
INTERCONNECTED TOOL-ASSISTANCE FOR DEVELOPMENT
OF AGENT-ORIENTED SOFTWARE SYSTEMS

Karl-Heinz Krempels, Andriy Panchenko, Janno von Stülpnagel and Christoph Terwelp
Informatik 4, Intelligent Distributed Systems Group, RWTH Aachen University, Aachen, Germany

Keywords: Agent-oriented software engineering, Tool integration, Ontology design, Problem solving method.

Abstract: The development of autonomous software systems requires the cooperation of professionals in multiple do-
mains. This involves experts on the domain of discourse (application domain), knowledge engineers, experts
in problem solving methods (PSM), as well as in the chosen deployment technology (e.g. agent technology,
web services, etc.). Tool assistance for the process of developing an agent-based software systems has a direct
impact on the feasibility of the planned system as well as on the acceptance of agent technology by software
developers. In this paper we discuss a general approach for the process of developing agent-based software
and the lack of existing tools that support the entire development process. Thereafter we describe our improve-
ment of the development process realized by interconnected tools for ontology and PSM development, as well
as as an improvement of the intergration of PSMs into a multiagent system. Finally we describe an example
of an enhanced system deployment with the help of this approach.

1 INTRODUCTION

Developing agent-based software systems requires a
deep analysis of the problem in order to choose a suit-
ability software engineering method under the con-
crete circumstances. Agent-based solutions should
be preferred mainly in cases where the application
has obvious advantages in comparison to other ap-
proaches. The Agent Technology (AT) meets many
requirements of problems in dynamic environments
that require a distributed solution with autonomous
components.

The use of AT in a distributed system is favored
by FIPA1-compliant (FIPA, 2009) Multiagent Sys-
tems (MAS). The MAS acts as middleware, provid-
ing the abstraction for agents from the underlying
operating system and facilitating the communication
through the abstract Agent Communication Channel
(ACC) interface in order to allow transparent use of
services and interaction with other agents. Agents
can be physically distributed and can work parallel
on suitable problems.

The application of AT in a dynamic environment
requires that agents continuously adapt to changes in

1Foundation for Intelligent Physical Agents

their environment. This is realized by means of adap-
tivity and learning aptitude of autonomous agents.
However, it should be noted that these features are ex-
plicitly realized by developers as they are not present
in agents per se.

The development of software systems with help
of agent technology is a process consisting of phases
ranging from analyzing the domain, through design-
ing and implementing specific ontologies and PSMs,
up to implementing the agent. The deployment
method can be based either on one specific tool facil-
itating all these phases or on suitable tools for facili-
tating single phases of the process (Krempels, 2008).
The later requires usage of completely independent
tools which are neither complementary nor interoper-
able.

The advantage of the former approach is the ho-
mogeneity of tool assistance through the whole de-
velopment process. This facilitates consistent repre-
sentation and usability of the model and the outcomes
of the deployment phases. A disadvantage is a mostly
longsome skill adaption training for highly complex
tools. The advantage of the latter approach (using
the generic development method) is the possibility of
using well-known, established tools that are usually
known to the developers and very well suited for sin-

308
Krempels K., Panchenko A., von Stülpnagel J. and Terwelp C. (2009).
INTERCONNECTED TOOL-ASSISTANCE FOR DEVELOPMENT OF AGENT-ORIENTED SOFTWARE SYSTEMS.
In Proceedings of the International Conference on Knowledge Engineering and Ontology Development, pages 308-314
DOI: 10.5220/0002329903080314
Copyright c© SciTePress

gle phases.
The lack of interfaces for exchanging data and

outcomes among the different phases, however,
causes problems with its applicability. The first chal-
lenge developers are faced with is the transformation
of data representation between the different phases.
Due to the fact that different, often incompatible mod-
els and knowledge representation formats are used, it
is required to transform the data while losing as lit-
tle information as possible. Usually the developers
end up with an iterative process of analysis, modeling
and implementing the problem scenario with the help
of different tools until the desired result is obtained
(Krempels et al., 2003).

In this paper we discuss a general approach for
an agent-based software development process and the
lack of tools supporting the entire development pro-
cess. Thereafter, we focus on our contribution to the
development process assistance in the form of tools
for linking ontology to the development of problem-
solving methods, as well as an integration of the PSM
into a MAS. Finally, we provide a proof for the con-
cept implementation following our approach (Krem-
pels and Panchenko, 2007) (Kirn et al., 2003) (Krem-
pels and Panchenko, 2006). This is in fact the devel-
opment of a planning system with the help of AT.

2 GENERIC TOOLS’
ASSISTANCE

There exists a variety of application domains for soft-
ware systems. Different application domains, how-
ever, raise quite diverse requirements on the model
representation. This leads to the availability of sev-
eral domain-specific modeling tools that make use of
different representation languages. Therewith, the ex-
port of a model in a form that is suitable for process-
ing it in another tool is often very problematic. Agent-
based software development usually consists of four
phases (Krempels, 2008): domain analysis, ontology
design, PSM implementation, as well as integration
into the implementation of the agent or agent society.
In the following we discuss these phases as well as
current assistance of the modeling process in detail.

2.1 Domain Analysis

The goal on this level is to provide a domain or task
description in form of a model. The design of such a
model is based either on an expert interview, process
flow analysis, or statistical analysis. Usually domain-
specific modeling tools are applied in order to facil-
itate the process. In domain modeling one of the

most acceptable and widely popular tools are ARIS-
Toolset2 and Microsoft Visio3. The former one sup-
ports modeling, optimization as well as simulation of
processes and provides a possibility to adapt an opti-
mized process for the real application. The modeling
language in use is called Event-driven Process Chain
(EPC). It provides a possibility to export/import mod-
eling data to/from the Unified Modeling Language
(UML). The outcome of the modeling is a process
model that inherits background information. Visio is
a simple modeling tool that provides no support for
analyzing the resulting models by any means. Be-
sides above mentioned modeling languages EPC and
UML, also additional formats can be used. The latter,
however, provides only a graphical layer without any
semantic consideration. Visio is mostly used for fast
deployment of less complex models. The outcome is
a basic graphical representation of the model. The
domain modeling is depicted in Fig. 1 in the first
column.

2.2 Ontology Design

The goal of the second step in the design process is to
develop an ontology. An ontology is an explicit spec-
ification of a conceptualization (Becker et al., 2003a).
It offers the ability to share and reuse knowledge
about a common universe of discourse (Kirn et al.,
2003). The design and deployment of ontologies is
based on the process models from the domain level.
There exists a number of tools that support the ontol-
ogy design process, e.g. Protégé4, OilEd5, WebOnto6.
The most suitable and widely used tool in MAS envi-
ronment is Protégé. It supports a frame-based ontol-
ogy design and it is possible to create instances from
the deployed concepts in order to feed them with the
acquired domain knowledge.

For this purposes it is possible to make use of
automatically generated graphical forms that can be
adapted to the user’s needs in order to simplify knowl-
edge acquirement. The base functionality of Protégé
may be extended with the help of dynamically load-
able libraries (plugins). At the moment there exist
plugins with interfaces to databases (e.g. through the
Java Database Connectivity (JDBC) to SQL), visu-
alization tools (e.g. in UML), expert systems (e.g.
C Language Integrated Production System (CLIPS))
as well as for an export of ontologies into differ-

2IDS Scheer GmbH – http://www.ids-scheer.de/
3Microsoft Inc. – http://www.microsoft.com/
4The Protégé Ontology Editor and Knowledge Acquisi-

tion System – http://protege.stanford.edu/
5OilEd – http://oiled.man.ac.uk/
6WebOnto – http://kmi.open.ac.uk/projects/webonto/

INTERCONNECTED TOOL-ASSISTANCE FOR DEVELOPMENT OF AGENT-ORIENTED SOFTWARE SYSTEMS

309

domain

modeling

tool

domain

description

domain / task

ontology,

PSM

PSM

design & impl.

tool

ontology

design & impl.

tool

domain / task

ontology
MAS

MAS

framework

required

expert

required

tool support

result

domain

level

knowledge

level

PSM

level

MAS

level

domain

expert

AI

expert
PSM

expert

software

engineer

Figure 1: Tools’ Assistance in the Development Process.

ent knowledge-representation formats (e.g. RDF and
XML) or as Java Beans (BeanGenerator, 2007). The
outcome at this stage is an ontology in one of the
above mentioned representation formats and, if the
knowledge acquirement pursued, a knowledge base
with instances of the modeled concepts. These can be
directly used with the ontology described by the sce-
nario for the analysis of PSMs. The ontology model-
ing is depicted in Fig. 1 in the second column.

2.3 PSM Implementation

Problem solving methods describe a solving proce-
dure for a concrete task. This is usually a generic
procedure. Tool assistance for the PSM deployment
depends on the degree of formalization as well as on
the chosen implementation language. Examples are:
rule-based systems (RBS), declarative and procedu-
ral languages. The latter, however, do not provide
support for ontologies. Especially because of the au-
tonomous adaptive behavior which is demanded from
agents, it is very challenging to use a RBS on this
stage. The implementation can be supported by mak-
ing use of the PSM libraries that include several solu-
tion methodologies for the standard class of known
problems, e.g. timetabling, ressource coordination,
scheduling, planning, etc. PSMs are usually devel-
oped by experts on algorithms and artificial intelli-
gence (AI). The process of PSM development is de-
picted in Figure 1 in the third column.

2.4 Agent Development

On this level the domain description in the form of an
ontology together with the problem-solving methods
is integrated into an agent. Additionally, the interac-
tion capabilities have to be implemented in this phase
in order to be able to communicate with other agents
and act autonomously. There exists a variety of tools
for the deployment of FIPA-compliant MAS. Many
of them partly provide own development methods for
agents and agent societies. At this stage the choice of
a suitable platform for agent-based software develop-
ment has to be made. One of the most popular FIPA-
compliant MAS is JADE (JADE, 2009).
The process of software development as described
in this section is a typical and widely adopted way
of agent-based software engineering. It is supported
by generic, well established tools. This process,
however, is characterized by a conceptual disadvan-
tage because of the problematic usability of outcomes
from the individual phases of the process.

3 TOWARDS INTERCONNECTED
DEVELOPMENT

The poor interconnectivity between the phases in the
state-of-the-art development process described above
causes problems in data exchange between them. This
leads to information loss during the transformation of
models from one phase into the next one. The prob-
lem can be solved either by integrating established

KEOD 2009 - International Conference on Knowledge Engineering and Ontology Development

310

domain

modeling

tool

domain

description

domain / task

ontology,

PSM

PSM

design & impl.

tool

ontology

design & impl.

tool

domain / task

ontology
MAS

MAS

framework

required

expert

required

tool support

result

domain

level

knowledge

level

PSM

level

MAS

level

domain

expert

AI

expert
PSM

expert

software

engineer

Figure 2: Integrated Tools’ Assistance in Development Process.

tools that facilitate single phases or by developing a
single tool that would support all the phases of the
process. We follow the first approach: we propose
and implement interfaces that support integration of
the results from one tool into the one used in the sub-
sequent phase. Therewith the information flow on the
tool level follows the path as depicted in Figure 2.

To this end we propose an improved assistance
for the development of agent-oriented software sys-
tems which is twofold. The first improvement inter-
links ontology with the development of problem solv-
ing methods (JamochaAgent Tab). The second one
is the integration of PSM into MAS (JamocaAgent).
There are two possible approaches to consider here.
The first one is to modify the commonly used tools to
support the same data formats. The second one is to
develop an interconnection component that supports
conversion between different formats. We followed
the second approach.

3.1 JamochaAgent Tab

Jamocha (Jamocha Community, 2009) is a rule engine
and scripting environment written entirely in Java.
Jamocha was originally inspired by CLIPS expert sys-
tem shell, but has grown into a complete and distinct
Java-influenced environment of its own. Written in
the Java programming language, Jamocha offers easy
integration into other Java-based software. Because
most of the MAS are Java-based, Jamocha was pre-
ferred over other rule engines written in other lan-
guages.

In order to facilitate the export of ontologies from
Protégé into a template-based manner which is un-
derstood by Jamocha, theJamochaAgent Tabwas de-
veloped. It is realized as a plug-in for Protégé. The
JamochaAgent Tabexports ontologies in the follow-
ing forms:

• templates with restricting rules;

• concrete instances;

• definitions of agent actions.

Templates are representations of class concepts from
Protégé in the CLIPS language. Abstract classes are
not exported as templates since they can not have di-
rect instances. However, each concrete subclass in-
herits all slots of its parents. There is no possibility
to model class hierarchy in Jamocha directly. That
is why it is modeled artificially, adding a new multi-
slot is-a to each subclass, where all parents are listed.
Doing so, it is not always possible to reconstruct the
right classes hierarchy (since the ancestor slot is not
ordered), especially when abstract classes are used.
The latter, however, is not a problem for a RBS since
the main use of hierarchy here is to check whether one
fact is an instance of another one. Furthermore, rules
are used in order to check existing slot constraints
(like min- max values, symbols, etc.). If an inserted
fact does not follow the constraints, the corresponding
rule will fire and the fact causing the violation will be
retracted. An example of thedateclass mapping into
Jamocha is shown below:

(deftemplate date
(slot day (type INTEGER))

INTERCONNECTED TOOL-ASSISTANCE FOR DEVELOPMENT OF AGENT-ORIENTED SOFTWARE SYSTEMS

311

(slot month (type INTEGER))
(slot year (type INTEGER))
(multislot is-a
(default (create$ TemporalConcept))))

It can be seen, thatdate is a subclass of aTemporal
Concept. For the purpose of having a possibility to
extract names of all the parent classes by a child name
and vice versa, there is also another kind of facts gen-
erated:

(assert (isA
(parent Preference)
(child CoworkerPreference))

)

Further, one of the rules used in order to check the
maximum day value of the date is captured. When-
ever a fact of typedatewith a slot day is added or
changed and the value of this slot exceeds 365, the
rule fires. As a result theretract function is called,
which deletes the fact that violates the constraint:

(defrule constraint.date.day.max
?fact <- (date (day ?slotvalue))
(test (> ?slotvalue 365))
=>
(retract ?fact)

)

An instance of the templatedatelooks like this:

(assert
(date

(day 15)
(month 3)
(year 2004)

))

AgentActionis a special class, which is used for
communication purposes with other FIPA-compliant
agents. Requesting another agent to perform some
action requires the specification of an action expres-
sion that consists of an agent id (the id of the agent
requested to perform the action) and an instance of
anAgentAction(a formal description of the requested
action, e.g. a function name). Since there is no equiv-
alent language element available in the CLIPS lan-
guage theAgentActionis mapped to a function call in
CLIPS. So, whenever an agent is requested to perform
an action, the corresponding CLIPS function with the
same name as theAgentActionKB is applied to the
the agent’s KB.

All the subclasses of theAgentActionconcept are
mapped into those functions. An example ofAgen-
tAction addTaskthat simply adds a received task to
the fact-base is captured below:

(deftemplate addTask
(slot aTask)

(type Task)
)

(deffunction addTask (?jat_arg_fact)
(bind ?aTask
(fact-slot-value ?jat_arg_fact aTask))
...
(retract ?jat_arg_fact)

)

3.2 JamochaAgent

One of the fundamental reasons for using agents is
making use of their ability to reason, communicate,
and act autonomously. Communication is facilitated
by using a MAS, such as JADE – a FIPA-compliant
multi-agent system. The ability to reason and act ra-
tionally is usually programmed in an expert system,
which itself is based on a RBS.

JamochaAgent(Krempels et al., 2009) is a JADE-
agent that has an embedded Jamocha engine and a
user-friendly interface, allowing it to inspect and to
modify the knowledge base, facts, rules, and func-
tions at runtime. The architecture of theJamochaA-
gent is depicted in Fig. 3. This agent inherits
FIPA-compliant communication capabilities from the
agent component provided by the JADE framework
and serves therein only as a communication inter-
face to other agents. The interaction among agents
consisting of consecutive speech acts is described by
FIPA interaction protocols which are mapped onto the
RBS to allow for interaction protocol adaption at run-
time. Incoming speech acts are consumed and out-
going speech acts are produced by the RBS in rule-
based manner.JamochaAgentagent provides support
of most commonly used FIPA interaction protocols
(Request, Query, Contract Net) withinJamocha.

4 APPLICATION EXAMPLE

We have validated our approach while developing
a scheduling system for medical treatments. Plan-
ning medical treatments and scheduling surgical op-
erations are substantial elements of the hospital man-
agement. Operations theater scheduling deals with
assigning limited hospital resources (rooms, doctors,
nurses, etc.) to jobs (patient treatments, surgery, etc.)
over time in order to perform tasks according to their
needs and priorities, and to optimize the usage of hos-
pital resources (Krempels and Panchenko, 2006).

The analyzed application scenario was modeled
in Protégé. The outcome is the task which formally
defines objects in the scenario and relations among

KEOD 2009 - International Conference on Knowledge Engineering and Ontology Development

312

rule-based agent

outgoing
ACL-messages

adaptor
FIPA-SL – CLIPS

incoming
ACL-messages

FIPA agent

adaptor
CLIPS – FIPA-SL

speech act

production

speech act

consumption

rule-based system

user interface

Figure 3:JamochaAgentArchitecture.

them. The domain ontology OntHoS (Becker et al.,
2003b) was used as a reference to develop the own
task ontology. The concepts together with their in-
stances are exported as facts and rules into the RBS
Jamocha. The RBS is used as an environment to im-
plement PSM in. These are scheduling heuristics and
conflict solving mechanisms.

With the help of theJamochaAgentthe developed
heuristics are applied into the MAS JADE, which
is used as a middleware. Further, all the agents
(SchedulingAgentandWardAgent) are started and the
scheduling process is initiated by theSchedulerAgent.
The user interfaces for interacting with the planner as
well as the generated subplans (based on ontological
constraints) are provided by this agent. New schedul-
ing tasks are added to the system by a ward’s repre-
sentatives with the help ofWardAgent’s.

The deployed SchedulingAgentis based on
JamochaAgentbecause of its suitable integration into
the optimized development process. This means that
the PSM and the behavior of theJamochaAgentare
written in a higher programming language which does
not require source code compilation. Task ontologies
and PSM are loaded at runtime as well as the new
fact base reflecting a possible change in the consid-
ered scenario.

5 CONCLUSIONS

The process of developing agent-based software suf-
fers from the lack of tools supporting the entire de-
velopment process. Thus, different steps of the pro-
cess are pursued by completely different tools having
incompatible model descriptions and knowledge rep-
resentation formats. This results in a complicated de-
ployment process which is done in an iterative way.

We described an improvement of the development
process realized by interconnected tools for ontology
and PSM development, as well as as an improvement
of the intergration of PSMs into a MAS.Finally we
provided an example of an enhanced system deploy-
ment with the help of this approach.

Single phases of the development process are pur-
sued, depending on skills, by experts from different
domains. Successful and effective cooperation re-
quires their consensus regarding the concepts and so-
lution methods. However, based on our experience,
this causes greater problems than the partial lack of
tool assistance or the limitations of the available tools.

ACKNOWLEDGEMENTS

This research was funded in part by the DFG Cluster
of Excellence on Ultra-high Speed Information and
Communication (UMIC), German Research Founda-
tion grant DFG EXC 89.

INTERCONNECTED TOOL-ASSISTANCE FOR DEVELOPMENT OF AGENT-ORIENTED SOFTWARE SYSTEMS

313

REFERENCES

BeanGenerator (2007). Beangenerator Plug-in.
http://acklin.nl/beangenerator/.

Becker, M., Heine, C., Herrler, R., and Krempels, K.-H.
(2003a). OntHoS - an Ontology for Hospital Scenar-
ios. In First International Workshop on Agent Appli-
cations in Health Care, Barcelona, Spain.

Becker, M., Heine, C., Herrler, R., and Krempels, K.-H.
(2003b). OntHoS - an Ontology for Hospital Scenar-
ios. First International Workshop on Agent Applica-
tions in Health Care, Barcelona, Spain.

FIPA (2009). FIPA - Foundation for Intelligent Physican
Agents, Home Page. http://www.fipa.org/.

JADE (2009).JADE Home Page. http://jade.cselt.it/.

Jamocha Community (2009). Jamocha Home Page.
http://www.jamocha.org/.

Kirn, S., Heine, C., Herrler, R., and Krempels, K.-H.
(2003). Agent.hospital - agent-based open framework
for clinical applications. InWETICE, pages 36–41.

Krempels, K., Christoph, U., and Wilden, A. (2009).
Jamocha – a Rule-based Programmable Agent. In
Proceedings of the International Conference on
Agents and Artificial Intelligence, Porto, Portugal.

Krempels, K.-H. (2008). Agentenbasierte Ablaufpla-
nung. PhD thesis, RWTH Aachen University, RWTH
Aachen University, Germany.

Krempels, K.-H., Nimis, J., Braubach, L., Pokahr, A., Her-
rler, R., and Scholz, T. (2003). Entwicklung in-
telligenter Multi-Multiagentensysteme - Werkzeugun-
terstützung, Lösungen und offene Fragen. In Dittrich,
K., König, W., Oberweis, A., Rannenberg, K., and
Wahlster, W., editors,Informatik 2003 - 33. Jahresta-
gung der GI, pages 31–46. Gesellschaft für Informatik
e.V., Köllen Druck+Verlag GmbH Bonn.

Krempels, K.-H. and Panchenko, A. (2006). An Approach
for Automated Surgery Scheduling. In Burke, E. and
Rudová, H., editors,PATAT 2006 - Proceedings of The
6th International Conference on the Practice and The-
ory of Automated Timetabling, Brno, Czech Republic.
Masaryk University.

Krempels, K.-H. and Panchenko, A. (2007). KR-driven De-
velopment Process Integration. In Vendetti, J., Hop-
per, T., and Tudorache, T., editors,Proc. of 10th Intl.
Protégé Conference, Budapest, Hungary.

KEOD 2009 - International Conference on Knowledge Engineering and Ontology Development

314

