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Abstract: Neurosolver is a neuromorphic planner and a problem solving system. It was tested on several problem 
solving and planning tasks such as re-arranging blocks and controlling a software-simulated artificial rat 
running in a maze. In these tasks, the Neurosolver created models of the problem as temporal patterns in the 
problem space. These behavioral traces were then used to perform search and generate actions. While 
exploring general problem capabilities of the Neurosolver, it was observed that the traces of the past in the 
problem space can also be used for predicting future behavioral patterns. In this paper, we present an 
analysis of these capabilities in context of the sample data sets made available for the NN5 competition.

1 INTRODUCTION 

The goal of the research that led to the original 
introduction of Neurosolver, as reported in 
(Bieszczad and Pagurek, 1998), was to design a 
neuromorphic device that would be able to solve 
problems in the framework of the state space 
paradigm (Newell and Simon, 1963). In that 
paradigm, the states of  a system are expressed as 
points in an n-dimensional space. Trajectories in 
such spaces formed by state transitions represent 
behavioral patterns of the system. A problem is 
presented in this paradigm as a pair of two state: the 
current state and the desired, or goal, state. A 
solution to the problem is a trajectory between the 
two states in the state space. Fundamentally, we are 
asking how to achieve the goal state of the system 
given its starting state. 

The Neurosolver can solve such problems by 
traversing the recorded trajectories as described in 
section 2. In this paper, we demonstrate how the 
very trajectories can be used for forecasting. 

The original research on Neurosolver modelling 
was inspired by Burnod’s monograph on the 
workings of the human brain (Burnod, 1988). The 
class of systems that employ state spaces to present 
and solve problems has its roots in the early stages 
of AI research that derived many ideas from the 
studies of human information processing; e.g., on 
General Problem Solver (GPS) (Newell and Simon, 
1963). This pioneering work led to very interesting 

problem solving (e.g. SOAR (Laird, Newell, and 
Rosenbloom, 1987)) and planning systems (e.g. 
STRIPS (Nillson, 1980). 

The Neurosolver employs activity spreading 
techniques that have their root in early work on 
semantic networks (e.g., (Collins and Loftus, 1975) 
and (Anderson, 1983)). 

2 NEUROSOLVER 

2.1 Neurosolver as a GPS 

The Neurosolver is a network of interconnected 
nodes. Each node is associated with a state in a 
problem space. In its original application, the 
Neurosolver is presented with a problem by two 
signals: the goal associated with the desired state 
and the sensory signal associated with the current 
state. A sequence of firing nodes that the 
Neurosolver generates represents a trajectory in the 
state space. Therefore, a solution to the given 
problem is a succession of firing nodes starting with 
the current node and ending with the goal node. 
The node used in the Neurosolver is based on a 
biological cortical column (references to the relevant 
neurobiological literature can be found in (Bieszczad 
and Pagurek, 1998)). It consists of two divisions: the 
upper and the lower, as illustrated in Figure 1. The 
upper division is a unit integrating internal signals 
from other upper divisions and from the control 
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 Figure 1: An artificial cortical column. 

center providing the limbic input (i.e., a goal or - 
using more psychological terms - a drive or desire). 
The activity of the upper division is transmitted to 
the lower division where it is subsequently 
integrated with signals from other lower divisions 
and the thalamic input. The upper divisions 
constitute a network of units that propagate search 
activity from the goal, while the lower divisions 
constitute a network of threshold units that integrate 
search and sensory signals, and generate sequences 
of firing nodes. The output of the lower division is 
the output of the whole node. An inhibition 
mechanism prevents cycles and similar chaotic 
behavior. Simply, a node stays desensitized for a 
certain time after firing. 

2.2 Neurosolver as a Forecaster 

Normally, in the goal-oriented problem solving the 
flow of activity from the upper to the lower division 
is limited. This mode of operation can be described 
as exploration of possibilities and looking for 
environmental cues. The cues come as thalamic 
input from the sensory apparatus. Often though, we 
operate without far reaching goals forcing our brains 
to make predictions based on the knowledge of the 
past and the currently observed facts. In the 
Neurosolver, similar phenomenon may be observed 
if the activity in the upper division is gradually 
increased, and at the same time is allowed to be 
transmitted in its entirety from the upper to the lower 
division. Assuming that that activity is allowed to 
grow above the firing threshold level hosted by the 
lower division, a node may fire without extra signals 
from the sensors, or even in absence of the thalamic 
input whatsoever. In this paper, we explore this 
capability to predict future outcomes based on the 
statistical model built in the Neurosolver. 
 

3 DATA SETS 

I presented the ideas on using the Neurosolver  in 
the forecasting capacity at ISF‘2008 (Bieszczad, 
2008). I was encouraged to test the ideas on the data 
set that was used for the NNx competition. The last 
published data set is for NN5 that was held in 2008. 
For this work, I assembled a research group that is 
acknowledged in the later section this paper. 

The NN5 data set is actually a collection of 
records of daily witdrawals from a number of ATM 
machines in England over a two-year period. A set 
from an individual machine is divided into a larger 
training part collected over two years and smaller 
test part collected over two months. Each set is a 
time series that represents a temporal usage pattern 
of that particular machine. That temporal nature of 
the patterns was what caught our attention in the 
context of the Neurosolver. 

We started with the use the data in their raw 
format by assigning each datum to a Neurosolver 
node. In that sense, each datum is a state of the 
system in the progression of states as specified by 
the given time series. The Neurosolver therefore 
learns the trajectory that corresponds to each training 
time series, and over time generalizes the trajectories 
to represent all time series by it adaptation rules. 

Due to the large number of data points and the 
proximity of some of them, we also tried to cluster 
the data with several cluster sizes. For that, we  
approximated the k-neighbor algorithm by one that 
is very straighforward in one dimension. Simply, we 
decided on an arbitrary number of clusters, and then 
recursively dividing the data set in two allocating the 
number of clusters for each of the two division 
according to the data density. An example of this 
process is shown in Figure 2. 

A simpler approach to clustering is to divide the 
domain into a number of equal segments and then 
create clusters based on the data membership in the 
clusters. However, the problem with this approach is 
that is does not take into consideration data 
distribution. Therfore, some clusters might be empty, 
while others are overcrowded. 

After the custering stage, we assigned the centers 
of the clusters to the Neurosolver’s nodes. 
Subsequently, for each data point we activated the 
node that represented the cluster to which the point 
was classified. The predicted sequences were built 
also out of the numbers that corresponded to the 
centers of the clusters represented by the firing 
nodes. 
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Figure 2: An example of data clustering. 

4 NEUROSOLVER LEARNING 

4.1 Learning Rules 

We used two types of learning in our experiments. 
The first follows the traditional incremental learning 
through gradient ascent (a.k.a  gradient descent and 
hill-climbing) approaches (e.g., Russell, 2003) that 
are taken by many researchers in the neural 
networks community. The second, follows the 
stochastic scheme that was used in the original 
Neurosolver. 

4.1.1 Incremental Learning 

The Neurosolver learns by translating teaching 
samples representing state transitions into sequences 
of firing nodes corresponding to subsequent states in 
the samples. For each state transition, two 
connections are strengthened: one, in the direction of 
the transition, between the lower divisions of the two 
nodes, and another, in the opposite direction, 
between the upper divisions as shown in Figure 3. 
In the incremental learning, we simply add a small 
value to the connection strength. 

4.1.2 Statistical Learning 

In the second approach, the strength of all inter-
nodal connections is computed as a function of two 
probabilities: the probability that a firing source 
node will generate an action potential in this 
particular connection and the probability that the 
target node will fire upon receiving an action 
potential from the connection. 

To compute the probabilities, each division and 
each connection collects statistics as shown in 
Figure 4. The number of transmissions of an action 
potential Tout is recorded for each connection. The 
 

 
 

 
Figure 3: Neurosolver learning rule. 

 
Figure 4: Statistics collected for computation of the 
connection strength between nodes. 

total number of cases when a division positively 
influenced other nodes Sout is collected for each 
division. A positive influence means that an action 
potential sent from a division of a firing node to 
another node caused that node to fire in the next 
cycle. In addition, we also collect statistical data that 
relate to incoming signals. Tin is the number of times 
when an action potential transmitted over the 
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Figure 5: The Neurosolver learn temporal patterns. 

 connection contributed to the firing of the target 
node and is collected for each connection. Sin, 
collected for each division, is the total number of 
times when any node positively influenced the node. 
With such statistical data, we can calculate the 
probability that an incoming action potential will 
indeed cause the target node to fire. The final 
formula that is used for computing the strength of a 
connection (shown in Equation 1) is the likelihood 
that a firing source node will induce an action 
potential in the outgoing connection, multiplied by 
the likelihood that the target node will fire due to an 
incoming signal from the connection: 
 

P = Pout Pin = (Tout/Sout) (Tin/ Sin) (1)

4.2 Learning Sequences 

As we already indicated, in the goal-oriented 
problem solving mode the function of the network of 
upper divisions is to spread the search activity along 
upper-to-upper connections. In the forecasting mode, 
this network can be used to provide some guidance 
in forecasting as we indicate in the notes on the 
future directions of research. However, in the 
experiments that we report in this paper, the network 
of the upper divisions is ignored. 

The purpose of the network composed of lower 
divisions and their connections is to generate a 
sequence of output signals from firing nodes (along 
the connections shown in Figure 5). In the goal-
oriented search mode, such a sequence corresponds 
to a path between the current state and the goal state, 
and—as stated before—can be considered a solution 
to the problem. 

In the forecasting mode, the node corresponding 
to the current state is activated through the thalamic 
input and allowed to fire. The activity from the firing 
node is transmitted to the nodes that are connected to 
the firing node through the efferent connections with 
non-zero strengths. Assuming substantial learning 
sample, it is very likely that there is only one 
connection that is strongest, so the node that is 
connected through that connection is the winner of 
the contest for the highest activation level. The 
number that is the center of the cluster 
corresponding to that node is the predicted vale. In 
non-clustering tests, it is the datum that is associated 
with the node. Subsequently, the winning node is 
allowed to fire next, and the process for selecting the 
winner is repeated until no more predictions can be 
made. 

4.3 Implementation Tweaks 

4.3.1 Inhibition 

As indicated earlier, to avoid oscillations, the firing 
node is inhibited for a number of computation 
cycles. The length of the inhibition determines the 
length of cycles that can be prevented. 

4.3.2 Higher-order Connections 

Our initial implementation had first degree 
connections that link only to a direct predecessor of 
a node. We later enhanced our models with second 
degree connections, which provided a link to more 
distant predecessors in the Neurosolver’s firing 
history. Adding connection degrees allows us to take 
into consideration a number of previously fired
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Figure 6: Probabilistic vs. Gradient Ascent. 

 nodes when forecasting the next node to fire. In that 
respect, this approach is similar to Markov Models 
(Markov, 2006). 

5 EXPERIMENTS 

5.1 Quality Measure 

To measure the quality of our predictions and to 
compare them with the benchmarks and submissions 
to the NN5 competition we used Symmetric Mean 
Absolute Percent Error (SMAPE) that was 
recommended by the NN5 organizers. The SMAPE 
calculates the symmetric absolute error in percent 
between the actuals X and the forecast F across all 
observations t of the test set of size n for each time 
series s with the following formula: 
 

(2)

5.2 Results 

We generated a substantial body of results running 
the NN5 data sets with numerous incarnations of the 

Neurosolver. We processed the data in the raw form, 
as well as pre-processed by clustering techniques as 
described earlier. We also tested the Nuerosolver 
with the two learning algorithm: gradient ascent and 
stochastic. 

In the following sections, we present an analysis 
of the Neurosolver’s performance on some selected 
data. In the analysis, we compare several models and 
approaches that we used, and relate the results to the 
test data provided with the NN5 data sets. We 
conclude with a comparison with the benchmark 
predictions generated by non-neural methods 
provided by the organisers of the NN5 competition 
for reference [NN5]. 

5.2.1 Comparing Learning Models 

The graph in Figure 6 illustrates Neurosolver’s 
predictions following presentation of one of the data 
points (4025) from the NN5 data sets. The four lines 
in the graph represent: 

� the actual data provided by the NN5 
competition (drawn in blue), 

� our forecasted values for the stochastic model 
(in red), and 

� forecasting made with two hill-climbing 
models (in green and purple). 
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Figure 7: Clustered vs. Unclustered. 

The data in the table below the graph show the 
standard deviation between our results and the test 
data from the NN5 data sets. 

The graph in Figure 6, illustrates how the 
Neurosolver behaves when the data is not shaped by  
clustering algorithms. We used a cluster size of one 
in the shown clustered gradient ascent, so a node is 
used per each value, making it virtually the same as 
an un-clustered model. Therefore, the Neurosolver 
generated the same forecasts for both the clustered 
and un-clustered gradient ascent models. The lines 
corresponding to the two gradient ascent models—
drawn in purple and green—are collapsed and 
displayed as a single purple line. 

From the graph and the standard deviation 
between the forecasted values and the NN5 data 
(given in the table below the graph), we observe that 
the probabilistic model provides forecasts that are 
closer to the actual data (as provided with the NN5 
sets) in terms of the standard deviation from the 
measured data. 

5.2.2 The Clustering Factor 

The graph in Figure 7 illustrates how the clustering 
algorithms affect the forecasting. The value used as 
the input to our forecaster is the same as before 

(4025). The cluster-by-range gradient ascent model 
divides the input into 50 clusters. The k-means 
clustering algorithm divides the size of the input by 
50, giving us 173 clusters for this particular data set. 
The significance of the clustering process can be 
seen in the change in our standard deviation for the 
gradient ascent model. The forecasted values from 
the gradient ascent models are now much closer to 
the actual data provided with the NN5 data sets. 

The clustering algorithms provide an overall 
improvement in our results; however, we have 
encountered some cases in which the clustering 
algorithm increased our deviation from the actual 
values. 

5.2.3 Comparing with the NN5 Submissions 

The NN5 website provides a list of contest 
submissions and benchmark results. They use the 
SMAPE formula to calculate the quality of 
predictions generated by the competing and 
benchmark models. The best predictions that come 
from benchmark models are shown on the right side 
of Figure 8. No competing submission exceeded the 
performance of the benchmark models. 

The left side of Figure 8 shows the performance 
of several models of the Neurosolver.  
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Figure 8: Neurosolver vs. Benchmarks. 

6 CONCLUSIONS 

Currently our results are below the benchmarks on 
the NN5 website. However, we are not that much 
apart. We have found our current findings to be 
promising and plan to amply a number of 
improvements that we believe will improve the 
performance of the Neurosolver significantly.  

We plan to further investigate and compare our 
results with other data sets. We are also looking 
forward toward participating in the future NNx 
competitions. As of this writing, a new competition 
has not been announced. 

We have concluded that a potential source for 
our deviation in forecasted values could be due to 
incomplete data in our learning set. In such cases the 
Neurosolver gets stuck. We will be looking into 
providing some means to boost Neurosolver’s 
activity to address such problems. 

As we indicated, we use node inhibition to solve 
the problem with cycles that can lead to looping. At 
the same time, however, we may prevent generation 
of genuine cycles that may be present in the data. 
We believe that this is the main cause of the 
Neurosolver’s inability to generate predictions at 
some points. We are planning to look into 
developing a mechanism that would accommodate 
generating genuine cycles while preventing endless 
loops. 

The improvement to our predictions after adding 
second order connections was significant; therefore, 

we expect that even higher-degree connections will 
improve the results even further. However, higher-
degree connections are also computationally 
expensive, so we will need to strike a balance  
between the improvement to the prediction 
capabilities and the efficiency of computations. 
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