
nervous system (ANS), reflected in e.g., skin 
conductance (SC; Van der Zwaag & Westerink, 
2009). The use of SC in applications is promising 

because it can be unobtrusively and easily 
implemented in our daily life habits (Westerink et 
al., 2009).  

SC is, besides mood, also affected by several 
other influences, among which physical and mental 
activity, environmental temperature, and emotions. 
In this paper we present a method to reduce the 
influence of these changes in SC that are other than 
mood, in order to obtain a signal that better reflects 
mood. This method is based on the fact that changes 
in mood are gradual and tonic, whereas the other 
aspects mentioned that influence SC have a phasic 
character; they are short and intense. In sum, our 
method is designed to remove the phasic effects in 
order to obtain a more resembling mood signal.  

In mood research the ground truth available 
consists of subjective reports or effects hypothesized 
by the researcher. In order to quantify the success of 
the mood extraction method that will be proposed in 
this paper, we have chosen for a validation with 
hypothesized effects, which have been verified with 
subjective reports.  

The remainder of this paper starts with a 
description of the physiological signals in section 2, 
followed by a detailed description of the method in 
section 3. Section 4 describes the validation of our 
method and we end with a conclusion. 
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2 SIGNAL EXPLORATION 

The skin conductance signal roughly contains two 
types of information (Dawson et al., 2000; Boucsein, 
1992). The tonic SC, usually referred to as Skin 
Conductance Level (SCL), shows gradual changes 
over time. Phasic SC manifests as high(er) 
frequency components superimposed on the tonic 
level. These phasic SC components, known as Skin 
Conductance Responses (SCRs), have a typical form 
as schematically depicted in Figure 1: After a 
latency period (of approximately 2 seconds after 
observation of a stimulus), the signal rises relatively 
quickly, reaches a local maximum and then slowly 
declines again.  

 
Figure 1: Graphical representation of a typical skin 
conductance response, taken from Dawson et al. (2000). 

Most SCRs have a clear cause of their origin 
(Boucsein, 1992; Dawson, 2000), which can vary 
from an emotional event, physical activity or an 
internal thought. Moods, our psychological construct 
of interest, however, are long lasting affective states 
with no clear cause of their origin (Thayer, 1986); it 
is a tonic phenomenon like the skin conductance 
level SCL (apart from the SCRs). We therefore 
hypothesized, that removing SCRs from the SC 
signal would result in a SCL signal reflecting mood 
more precisely. 

Although SCRs are well defined from onset to 
the moment of half recovery, their effect on a longer 
time span can be quite undeterministic: SCRs often 
decline until the onset level is reached, however they 
sometimes build on top of each other (humped 
SCRs) or the SC level does not decline to the onset 
level (i.e., there is a change in tonic level). Figure 2 
shows an example trace of SC data in which the 
circles indicate the maxima of detected SCRs. The 
figure, for example, shows SCRs that decay to their 
onset level (e.g., around t=5), thereby only causing a 
phasic change; having no effect on the tonic level, as 
well as SCRs that cause a change in tonic level (e.g., 
the humped SCR with onset around t=1). 

 
Figure 2: Example trace of SC data. The marks indicate 
the maxima of detected SCRs. 

In this paper, we hypothesize the possibility to 
estimate the full phasic influence of an SCR by 
suitably extrapolating the well defined part of the 
SCR (from onset to half recovery time). All effects 
that remain after subtracting the SCRs from the 
signal (i.e., subtraction of the difference between the 
SCR and the SCR onset level), can then be 
considered as effects on the tonic level. 

It should be clear that for this assumption the 
robust detection of SCRs is a necessity. Over time, 
multiple analysis techniques have been developed to 
extract the individual SCRs from an SC signal. A 
very basic technique compares the SC signal with a 
static threshold, after detrenting the signal, and fire 
in case of exceeding the threshold. More 
sophisticated methods, as the SCRGauge algorithm 
(Kohlisch, 1992), search for local maxima and use 
the notion of maximal curvature to find the onset of 
SCRs. The half recovery time value is searched for, 
and if not present, extrapolated. 

3 ALGORITHM DESCRIPTION 

Our method of processing the SC signal consists of 
three steps. 1) Each SCR needs to be detected, 2) for 
each SCR a model is fitted and 3) this model is 
subtracted from the original SC signal. The next 
three subsections describe these steps in more detail. 

3.1 SCR Detection 

The first step of the algorithm is to determine the 
individual Skin Conductance Responses (SCRs) 
reliably. For this we employ the SCRGauge method 
on top of which we build an extra layer that handles 
well those cases that SCRGauge indicates as 
doubtfully detected. In this extra layer, the half 
recovery time is extracted more reliably by linear 
extrapolation from the first occurring bending point 
(i.e., zero crossing of the second derivative) after the 
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top of the SCR (in other words, use the tangent at 
the point of maximal decline). SCRGauge uses the 
same technique, however it extrapolates from the 
last bending point occurring before the signal rises 
again after the top of the SCR. 

Besides that, the extra layer contains an 
improved indication of humped SCRs, i.e., SCRs 
that happen that soon after one another that they 
stack on top of each other, as can be seen in Figure 2 
at t=1. We choose to combine the SCRs that have 
time wise overlap (considering rise time and half 
recovery time) and treat these humped SCRs as 
single large SCRs, by using the first onset, the 
maximal top and re-estimation of the half recovery 
time. 

3.2 SCR Modelling 

For each of the SCRs detected, a parameterized 
model is optimally fitted. This parameterized model 
should be a mathematical function that represents 
the shape of a typical SCR well. We used the 
sigmoid-exponential four-parameter SCR model as 
proposed by Lim et al. (1997): 
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where the model of the  i-th SCR (ݕ
 ) is 

characterized by four parameters: the onset time ܶ, 
gain ݃ (related but not identical to the SCR 
amplitude), and rise time and decay time constants 
ܿ and ܿௗ, respectively. 

The optimal fit of the parameters can be 
determined by an error minimizing method, as for 
example minimization of the sum of squared error 
(also known as the method of least squares). This 
method minimizes the difference between the 
observed data (ݕௗ) and the model (ݕ): 

argmin
ೝ,,ఓ,ఙ
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where ܶ is the time of onset of the ݅-th SCR and ߣ 
specifies the length of the window that is taken into 
account for the comparison. To optimally fit the 
SCR, this length is defined dynamically to fit the 
SCR from onset to half recovery point, i.e., the 
window has a length equal to the sum of the rise 
time and the half recovery time (see Figure 1). In the 
cases that the half recovery time is extrapolated 
(during the extraction phase) the extrapolated signal 

can be used up to the half recovery time for 
determining the optimal fit. 

There are several methods to solve the least 
squares problem, or more general, solve 
optimization problems; Lim et al. (1997) use the 
Marquardt-Levenberg method, we chose to use the 
Nelder-Mead Simplex Method (Lagarias et al., 
1998), which is less susceptible for local minima 
(Miller, 2000). These optimization algorithms aim at 
finding an optimal set of (model) parameters such 
that a given measure is optimized (i.e., minimized or 
equivalently maximized), given an initial parameter 
setting. The averages found by Lim et al. proved to 
be sufficient as initialization of the parametric 
model.  

3.3 Subtraction of SCRs 

The parametric models (ݕ
 ) are used to subtract the 

SCRs from the SC signal (ݕ) according to:  

ሻݐሺכݕ ൌ ሻݐሺݕ െ  ݕ
 ሺݐ െ ܶሻ



 (3) 

For practical reasons, the modelled SCRs are 
taken into account from the onset time ܶ, see 
equation (1), up to where their contribution is 
negligible. In only few occasions the optimization 
did not lead to a good fit of the model, characterized 
by a major overestimation of the tails of the SCRs. 
These cases are recognized by extraordinary 
parameter values and treated with extra care, i.e., the 
signal after subtraction is limited by the original SC 
signal, thereby ensuring the signal does not decay 
below the SCR onset value (for the duration of the 
SCR). Figure 3 shows an example trace of SC signal 
with projections of the modelled SCRs. 

 
Figure 3: Overlay of two modelled SCRs (grey) on the 
original SC signal (black) for a ‘simple’ SCR (right) and 
humped SCR (left). 

Figure 4 shows the residual signal after 
subtraction of the modelled SCRs as the dark grey 
line close to the black line. It can be seen that high 
frequency noise is introduced in  the  residual  signal  
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Figure 4: Overview of the original signal (light grey), and the residual signal before (dark grey) and after (black) filtering.

because of local misfits of the SCR models. We applied a 
small low-pass filter, 8 second moving average, afterwards 
in order to smooth the residual signal as displayed in 
Figure 4. 

In the following, we will refer to the complete 
algorithm as SCR subtraction, whereas this sub-step 
of removing the SCRs will be referred to as 
subtraction of SCRs. 

3.4 Alternative Techniques 

In mood research alternative techniques have been 
applied also with the aim of obtaining a better mood 
signal from SC. To our knowledge, these alternative 
methods include (strict) low-pass filtering and 
interpolation of SCR onsets (Lykken & Venables, 
1971).  
Figure 5 shows an overview of their effects on an 
example trace of SC data. 

We implemented the first method using a 
moving average filter with relatively large windows 
of 50 and 100 seconds. This method has as 
advantage that it does not rely on the detection of 
individual SCRs. It however has a strong tendency 
to overshoot the original signal. 

The latter method highly depends on the correct 
detection of SCRs and moreover, the correct 
detection of humped SCRs. As can be seen in 

Figure 5, especially the presence of small SCRs 
(close to larger SCRs) causes this method to 
relatively closely resemble the original SC signal. 

3.5 Complexity 

The methods mentioned above, can roughly be 
divided into two groups: those that rely on SCR 
detection and those that do not. The low-pass 
filtering methods fall into the last category and are 
clearly of linear complexity; each sample needs to 
be multiplied with a constant number of filter 
coefficients.  

When SCR detection is involved, the complexity 
of the method depends on the algorithm used for 
SCR detection. SCRGauge uses searching strategies 
which can, in worst case scenario’s, result in 
quadratic complexity (i.e., the number of 
comparisons per sample can be in the order of the 
total number of samples). In our implementation we, 
however, bounded the number of search steps by a 
constant maximum, thereby ensuring linear 
complexity of the SCR detection (note that the 
maximum number of steps is rarely reached in 
practice). Our method also incorporates SCR 
modelling, which uses an optimization algorithm. 
Also here, the number of iterations is bounded by a 
constant, therefore the complexity is in the order of 
the number of data samples taken into account for 
the model (e.g., comparable to ߣ in equation (2)), 
which we also bounded by a constant. Finally the 
subtraction of SCRs is also linear in the number of 
data samples. 

In summary, all methods are of linear 
complexity. Where low pass filtering is least 
computational complex, our SCR subtraction 
algorithm requires more calculation steps. The time 
needed, on a standard working station, however, is 
still small enough to allow real time application. 
With little effort on a more efficient implementation, 
it should also run on, e.g., a mobile phone or pda. 

4 VALIDATION 

In order to validate the proposed method, we applied 
it to a dataset containing SC signals (van der Zwaag 
& Westerink, 2009). SC was recorded during two 
sessions where a positive or a negative mood was 
induced in 37 participants using music. Each session 
started with a habituation period of eight minutes in 
which the participants could relax, after which the 
participants were asked to pay attention to eight 
minutes of music presentation. To verify the state of
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Figure 5: Comparison of (alternative) techniques, showing, from top to bottom, a) the original SC signal, b) interpolation of 
SCR onsets, low pass filtering (moving average), using a window of c) 50 and d) 100 seconds, and e) our method: SCR 
subtraction. In order to improve visibility, the latter four have been offset with -1 to -4 μS, respectively. 

the participants, the UMACL mood inventory was 
presented after the habituation period and the mood 
induction (Matthews, 1990). Results show that the 
two moods were successfully induced. See Van der 
Zwaag & Westerink (2009) for detailed information 
on the design of the experiment and the data 
gathering.  

We applied our SCR subtraction method as well 
as two alternative processing methods on the 
available dataset; the processed signal will be 
referred to as skin conductance level (SCL) and the 
three methods applied will be referred to as: Plain 
SC, Low-pass filtering, and SCR subtraction. 

Successively, the means (in analogy to SCL-
mean) were calculated for each minute of the 
habituation phase and the mood induction period. To 
compensate for individual differences in SCL, the 
features ݔ, derived from SCL, were normalized for 
each participant per session using z-transformations: 

ݔ
כ ൌ

ݔ െ ௫ߤ

௫ߪ
 (4) 

where feature instance ݔ is transformed using 
the mean ߤ௫ and standard deviation ߪ௫ taken over 
the third till fifth minute of the habituation period, 
thereby serving as baseline period. Thereafter a 
repeated-measures ANOVA with the mood (positive 
/ negative) and time (minute 1 till minute 8) was 
conducted on the data obtained from each method. 
Results solely show a main effect for mood for SCR 
subtraction; meaning that positive and negative 
moods can be distinguished in SCL in this method 
only (Plain SC: F(1,34)=1.14, p=.294, η2=.032; 
Low-pass filtering: F(1,34)=3.01, p=.092, η2=.081; 

SCR subtraction: F(1,34)=5.69, p=.023, η2=.143). 
Post-hoc analyzes of our SCR subtraction method 
show that the positive and negative moods can be 
differentiated from the fourth minute of mood 
induction onwards.  

As can be seen in Figure 6, the SCR subtraction 
method provides the smallest error bars of the three 
methods, indicating that the data is more consistent 
over participants. The effect sizes (η2) are 
additionally larger in the SCR subtraction data then 
in the data of the other methods; implying the 
strength of the relation between mood and SCL is 
larger in the SCR subtraction method. The mood 
with time interaction in the SCR subtraction data 
show that the relation between mood and SCL 
increases over time (from η2=.008 in the first minute 
to η2=.361 in the eighth minute). 

Please note that we did not apply any participant 
or data removal criterion, including outlier removal. 
Together with the large difference between positive 
and negative mood the SCR subtraction method 
shows (in Figure 6), this indicates that the inter-
personal noise has been reduced significantly, 
implying that our method is robust to inter-personal 
differences in physiology. 

To summarize, we can conclude that the SCR 
subtraction method is the only method where 
positive and negative moods can be fully 
discriminated from the SC. Treated with this 
method, the SC signal represents mood best and is 
more accurate than the Plain SC and the Low-pass 
filtering method. 
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Figure 6: The three figures show the differentiation between moods by mean SCL (in normalized units (n.u.)) for the three 
methods discussed. The time in minutes during the mood induction is presented on the horizontal axis. The dotted 
(continuous) lines indicate the positive (negative) mood condition. Error bars indicate the standard error.

5 CONCLUSIONS 

We propose a method to adjust the skin conductance 
signal in order to better reflect mood. It is based on 
the observation that SCRs, which frequently occur 
on top of the tonic SCL, correspond to event type 
stimuli that are not related to mood. The SCR 
subtraction method removes these phasic influences 
from the SC signal by subtracting the SCRs from the 
SC so that an estimate of the pure SCL signal 
remains. We validate the SCR subtraction method 
with SC data taken in a mood induction experiment. 
The results show that the SCR subtraction method 
outperforms the alternative SCL estimations. In fact, 
the SCR subtraction technique is the only method 
resulting in significant differences between the 
positive and negative moods. 

Using the method we present, skin conductance 
can serve as a robust indicator for positive versus 
negative mood. Whenever someone’s mood can be 
measured, steering one’s mood, or creating 
awareness of one’s mood, is only one step away. As 
mentioned in the introduction, the range of possible 
applications is very broad, including systems that 
help in making us feel better, and healthier. 
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