
GOALS – A TEST-BED FOR ONTOLOGY MATCHING

Paulo Maio and Nuno Silva
GECAD – Knowledge Engineering and Decision Support Group
School of Engineering – Polytechnic of Porto, Porto, Portugal

Keywords: Ontology, Matching, Mapping, Alignment.

Abstract: State-of-the-art ontology matching systems rely on the combination of basic matching techniques but good
results are only achieved when processing particular classes of ontologies. Furthermore, they are quite
restrictive with respect to their internal configuration, as they are committed to a pre-defined architecture
and workflow. Additionally, the skilful selection of matchers and the respective combination and
configuration process is difficult and time consuming. Additionally it is hard to test and evaluate. This paper
presents a test-bed system that eases the creation of new matching systems. It promotes the reusability, the
combination and the configuration of existing matchers, encouraging the development of new matching
algorithms able to fill specific open matching gaps exploiting existing methods and algorithms.

1 INTRODUCTION

Ontologies are artifacts that provide a shared
vocabulary and its meaning about a domain of
interest that can be conveyed between people and
application systems (Berners-Lee, Hendler, &
Lassila, 2001). Because ontologies are targeted and
fitted to describe the structure and the semantics of
information, they play a key role in many
application scenarios, such as the Semantic Web
(Berners-Lee et al., 2001), Knowledge Management
and e-commerce (Fensel, 2001), information
integration (Halevy et al., 2005) and peer-to-peer
systems (Staab & Stuckenschmidt, 2006).

Yet, because different entities adopt different
ontologies for their descriptions, heterogeneity
problems arise between communication partners.
Ontology matching, also known as ontology
mapping, is perceived as an appropriate approach to
overcome this terminological and semantic gap
(Euzenat & Shvaiko, 2007).

Ontology matching is the process whereby an
alignment is established between a source and target
ontology, i.e. a set of correspondences between
semantically related ontology entities (e.g. concepts,
properties, instances) of different but overlapping
ontologies (Euzenat & Shvaiko, 2007). However, the
alignment specification is a time consuming and
knowledge demanding task, whose result is error
prone even when domain experts are part of the

process (Doan, Madhavan, Domingos, & Halevy,
2004).

Despite an impressive number of research
initiatives in the matching field, containing valuable
ideas and techniques, current matching approaches
are (implicitly) restricted to processing particular
classes of ontologies and thus they are unable to
guarantee a predictable quality of results on arbitrary
inputs (Mochol, Jentzsch, & Euzenat, 2006).
Furthermore the current trends in research suggest
solving small parts of “global” problems in the
matching field or fill some open matching gaps
(Fürst & Trichet, 2005). Yet, when implementing a
new matching system, the corresponding algorithm
is typically built from scratch and no attempt to
reuse existing methods is made (Mochol et al.,
2006). Additionally, existing approaches usually act
as a black-box and consequently they are quite
restrictive with respect to their internal
configuration, allowing one to set up some
parameter values only (e.g. thresholds and weights
of constituent matching techniques).

It is our conviction that the combination of
simple matching algorithms into more complex ones
and consequently into more skillful systems is the
correct approach. However, this encompasses a
combination and configuration process of matchers
that is very difficult and time consuming, hard to test
and evaluate.

This paper presents our approach to overcome
these problems by proposing and describing a test-

293
Maio P. and Silva N. (2009).
GOALS – A TEST-BED FOR ONTOLOGY MATCHING.
In Proceedings of the International Conference on Knowledge Engineering and Ontology Development, pages 293-299
DOI: 10.5220/0002309202930299
Copyright c© SciTePress

bed system that eases the creation of new matching
systems, promoting the reusability, the combination
and the configuration of existing matchers, but also
encouraging the development of new matching
algorithms able to fill specific open matching gaps
in cooperation with existing methods.

The rest of this paper is organized as follows: the
next section introduces ontology matching
techniques and the composition process. Section 3
presents our test-bed for ontology matching, which
is complemented in section 4 with an example of
use. Finally, section 5 draws conclusions and
comments on future work.

2 ONTOLOGY MATCHING

Basic matching techniques (referred to as matchers)
are grouped into two distinct groups: (i) those where
focus is at the element-level (e.g. string-based and
language-based methods) and (ii) those that put the
focus at the structure-level (e.g. taxonomy-based and
graph-based methods). Semantic grounded methods
can be focused at element-level (e.g. sameClassAs)
or in the structure-level as S-Match (Giunchiglia,
Shvaiko, & Yatskevich, 2004). Independently of
which algorithm is used, the result is a set of
mapping elements (also referred to as matches or
correspondences), where each match is a 5-tuple: <
id, e, e’, R, n > where id is a unique identifier, e and
e’ are source and target ontology entities
(respectively), R is a relation (e.g. equivalence, more
general) and n is a confidence value, typically in the
[0-1] range.

State-of-the-art ontology matching systems
(Euzenat & Shvaiko, 2007; OAEI'2008, 2008) apply
at least two of these basic matching techniques
yielding different and complementary competencies,
to achieve better results. In the following, we
introduce relevant strategies used by those systems
to combine matchers.

From an architectural perspective, systems
follow two distinct approaches: (i) a sequential
approach, i.e. a matcher computes a set of
correspondences (referred to as similarity matrix)
used to seed the next matcher and so on (the process
includes as many matchers as needed); (ii) a parallel
approach, i.e. each matcher individually computes
one similarity matrix, whose results are aggregated
through a function into one single matrix. It should
be noticed that both approaches can co-exist in the
same system (hybrid architecture).

Several aggregation functions might be used in
the parallel approach. The most common and

popular functions are min, max, linear average and
weighted average (Ji, Haase, & Qi, 2008). However,
weight-based functions have two major drawbacks
with respect to their definition: (i) the weights must
be set up by the user or (ii) they must be learned
through machine learning (ML) methods. Recently,
the ordered weight average (OWA) operator has
been proposed (Ji et al., 2008), which instead of
associating weights to specific similarity measures
(matchers) it suggests weighting the similarity value
according to its (ordered) relative position. That is,
the best match is weighted differently (weight 1)
than the second best match (weight 2) and so on
(weight n).

Besides the adopted architecture, the result of
matching is a large set of correspondences.
Therefore, the satisfactory set of correspondences
that will be part of the resulting alignment remain to
be extracted. This is the role of specialized
extraction methods, which acts on similarity
matrices or on some pre-alignments already
extracted. Methods applying thresholds are seen as
the simplest approach. Several kinds of thresholds
have been identified and are summarized in (Euzenat
& Shvaiko, 2007). Here, the big issue is to find out
the right threshold value. However, more complex
methods such as strengthening and weakening
functions (e.g. sigmoid functions) proposed by
(Ehrig & Sure, 2004) the local optimization methods
(also known as stable marriage) or global
optimization methods might be applied too.
Moreover, a priori knowledge about the cardinality
of expected resulting alignment might be useful.

Despite the matching systems allowing some
parameterization, such as (i) threshold values, (ii)
matcher weights (for a specific aggregation
function) or even (iii) choosing the list of matchers
to participate in the alignment; the fact is that they
are restrictive with respect to the internal working of
the systems. That is, one cannot set up the
architecture of the system and the corresponding
workflow. Furthermore, since matchers should not
be chosen only with respect to the given data but
also adapted to the problem to be solved, the
selection of the most suitable matcher is still an open
issue.

Another important aspect of ontology matching
is assessing the quality of resulting alignment. For
that purpose, measures can be classified as (i)
compliance measures and (ii) formal or logic-based
measures. Compliance measures are those that
compare system outputted alignment with a
reference alignment (or gold standard) which should
be the complete set of all correct correspondences.

KEOD 2009 - International Conference on Knowledge Engineering and Ontology Development

294

The most used are Precision and Recall (originating
from information retrieval), or their harmonic mean,
referred to as F-Measure. Precision corresponds to
the ratio of correctly found correspondences over the
total number of found correspondences while Recall
corresponds to the ratio of correctly found
correspondences over the total number of expected
correspondences. Yet, in order to improve these
measures, a Relaxed Precision and Relaxed Recall
have been proposed (Ehrig & Euzenat, 2005). These
are based on the idea that a proposed
correspondence not existing in the reference
alignment might be similar to an existing one.
Instead of considering it incorrect one can measure
the correction effort to transform such
correspondence into a correct one. Semantic
Precision and Semantic Recall are formal measures
based on the comparison of deductive closure of
both alignments (i.e. proposed and reference
alignment) instead of a syntactic comparison
(Euzenat, 2007). Recently, a set of logic-measures
based on the incoherence of correspondences has
been proposed (Meilicke & Stuckenschmidt, 2008).
But a major drawback to all of these measures
(except incoherence-based ones) is that they are
grounded in the existence of one reference alignment
which might not be available in real-world
scenarios. It should be noted that, there are other
measures concerned with resource consumption (e.g.
speed, memory, scalability), referred to as
performance measures, that can be used to compare
systems instead of the resulting alignments.

Given the impressive number of existing
matching techniques, their diversity and all the
resulting combination possibilities, a tool that eases
the matching combination process and the respective
evaluation through a simple, fast and flexible way
without being committed to a pre-defined workflow
is required.

3 THE GOALS TEST-BED

After the characterization and systematization of the
ontology matching technologies described in the
previous section, the following dimensions have
been identified and represent the core concepts of
our GOALS (GECAD Ontology ALignment System)
matching test-bed: (i) data-entities, (ii) components,
(iii) workflow specification and (iv) the execution
engine. Data entities represent any kind of data
structures that components manipulate as input
and/or output. Currently, the system supports three
different data entities: (a) OntModel which

corresponds to one ontology, (b) Matrix which
corresponds to a set of matches (or correspondences)
and (c) an Alignment which corresponds to a set of
mappings. Main difference between Matrix and
Alignment is grounded in the notion of match and
mapping. While one match establishes a relation
(typically ‘=’, ‘<’, ‘>’) between one source ontology
entity and one target ontology entity with a given
confidence value (e.g. ’firstName’ is ‘<’ than ‘name’
with a confidence value of 0.8), one mapping
establishes a more complex relation (might even be
language dependent) between one set of source
ontology entities and one set of target ontology
entities (e.g. ‘name’ = ‘firstName’ + “ “ +
‘lastName’ with a confidence value of 0.95).
Therefore, and according to Euzenat terminology
(Euzenat, 2004) any Matrix might be converted in
one Alignment of level 0. However, GOALS allows
level 1 and 2 alignment extraction. Components (or
actors) are objects acting as black boxes that play
one or more roles in the ontology matching process.
Each component explicitly defines a set of shared
and common data entities as inputs and outputs and
a specific functionality. Particularities of each
component are configurable through a set of
parameters. Workflow specification is about
choosing which components take part in the
matching process, its parameters and roles and how
data entities flow between components. The result of
a workflow specification is a new complex matcher,
referred to as the meta-matcher. The execution
engine is able to tackle the workflow specification
and automatically run the meta-matcher
configuration. An important aspect of the system is
that it is not limited or committed to any built-in
component. In fact, instead of built-in components
there is a well established Java API that any
component must implement. To ease the connection
between GOALS API and external systems (e.g.
matchers) the GoF Adapter pattern (Gamma, Helm,
Johnson, & Vlissides, 1994) is applied. Thus,
development of components is independent of the
overall system. By exploiting this feature, most of
the available components are implemented as
adapters. Current GOALS release provides adapters
for several well know matchers such as Falcon-OA
(Jian, Hu, Cheng, & Qu, 2005) or FOAM (Ehrig &
Sure, 2005).
Several generic components were identified and
categorized according to their input/output data
entities, which constrain the possible combination of
components, and therefore the workflow. Figure 1
depicts all possible flows (arrows) of data entities

GOALS - A TEST-BED FOR ONTOLOGY MATCHING

295

(parallelograms) between the generic components
(rectangles).

Figure 1: Generic components data flow.

Loader components are those that load any kind
of data entity from a given location (set by URI
parameter). Matcher components represent any basic
or complex matching algorithm whose output is a set
of correspondences, i.e. one Matrix or one
Alignment between two input ontologies. Deductive
matchers might need one seeding Matrix or
Alignment too. Matrix operators are those that
receive one or more Matrices, process them in some
way and the output is one Matrix. Typically, these
methods are classified as filters (e.g. applying one
threshold) or as aggregators (e.g. applying an OWA
operator). Similar to these components are the
Alignment operators but instead of working with
matrices they work with alignments. Alignment
extractors components are responsible for extracting
one Alignment from a set of Matrices and/or from a
set of pre-Alignments. Alignment evaluators are
components that compare one alignment (typically
the result of meta-matcher) with another one
(referred to as the reference alignment) applying
evaluation metrics (e.g. precision, recall).
Furthermore, the evaluation results might help one
change and refine the meta-matcher specification in
order to achieve better results. Note that, other
component that do not fit in the above generic
component description might also exist in the system
and be included in a workflow specification. In that
sense, we point out the components that are
responsible for data-entities adaptation, i.e.
converting a given data-entity from the common
representation format to the appropriate format
required for an external method or vice-versa.

The workflow infrastructure exploits
components’ common interface to query each
component about required and optional input data
entities and respective output data entities in order to
ensure data flow executability. Furthermore, because
this infrastructure is completely configurable
through an XML file (i.e. script mode) or
programmatically, one might also create workflow-
based components in order to ease and improve the
meta-matcher specification. This is made through a
special component that encapsulates any previously
defined workflow and infers required input and
output data entities. As such, any meta-matcher will
act as any other matcher component. Therefore,
these components need to request that the execution
engine run their internal workflow before providing
their outputs to the main workflow.

The execution engine tackles any workflow
specification through the following steps: (i) reads
the list of components that are present in the
workflow creating one instance for each component;
(ii) each component instance knows what
components responsible for providing their input
data entities are; (iii) particular parameters of each
component instance are set up with the defined
values in the workflow specification phase. When
these steps are complete, the execution engine is
ready to run, i.e. execute the meta-matcher. Two
running options are available: (i) run the entire meta-
matcher or (ii) run the meta-matcher partially to a
given stop-point (component) of the workflow.
However, both options are grounded in the notion of
terminator components, i.e. components whose
output is not used as input of any other component.
In that sense, while the first option automatically
identifies the terminator components through a
workflow inspection, the second option temporarily
considers as unique terminator component the
component used as the stop-point. Finally, a running
command is sent to each terminator component,
previously identified, which must adopt a pull-
strategy behaviour to get their required inputs and
further process those inputs in order to generate the
intended outputs. Note that, each component knows
which components are responsible for providing
their inputs and therefore it is up to the components
to request their own inputs.

KEOD 2009 - International Conference on Knowledge Engineering and Ontology Development

296

Figure 2: GOALS meta-matcher example.

4 WORKED EXAMPLE

In order to better explain our approach we present a
worked example. Consider the scenario of a
matching process intended to align a pair of
ontologies using several matchers, to combine
matchers’ results through aggregation techniques
and finally to obtain an alignment filtering
aggregation’s result by the means of a threshold
(depicted on Figure 2).

The following components will be used to model
this scenario:

• OntologyLoader1 and OntologyLoader2 to
load source and target ontologies respectively from a
resource location (e.g. Source.owl and Target.owl).
Both are instances of the same component, i.e.
“OntologyLoader”;

• Jaro1, WN1, Falcon1 and Struct1, each
representing an instance of a specific matching
algorithm able to generate the alignment between
both ontologies. Such techniques are Jaro of
similarity package SimPack, WordNet Synonyms
(Miller, 1995), Falcon-AO (Jian et al., 2005) and
ClassStructure from the INRIA AlignAPI project
respectively. Notice that, instead of these concrete
algorithms, any other matching technique could be
used;

• MaxAggregator1 to combine similarity
matrices generated by Jaro1 and WN1 components.
It is an instance of an aggregation technique that
uses the max function to combine several matrices
into one;

• OWA-Aggregator1 is an instance of an
aggregation technique that uses the ordered-weight
average function to combine similarity matrices into
one. It requires as many weight-values as inputs
matrices. In this case, there are two input matrices
generated by Falcon1 and Struct1 components.
Those values might be manually set by users or
automatically proposed by the system;

• WeightAggregator1 is an instance of an
aggregation technique that uses the weighted-

average function to combine several matrices into
one. One specific weight-value might be set for each
input Matrix. In our example, it combines similarity
matrices generated by MaxAggregator1 and OWA-
Aggregator1 components;

• ThresholdFilter1 is an instance of the
filtering-by-threshold method to filter
WeightAggregator1’s results applying a given
threshold value (e.g. 0.75). Further, it saves filtered
results to a physical location (e.g. Alignment1.xml).

These components together with the connection
arrows correspond to a single workflow
specification, i.e. a meta-matcher. The resulting
specification is represented in a XML file, partially
depicted in Figure 3.

Notice that the GOALS matchers’ selection task
and parameters specification is similar to many
existing matching systems (OAEI'2008, 2008). The
novelty is that GOALS allows the specification of the
data flow between different components and all the
possibilities that arise with this feature. This is
possible because GOALS is not committed to any
pre-defined system architecture (i.e. sequential,
parallel or hybrid). In order to exemplify this
feature, suppose that the alignment resulting from
the previous workflow is poor. Furthermore,
suppose that the main reason for that is the poor
Matrix’s quality resulting from MaxAggregator1. To
solve this, one decides to improve the results by (i)
filtering the Matrix using a high threshold value and
(ii) applying the FOAM matcher seeded (i.e. to
receive anchors) with the filtered Matrix. Figure 4
partially depicts the reconfigured meta-matcher.

Running this new meta-matcher, the resulting
alignment (i.e. the Alignment.xml file) would be
updated with a new alignment (hopefully improved).
Remember that the meta-matcher might also have
components concerned with evaluation, by
comparing the resulting alignment with a reference
alignment.

GOALS - A TEST-BED FOR ONTOLOGY MATCHING

297

Figure 3: Fragments of an workflow specification.

Finally, one might repeatedly reconfigure the meta-
matcher specification easily and quickly by adding,
changing and removing components in order to
improve the achieved result without being
committed to any pre-defined system architecture or
constraints.

Figure 4: Partial improved meta-matcher example.

5 CONCLUSIONS

GOALS encourages the reusability of existing basic
matchers and also the more complex ones. GOALS
provides and supports prototyping and/or building
complex ontology matching algorithms and
facilitates testing and evaluation, promoting an
iterative and incremental process of complex
matchers development. Its plug-in-based architecture
provides an incremental approach: the resulting
matching system can be applied as a new operation
component in a new matching system.

GOALS by itself, is not an ontology matching
system, but a very flexible, adaptable and powerful
tool for building ontology matching systems. In that
sense, no comparative tests with existing ontology
matching systems were neither done, nor are
relevant. Additionally, results would be dependent
of the workflow specification.

In order to use, test and explore all available
features, GOALS is available for download at (Maio
& Silva, 2009). To improve the user experience, we
are working to provide GOALS with a GUI which it
is expected to be available shortly.

GOALS is the first step of a larger effort
concerning two complementary approaches:
automaticity and complexity of the matchers. With
respect to automaticity, we are planning to enrich
GOALS with a module that will be able to
automatically generate a workflow specification
based on a full matching scenario characterization,
according to several dimensions, such as domain of
ontologies, time constraints and envisaged
application. With respect to complexity, GOALS will
provide the test-bed for carrying out our research
efforts concerning the development of new
algorithms that will address more accurate and
complex mappings (e.g. “firstName + lastName” =
“fullName”), especially devoted to data integration.
Because it is very flexible and adaptable, GOALS is
well suited for testing and evaluating complex
approaches in a very immediate way.

(...)
<ListOfComponents>
 <!-- Creating Jaro1 component -->
 <Component>
 <Name>Jaro1</Name>
 <Class>
 pt.ipp.isep.gecad.goals.components.matchers.stringbased.JaroMatcher
 </Class>
 </Component>
 <!-- Creating ThresholdFilter1 component -->
 <Component>
 <Name>ThresholdFilter1</Name>
 <Class>
pt.ipp.isep.gecad.goals.components.filtersAggregators.MatrixFilterByThres
hold
 </Class>
 <ListOfParameters> <!—Begin of ThresholdFilter1 Parameters -->
 <ParameterSet>
 <Parameter>
 <Name>SaveToFileNameOrURI</Name>
 <Class>pt.ipp.isep.gecad.goals.engine.parameters.URIParameter</Class>
 <Value>./Alignment.xml</Value>
 </Parameter>
 <Parameter>
 <Name>WantToSaveData</Name>
 <Class>pt.ipp.isep.gecad.goals.engine.parameters.BooleanParameter
 </Class>
 <Value>true</Value>
 </Parameter>
 <Parameter>
 <Name>ThresholdType</Name>
 <Class>pt.ipp.isep.gecad.goals.engine.parameters.StringParameter
 </Class>
 <Value>HARD</Value>
 </Parameter>
 <Parameter>
 <Name>ThresholdValue</Name>
 <Class>pt.ipp.isep.gecad.goals.engine.parameters.DoubleParameter
 </Class>
 <Value>0.95</Value>
 </Parameter>
 </ParameterSet>
 </ListOfParameters> <!—End of ThresholdFilter1 Parameters -->
 </Component>
(...)
</ListOfComponents>
<DataFlow>
 <!-- Sending Source Ontology to Jaro1 Component -->
 <Connection>
 <From>OntologyLoader1</From>
 <To>Jaro1</To>
 <DataEntity>ONTOLOGY</DataEntity>
 <Role>SOURCE_ONTOLOGY</Role>
 <Parameter/>
 </Connection>
 <!-- Sending Matrix from WeightAggregator1 to ThresholdFilter1 -->
 <Connection>
 <From>WeightAggregator1</From>
 <To>ThresholdFilter1</To>
 <DataEntity>MATRIX</DataEntity>
 <Role/>
 <Parameter/>
 </Connection>
 (...)
</DataFlow>

KEOD 2009 - International Conference on Knowledge Engineering and Ontology Development

298

ACKNOWLEDGEMENTS

This work is partially supported by the Portuguese
MCT-FCT project COALESCE
(PTDC/EIA/74417/2006). Thanks to Owen Gilson
for his revisions of the paper.

REFERENCES

Berners-Lee, T., Hendler, J., & Lassila, O. (2001). The
Semantic Web. Scientific American, 284(5), 34―43.

Doan, A., Madhavan, J., Domingos, P., & Halevy, A.
(2004). Ontology matching: A machine learning
approach. Handbook on Ontologies.

Ehrig, M., & Euzenat, J. (2005). Relaxed Precision and
Recall for Ontology Matching. In Proc. K-CAP
Workshop on Integrating Ontologies (p. 25―32).
Ban� (CA). Retrieved from http://ceur-ws.org/Vol-
156/paper5.pdf.

Ehrig, M., & Sure, Y. (2004). Ontology mapping ― an
integrated approach. In Proc. 1st European Semantic
Web Symposium (ESWS), Lecture notes in computer
science (Vol. 3053, p. 76―91). Hersounisous (GR).
Retrieved from http://www.aifb.uni-
karlsruhe.de/WBS/meh/publications/ehrig04ontology_
ESWS04.pdf.

Ehrig, M., & Sure, Y. (2005). FOAM - Framework for
Ontology Alignment and Mapping; Results of the
Ontology Alignment Initiative. In B. Ashpole, M.
Ehrig, J. Euzenat, & H. Stuckenschmidt (Eds.),
Proceedings of the Workshop on Integrating
Ontologies (Vol. 156, p. 72―76). CEUR-WS.org.
Retrieved from http://sunsite.informatik.rwth-
aachen.de/Publications/CEUR-WS/Vol-
156/paper11.pdf.

Euzenat, J. (2004). An API for ontology alignment. In
Proc. 3rd International Semantic Web Conference
(ISWC), Lecture notes in computer science (Vol. 3298,
p. 698―712). Hiroshima (JP).

Euzenat, J. (2007). Semantic Precision and Recall for
Ontology Alignment Evaluation. In In Proc. of 20th
International Joint Conference on Artificial
Intelligence. Hyderabad, India.

Euzenat, J., & Shvaiko, P. (2007). Ontology Matching (1st
ed., Vols. 1-1, Vol. 1, p. 334). Heidelberg, Germany:
Springer-Verlag.

Fensel, D. (2001). Ontologies: Silver Bullet for Knowledge
Management and Electronic Commerce. Heidelberg,
Germany: Springer-Verlag.

Fürst, F., & Trichet, F. (2005). Axiom-based ontology
matching. In Proceedings of the 3rd international
conference on Knowledge capture (pp. 195-196).
Banff, Alberta, Canada: ACM. doi:
10.1145/1088622.1088665.

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. M.
(1994). Design Patterns: Elements of Reusable
Object-Oriented Software (illustrated edition.).
Addison-Wesley Professional.

Giunchiglia, F., Shvaiko, P., & Yatskevich, M. (2004). S-
Match: an algorithm and an implementation of
semantic matching. In Proc. 1st European Semantic
Web Symposium (ESWS), Lecture notes in computer
science (Vol. 3053, p. 61―75). Hersounisous (GR).

GOALS. (n.d.). . Retrieved June 26, 2009, from
http://www.dei.isep.ipp.pt/~pmaio/goals/.

Halevy, A., Ashish, N., Bitton, D., Carey, M., Draper, D.,
Pollock, J., et al. (2005). Enterprise information
integration: successes, challenges and controversies. In
Proc. 24th International Conference on Management
of Data (SIGMOD) (p. 778―787). Baltimore (MD
US).

Ji, Q., Haase, P., & Qi, G. (2008). Combination of
Similarity measures in Ontology Matching using the
OWA Operator. In Proceedings of the 12th
International Conference on Information Processing
and Management of Uncertainty in Knowledge-Base
Systems (IPMU’08).

Jian, N., Hu, W., Cheng, G., & Qu, Y. (2005). Falcon-AO:
Aligning Ontologies with Falcon. In Proc. K-CAP
Workshop on Integrating Ontologies (p. 87―93). Ban
(CA).

Maio, P., & Silva, N. (2009). GOALS. GOAlS - Gecad
Ontology Alignment System. Retrieved June 26, 2009,
from http://www.dei.isep.ipp.pt/~pmaio/goals/.

Meilicke, C., & Stuckenschmidt, H. (2008). Incoherence
as a basis for measuring the quality of ontology
mappings. In 3rd International Workshop on Ontology
Matching (OM-2008) , Worksop Proceedings (Vol.
431). Karlsruhe, Germany: CEUR. Retrieved from
http://sunsite.informatik.rwth-
aachen.de/Publications/CEUR-WS/Vol-
431/om2008_Tpaper1.pdf.

Miller, G. (1995). WordNet: A lexical database for
English. Communications of the ACM, 38(11),
39―41.

Mochol, M., Jentzsch, A., & Euzenat, J. (2006). Applying
an analytic method for matching approach selection. In
Proc. 1st ISWC International Workshop on Ontology
Matching (OM) (p. 37―48). Athens (GA US).

OAEI'2008. (2008). Ontology Alignment Evaluation
Initiative. 2008 Campaign. Retrieved February 22,
2008, from http://oaei.ontologymatching.org/2008/.

Staab, S., & Stuckenschmidt, H. (2006). Semantic Web
and Peer-to-Peer: Decentralized Management and
Exchange of Knowledge and Information (1st ed.).
Springer.

GOALS - A TEST-BED FOR ONTOLOGY MATCHING

299

