
TOWARDS SOCIAL-SOFTWARE FOR THE EFFICIENT REUSE OF
SOLUTION PATTERNS FOR SELF-OPTIMIZING SYSTEMS

Roman Dumitrescu and Benjamin Klöpper
Heinz Nixdorf Instiute, University of Paderborn, Fürstenallee 11, Paderborn, Germany

Keywords: Self-optimization, Mechatronic systems, Solution patterns, Domain-spanning knowledge base, Social soft-
ware.

Abstract: The conceivable development of information technology will enable mechatronic systems with partial intel-
ligence. We refer to such systems as self-optimizing systems. Self-optimizing systems react autonomously
and flexibly on changing environmental conditions. They have to learn and optimize their behavior during
operation. Hence the design of such self-optimizing systems is an even more interdisciplinary task than the
design of conventional mechatronic systems. Additionally to mechanical, electrical, control and software en-
gineers also experts from mathematical optimization and artificial intelligence are involved. As a consequence
a domain-spanning methodology is necessary in order to guarantee an effective work flow between the partici-
pating developers from various domains and their domain-specific methods and solutions. In this contribution
a specification for the domain-spanning modeling of solution patterns for self-optimizing systems as well as a
tool-based approach for the domain-spanning use of patterns based on social-software features are presented.

1 INTRODUCTION

The products of mechanical engineering and related
industrial sectors, such as the automobile industry,
are often based on the synergetic interaction of me-
chanics, electronics and software engineering, which
is aptly expressed by the term mechatronics. The
aim of mechatronics is to improve the behavior of
technical systems by using sensors to obtain infor-
mation about the system environment and the sys-
tem itself. The processing of this information enables
the system to react optimally to its current situation.
The conceivable development of communication and
information technology opens up increasingly fasci-
nating perspectives, which move far beyond current
standards of mechatronics: mechatronic systems ex-
hibiting an inherent partial intelligence. We use the
term self-optimization to describe such systems. Self-
optimization enables mechanical engineering systems
that have the ability to react autonomously and flexi-
bly on changing operation conditions.

The design of such systems is a challenge. The
functionality of self-optimizing systems leads to an
increased complexity of their development and re-
quires an effective cooperation and communication
between the developers from different domains dur-
ing the entire development process. In that case,

established design methodologies from conventional
mechanical engineering (Pahl et al., 2007) and also
methodologies from mechatronics (VDI, 2004) do not
fulfill those new requirements. Within the Collabo-
rative Research Centre (CRC) 614 ”Self-Optimizing
Concepts and Structures in Mechanical Engineer-
ing” at the University of Paderborn, a new design
methodology is developed. It facilitates engineers
from different domains to model technical systems
in a comprehensive domain-spanning way and en-
ables the reuse of proven solutions in the form of
solution patterns. We distinguish solution patterns,
which relay on physical effects, and patterns, which
serve information processing. However, there are
no solution patterns, which consider the paradigm
of self-optimization. Thus, Active Patterns for Self-
Optimization (APSO) were developed to describe po-
tential solutions for self-optimizing systems (Gause-
meier et al., 2005), (Gausemeier et al., 2007).

In section 2 we describe the paradigm of self-
optimization. Followed by a brief description of
the respective development process we present solu-
tion patterns for self-optimizing systems in section
3. Next, in section 4, we point out the problems oc-
curring, if different domain-specific languages are in-
volved in the development process of self-optimizing
systems. Section 5 provides a solution approach to

342
Dumitrescu R. and Klöpper B. (2009).
TOWARDS SOCIAL-SOFTWARE FOR THE EFFICIENT REUSE OF SOLUTION PATTERNS FOR SELF-OPTIMIZING SYSTEMS.
In Proceedings of the International Conference on Knowledge Engineering and Ontology Development, pages 342-347
DOI: 10.5220/0002332203420347
Copyright c© SciTePress



those problems. In section 6 we conclude our work
and describe our future work.

2 SELF-OPTIMIZING SYSTEMS

Figure 1 shows the key aspects and the modes of oper-
ation of a self-optimizing system. The self-optimizing
system determines its currently active objectives on
the basis of the encountered influences on the techni-
cal system from its environment. For instance, during
operation new objectives are added or existing objec-
tives are discarded. Thus, the system of objectives is
dynamic. Adapting the objectives in this way leads
to an autonomous adjustment of the system behav-
ior in reflecting the systems and the environmental
state. This can be achieved by adapting parameters
or the structure of the system. An example for pa-
rameter change is the adaptation of a control param-
eter. Structure adaptations affect the arrangement of
the system elements and thus their relationships, for
instance switching between different controller types.
Self-optimization within the system takes place as a
series of the three following actions to which we re-
fer as self-optimization process (Gausemeier et al.,
2008b):
1. Analyzing the current situation: The current sit-

uation includes the current state of the system as
well as all observations of the environment that
have been carried out.

2. Determining the system’s behavior: The current
system’s objectives can be extracted from selec-
tion, adaptation and generation.

3. Adapting the system’s behavior: The changed sys-
tem of objectives demands an adaptation of the
behavior of the system. This can be realized by
adapting the parameters and/or by adapting the
structure of the system.
The process of self-optimization leads, reflecting

changing influences, to a new state. Thus, a state tran-
sition takes place. The self-optimization process de-
scribes the system’s adaptive behavior.

3 DEVELOPMENT PROCESS
AND SOLUTION PATTERN

In general we can divide the development of self-
optimizing systems into two sequenced processes: the
domain-spanning conceptual design and the domain-
specific concretization. Starting point of the concep-
tual design is the development task. An interdisci-
plinary team, consisting of specialists from different

Figure 1: Aspects of Self-Optimizing Systems.

domains, creates the principle solution of the system
to develop. The principal solution does not only de-
scribe just the main physical characteristics of the
system, but also the logical operating characteristics.
This needs to be done in a domain-spanning way in
order to support all participating developers, which
are from different disciplines.

Thus, developers can work nearly independently
during the second phase, the domain-specific con-
cretization, and specify the system on basis of the
principle solution. Accordingly, they can use the ex-
isting domain specific methods and tools. An overall
system model, which is based on the principle solu-
tion, guarantees the effective and correct integration
to finalize the system design.

Within the conceptual design phase, we use a set
of semi-formal specification techniques to describe
the principle solution of a self-optimizing system
(Gausemeier et al., 2006). An important intermediate
result during the conceptual design phase is the func-
tion hierarchy, which is primarily derived from the
functional requirements and consists of a logical hier-
archy of all system functions starting from the overall
function at the top. The next step is to find solutions
for those functions, which are at the bottom of the
hierarchy in order to describe a system, which real-
izes the overall function. Depending on the type of
functions, different solution patterns are defined. In
general a pattern describes a recurring problem in our
surrounding and the core of a solution to that problem
(Alexander et al., 1977). The solution core is spec-
ified in a solution pattern that defines the character-
istics of the system’s elements which have to be de-
veloped and the interactions between those elements.
There are solution patterns, which are based on phys-
ical effects, and patterns, which involve data process-
ing. Apart from conventional functions of mechani-

TOWARDS SOCIAL-SOFTWARE FOR THE EFFICIENT REUSE OF SOLUTION PATTERNS FOR
SELF-OPTIMIZING SYSTEMS

343



cal or electrical engineering we investigate functions
of self-optimization such as to plan driving-profile, to
cooperate with other systems, and to optimize behav-
ior. Active patterns for self-optimization (APSO) re-
alize those functions (Figure 2).

Structure
Participating system elements and 

their relations

Functions
Function hierarchy, which can be 

implemented by the APSO

Methods
Methods and algorithms used to 

implement the behavior

Methods
Methods and algorithms used to 

implement the behavior

Application Scenario
Applications where APSO

Application Scenario
Applications where APSO

Methods
Methods used to realize the specified 

behavior

Behavior
Specification of the Self-Optimizing 

Process by activities and state transitions

A

Active Pattern for 
Self-Optimization 

APSOPrinciple Concept
Generally understandable description 

of an APSO

Application Scenario
Applications where APSO were applied 

effectually 

starting point endpointStatorausfall

Energy management

To analyze 
the situation

To determine 
the goals

To adapt the 
behavior

To realize 
s.o.

NF-System

∆v
TA

Pos.

Neuro-Fuzzy (NF) method

determine 
objectives

situation 
analyisis

adaption of 
behavior

E1
S1

S2

S3

E2

planner

analyzer

monitoring actuators

sensors

agents environ-
ment

Hybrid planning tree

a1
a2

a2´

a3´ a4´
a5´

a5´´

a3 a4

Figure 2: Aspects of an Active Pattern for Self-
Optimization.

The overall structure and specification of an APSO
is described in various aspects in order to cover a
full self-optimization process and to facilitate the de-
velopers by finding the APSO, that is appropriate to
the task. The aspect functions gives an overview of
the functions, which can be realized. Therefore the
functions are classified into the three steps of self-
optimization. The principle concept gives an intu-
itive view on what the APSO can perform. The struc-
ture is a generic specification of the mandatory el-
ements and their relations. Within the aspect be-
havior, activities of the elements and resulting state
transitions are described. The aspect methods lists
all possible methods, which can be used for the re-
spective functions. Examples of methods are state-
space search, neuro-fuzzy-systems or multiobjective
optimization. The successful application of an APSO
is documented in the aspect application scenario. This
helps the user to understand how this pattern can be
implemented.

4 DOMAIN SPECIFIC
LANGUAGES

The basic idea of solution patterns is the reuse of pre-
viously gathered design experiences. Thus, some kind
of repository is required where the solution patterns or
information about them can be stored and retrieved.
Figure 3 illustrates this basic idea: A knowledge
provider adds some information (knowledge docu-
ment) to the repository. In case of APSO such a knowl-

edge document can be any of the six aspects of the
APSO or some comments or additional information
about them. Especially new application scenarios and
methods are likely to be added frequently to the repos-
itory.

Knowledge Provider Knowledge UserPattern Repository

Domain 
A

Domain 
BA

B
CKnowledge

Document QueryB Q y

Analyze
and Utilize

Figure 3: Basic Idea of Information Reuse by Solution Pat-
terns.

On the other side, some knowledge user ex-
plores the repository and analyzes and (if possi-
ble) reuses the experiences provided in the APSO.
The aspect functions offers the knowledge user a
highly structured way to explore the repository. If
the designer (the knowledge user) identified self-
optimization functions required in his product, he can
simply filter out irrelevant patterns. A pattern is ir-
relevant if it supports none of the required functions.
An approach for a methodology to identify required
functions is described in (Gausemeier et al., 2008a).

On the other hand, the designer’s ability to create
an innovation, e.g. a product with new functionality
or performance level, can be supported if he is able
to identify patterns or application scenarios which
exhibit some kind of analogy to his current design
problem. The most efficient and unrestrained method
to explore the repository for analogies is a fulltext
search. It enables the knowledge user to search for
words and phrases which possible indicate possible
analogy. But here arises a problem, which is also
illustrated in Figure 3: If the knowledge provider is
from a domain A while a prospective knowledge user
is from domain B, it is doubtful that the knowledge
user is able to formulate a search query that identifies
the relevant solution pattern or application scenario.
Even if the knowledge user is able to identify the rel-
evant information, he may not be able to understand
it, because it is formulated in the terminology of do-
main A.

Due to the domain-spanning nature of the devel-
opment process of self-optimizing mechatronic sys-
tems such hurdles and gaps in the attempt to reuse de-
sign experiences often occur in this application con-
text. Thus, an information system that implements the
pattern repository must support two features: domain-
spanning search and facilitating the comprehensibility
of information from foreign domains.

KEOD 2009 - International Conference on Knowledge Engineering and Ontology Development

344



5 SOLUTION APPROACH

Building an information system that implements a
repository for active patterns for self-optimization
that supports the two features above is not trivial.
Classical engineering pattern are usually provided in
static catalogues. Static refers to the fact, that the
user of a (maybe electronic) catalogue cannot add or
modify information. These catalogues work well for
longtime established solution patterns with general-
ized applications examples. They will not work in
an entirely new or multidisciplinary domain, which
posses a high degree of innovation. Such a dynamic
linked domain calls for dynamic methods and tools
to manage and link the experiences, knowledge and
success stories. Collaboration between the experts
working on self-optimization is crucial. Especially
due to the domain-spanning nature of self-optimizing
mechatronics it will not be possible to formalize and
generalize all required knowledge into a static cata-
logue.

During the last years a new kind of software was
established: social software (Tepper, 2003). This kind
of software enables user to collaboratively provide
information and information classification. Wikis,
blogs and folksonomies are important keywords in
this area. In our opinion, this kind of software is most
promising to build an environment which enables ef-
ficient reuse of design experiences and knowledge.
Many successful examples from knowledge extensive
application domains like health (Boulos and Wheel-
ert, 2007) or academia (Bryant, 2006) are known.

McAffee (MacAffee, 2006) identified six core
components of social software: search, links, author-
ing, tagging extension and signals. The next section
will introduce our prototype information system or
repository and will subsequently explain how social
software technology can be used to amplify the use of
solutions patterns in the context of self-optimization.

5.1 The Active Pattern Knowledge Base

Once a self-optimization process has been specified
and implemented successfully, the information needs
to be documented in order to enable the reuse in dif-
ferent applications. This is necessary not only if the
developer could not refer to an existing APSO (in this
case a new APSO has to be described), but also if an
APSO was implemented (in that case at least a new ap-
plication scenario has to be described). Apparently it
is necessary to use a database, which stores the infor-
mation in such a manner, that developers are able to
recognize an appropriate APSO. Therefore we devel-
oped an ergonomic knowledge base for the systematic

management of APSO, called Active Pattern Knowl-
edge Base (APKB). The graphical user interface of
the APKB is illustrated in Figure 4.

Figure 4: GUI of the Active Pattern Knowledge Base.

The Active Pattern Knowledge Base links all the
aspects of an active pattern to the respective partial
models, which are specified in Microsoft Visio. How-
ever, the user can see a preview of the partial model.
Furthermore, information regarding the various meth-
ods is stored directly in the knowledge base. Both,
the active pattern and the methods are stored as a list
to enable a quick access. To find an appropriate ac-
tive pattern, a fulltext search is available, which looks
for matches between the search word and the notions
used in the partial models.

5.2 Social Software Features for
Solution Patterns

In this subsection we explain how the six core com-
penents of social software can be used to support the
knowledge reuse in the design of self-optimizing sys-
tems.

5.2.1 Search

In (Klöpper et al., 2008) we introduced a domain
spanning search process. The domain spanning
search process relies on the definition of domain spe-
cific ontologies. The domain spanning-search process
relies on the definition of domain-specific ontology.
In their application to information systems, ontolo-
gies are regarded as designed artefacts consistent of
a specific shared vocabulary used to describe entities
in the domain, as well as a set of assumptions about
the intended meaning of the term in the vocabulary
(Chandrasekaran et al., 1999).

The domain spanning search is split up into two
phases: the maintenance phase and the search pro-

TOWARDS SOCIAL-SOFTWARE FOR THE EFFICIENT REUSE OF SOLUTION PATTERNS FOR
SELF-OPTIMIZING SYSTEMS

345



cess. During the maintenance phase a number of do-
main ontologies is defined. By translating the search
phrase into other ontologies, active pattern specified
from other domains can be found. Search results are
presented with a percentaged quality. A manual or
tool supported process (information regarding ontol-
ogy matching tools cf. (Noy and Musen, 2002) de-
fines translation dictionaries between the domain on-
tologies. These dictionaries are used to translate the
search query entered by the user into different do-
mains.

5.2.2 Authoring

Wikis are an example of social writing software (Leuf
and Cunningham, 2001). A wiki allows a user to
add new content and to modify existing content.
They are used for sharing knowledge (encyclopaedia-
style wiki) or to run community projects. The wiki-
functionality is very interesting for the active pattern
knowledge base. It would enable the knowledge user
to add comments and thus facilitate the comprehensi-
bility for users from the same domain.

5.2.3 Links

Links created by the user would be very useful in
the active pattern context. For instance, user could
add links to application scenarios which facilitate the
understanding of certain aspects of an active pattern.
Or the implementation of certain behavior by a new
method could be documented just by linking them.

5.2.4 Tagging

Ontological engineering, which is the basis of the do-
main spanning search process is a complex task. It is
hardly possible to grasp an entire domain in the first
try. Especially the extraction of relevant terms from
domain expert is unlikely to be complete in a single
attempt.

Tagging offers an interesting alternative to enable
domain spanning enquiry. Tagging enables the user
to attach simple one-word descriptions. By attaching
these tags, the users categorize the content. The result
is a so called folksonomy which offers an alternative
way to explore the solution pattern in a domain span-
ning fashion.

5.2.5 Extensions

Extensions are algorithms which automate the catego-
rization and pattern matching to certain extend. Ama-
zons recommendations are an excellent example.

Obviously, such automated recommendations
could be very useful in the active pattern knowledge
base. Especially in order to explore application exam-
ples and methods recommendation could be useful. A
recommendation algorithm for the pattern knowledge
base could work on similarity of application scenar-
ios, nouns used in the descriptions or the tags added
by users.

5.2.6 Signals

Signals refer to the user option to register for certain
changes or updates. For instance, a user could regis-
ter for all new application scenarios related to certain
application domain. Thus, signals enable the user to
conveniently track all update and changes relevant for
his every day work.

6 CONCLUSIONS

This contribution introduced self-optimization as a
new powerful paradigm for mechatronic systems. In
addition, it was pointed out that the design of self-
optimizing systems is a challenge, since various do-
mains are participating in.

An important aspect of the development of tech-
nical systems is the use/reuse of existing solution pat-
tern. Thus, we introduced active pattern for self-
optimization as a new type of solution pattern to en-
able a reuse of once successfully implemented self-
optimizing concepts. The different domain-specific
languages of the developers result in two challenges
for an active pattern repository: the implementation
of a domain-spanning search and the support of un-
derstanding information from another domain.

To answer these challenges the Active Pattern
Knowledge Base was developed. It supports devel-
opers in searching for active pattern adequate to the
design task. In order to match all the requirements for
the efficient development of self-optimizing mecha-
tronic systems, which are mostly due to their inter-
disciplinary design flow, we propose the use of social
software features. We strongly believe that those fea-
tures, in the way we presented them, will improve the
collaborative work between developers from different
domains effectively.

ACKNOWLEDGEMENTS

This contribution was developed and published in
the course of the Collaborative Research Centre 614

KEOD 2009 - International Conference on Knowledge Engineering and Ontology Development

346



”Self-Optimizing Concepts and Structures in Me-
chanical Engineering” funded by the German Re-
search Foundation (DFG) under grant number SFB
614. One author is supported by the International
Graduate School of Dynamic Intelligent Systems,
which is state-aided by the Ministry of Innovation,
Science, Research and Technology of the federal state
North Rhine-Westphalia, Germany.

REFERENCES

Alexander, C., Ishikawa., S., Silverstein., M., Jacobson.,
M., Fiksdahl-King., I., and Angel, A. (1977). A Pat-
tern Language. Oxford University Press, New York.

Boulos, M. and Wheelert, S. (2007). The emerging web
2.0 social software: an enabling suite of sociable tech-
nologies in health and health care education. Health
Information and Libraries Journal, 24:2–23.

Bryant, T. (2006). Social software in academia. Educause
Quaterly, 2006(2):61–63.

Chandrasekaran, B., Josephson, J., and Benjamins, V.
(1999). What are ontologies, and why do we need
them? IEEE Intelligent Systems, 14(1):20–26.

Gausemeier, J., Dumitrescu, R., and Podlogar, H. (2008a).
Implementing cognitive functions with active patterns
in self-optimizing systems. In Proceedings of 3rd Asia
International Symposium on Mechatronics 2008.

Gausemeier, J., Frank., U., and Schmidt, A. (2005). Active
patterns of self-optimization as a means for the design
of intelligent systems. In Proceedings of the 15th In-
ternational CIRP Design Seminar 2005.

Gausemeier, J., Frank, U., and Steffen, D. (2006). Speci-
fiying the principle solution of tomorrows mechanical
engeneering products. In Proceedings of the Design
2006.

Gausemeier, J., Kahl, S., and Pook, S. (2008b). From
mechatronics to self-optimizing systems. In Proceed-
ings of he 7th International Heinz Nixdorf Symposium,
volume 223, pages 3–35. HNI-Verlagsschriftenreihe.

Gausemeier, J., Zimmer, D., U. Frank, B. K., and Schmidt,
A. (2007). Using active patterns for the conceptual de-
sign of self-optimizing systems examplified by an air
gap adjustment system. In Proceedings of 27th ASME
International Computer and Information in Engineer-
ing Conference.

Klöpper, B., Podlogar., H., Witting, K., and Gausemeier,
J. (2008). Domain spanning search for solution pat-
terns for conceptual design of self-optimizing sys-
tems. In Proceedings of the 1st International Work-
shop on Data Modeling in Virtual Engineering.

Leuf, B. and Cunningham, W. (2001). The Wiki Way. Quick
Collaboration on the Web. Addison-Wesley.

Noy, N. and Musen, M. (2002). Evaluating ontology map-
ping tools: Requirements and experience. In Proceed-
ings of the Workshop on Evaluation of Ontology Tools
at EKAW02.

Pahl, G., Beitz., W., Feldhusen, J., and Grote, K.-H. (2007).
Engineering Design A Systematic Approach. Springer
Verlag.

Tepper, M. (2003). The rise of social software. netWorker,
7(3):18–23.

VDI (2004). Vdi- guideline 2206 design methodology
for mechatronic systems. Technical report, Verein
Deutscher Ingenieure (VDI).

TOWARDS SOCIAL-SOFTWARE FOR THE EFFICIENT REUSE OF SOLUTION PATTERNS FOR
SELF-OPTIMIZING SYSTEMS

347


