
A CORRESPONDENCE REPAIR ALGORITHM BASED ON WORD
SENSE DISAMBIGUATION AND UPPER ONTOLOGIES

Angela Locoro
DIBE, Biophysical and Electronic Engineering Department, University of Genoa, Via Opera Pia 11/A, Genova, Italy

Viviana Mascardi
DISI, Computer Science Department, University of Genoa, Via Dodecaneso 35, Genova, Italy

Keywords: Ontology matching, Upper ontologies, Correspondences repair, Word sense disambiguation.

Abstract: In an ideal world, an ontology matching algorithm should return all the correct correspondences (it should be
complete) and should return no wrong correspondences (it should be correct). In the real world, no imple-
mented ontology matching algorithm is both correct and complete. For this reason, repairing wrong corre-
spondences in an ontology alignment is a very pressing need to obtain more accurate alignments. This paper
discusses an automatic correspondence repair method that exploits both upper ontologies to provide infor-
mative context to concepts c ∈ o and c′ ∈ o′ belonging to an alignment a, and a context-based word sense
disambiguation algorithm to assign c and c′ their correct meaning. This meaning is used to decide whether
c and c′ are related, and to either keep or discard the correspondence < c,c′ >∈ a, namely, to repair a. The
experiments carried on are presented and the obtained results are provided. The advantages of the approach
we propose are confirmed by a total average gain of 11,5% in precision for the alignments repaired against a
2% total average error.

1 INTRODUCTION

Ontology matching is the process that, given two on-
tologies o and o′ together with a set of parameters and
optional inputs, returns a set of correspondences (an
“alignment”) between entities of o and entities of o′.

A “correspondence repair algorithm” takes an
alignment a as input (with additional inputs and pa-
rameters if it is the case) and returns a repaired ver-
sion of a, namely a′, that has fewer wrong correspon-
dences than a, hence achieving a higher precision1.

Deciding that a correspondence < c,c′ > is wrong
is an hard task. To this aim, the correspondence repair
algorithm may exploit the structure of the two ontolo-
gies o and o′ from which c and c′ are drawn and a
originates, or the constraints over c ∈ o and c′ ∈ o′

(such as disjointness, equivalence, etc), or the seman-
tics of c and c′ seen as meaningful pieces of informa-
tion.

1Precision is the number of correctly found correspon-
dences with respect to the reference alignment (true pos-
itives), divided by the total number of found correspon-
dences (true positives and false positives) (Do et al., 2002).

The correspondence repair algorithm that we dis-
cuss in this paper adopts the latter approach. In par-
ticular, the way we give a semantics to concepts c and
c′, in order to decide if they have the same meaning,
is based on computational linguistic techniques.

According to (Agirre and Edmonds, 2007), “in the
field of computational linguistics, word sense disam-
biguation (WSD) is defined as the problem of com-
putationally determining which “sense” of a word is
activated by the use of the word in a particular con-
text”. The idea upon which our proposal roots is that
concepts in an ontology can be given a sense in al-
most the same way as words in a text. The problem
for making this idea work is finding a context for the
concepts whose sense must be identified.

In our previous work, we implemented different
algorithms that use upper ontologies 2 for boosting the
ontology matching process (Mascardi et al., 2009).

2Quoting Wikipedia (accessed on June, the 25th, 2009),
an upper ontology (also named top-level ontology, or foun-
dation ontology) is “an attempt to create an ontology which
describes very general concepts that are the same across all
domains”.

239
Locoro A. and Mascardi V. (2009).
A CORRESPONDENCE REPAIR ALGORITHM BASED ON WORD SENSE DISAMBIGUATION AND UPPER ONTOLOGIES.
In Proceedings of the International Conference on Knowledge Engineering and Ontology Development, pages 239-246
DOI: 10.5220/0002302802390246
Copyright c© SciTePress

We run experiments with SUMO-OWL, a restricted
version of SUMO translated into OWL (Niles and
Pease, 2001), OpenCyc, the open version of the com-
mercial Cyc ontology (Lenat and Guha, 1990), and
DOLCE (Gangemi et al., 2002), and we demonstrated
that upper ontologies can be profitably used for en-
hancing either the precision or the recall of the ob-
tained alignment, depending on the algorithm and the
upper ontology used.

The results discussed in (Mascardi et al., 2009)
show that the goal of upper ontologies, namely sup-
porting semantic interoperability among a large num-
ber of ontologies accessible “under” them, has been
achieved: upper ontologies may provide an infor-
mative context for domain-dependent ontologies, and
two domain-dependent ontologies may be matched
with better results if they share the same context.

Starting from the above considerations, in this pa-
per we exploit upper ontologies as a means to enrich
the semantic context of concepts c ∈ o and c′ ∈ o′ be-
longing to an alignment a, and we use a context-based
WSD algorithm to assign c and c′ their correct mean-
ing. This meaning is used to decide whether c and
c′ are related, and to either keep or discard the corre-
spondence < c,c′ >∈ a, namely, to repair a.

The paper is organised as follows: Section 2 in-
troduces the main definitions and surveys the state of
the art in correspondence repair algorithms. Section
3 describes our algorithm for correspondence repair
based on the Adapted Lesk approach and on upper on-
tologies, whereas Section 4 presents experiments and
results. Section 5 concludes.

2 BACKGROUND

In this section we provide a short background on the
topics upon which our research roots: WordNet, the
Lesk algorithm for word sense disambiguation, ontol-
ogy matching, and alignment repair.

2.1 WordNet

WordNet (Fellbaum, 1998) is a large lexical database
of English, developed under the direction of George
A. Miller. Nouns, verbs, adjectives and adverbs are
grouped into sets of cognitive synonyms (synsets),
each expressing a distinct concept. A synset or syn-
onym set is defined as a set of one or more syn-
onyms that are interchangeable in some context with-
out changing the truth value of the proposition in
which they are embedded.

Most synsets are connected to other synsets via a
number of semantic relations that include:

– Semantic Relations between Nouns. Hypernyms:
Y is a hypernym of X if every X is a (kind of) Y ; hy-
ponyms: Y is a hyponym of X if every Y is a (kind of)
X ; coordinate terms: Y is a coordinate term of X if X
and Y share a hypernym; holonym: Y is a holonym of
X if X is a part of Y ; meronym: Y is a meronym of X
if Y is a part of X .
– Semantic Relations between Verbs. Hypernym:
the verb Y is a hypernym of the verb X if the activity X
is a (kind of) Y ; troponym: the verb Y is a troponym of
the verb X if the activity Y is doing X in some manner;
entailment: the verb Y is entailed by X if by doing X
you must be doing Y ; coordinate terms: those verbs
sharing a common hypernym.

While semantic relations apply to all members of a
synset because they share a meaning but are all mutu-
ally synonyms, words can also be connected to other
words through lexical relations, including antonymies
(opposites of each other) and derivationally related, as
well.

2.2 Lesk Algorithm

The Lesk algorithm is an algorithm for word sense
disambiguation introduced by Michael E. Lesk in
1986 (Lesk, 1986).

It is based on glosses, which are definitions of
each sense of a word, used to disambiguate a pair of
words in a sentence by looking at the highest overlap
(number of common words between the glosses).

In 2002, Satanjeev Banerjee and Ted Pedersen
(Banerjee and Pedersen, 2002) adapted Lesk algo-
rithm by using WordNet as the source of glosses.
Hereafter we give a very general description of the
main steps of Adapted Lesk approach:

1. take a sentence s, a target word tw to be disam-
biguated in s, and a context window cw of 2n + 1
words, with n words before and n words after tw;

2. for each word w in cw retrieve the set WS of Word-
net synonyms, hypernyms, hyponyms, holonyms,
meronyms, troponyms, attributes, and all the as-
sociated glosses of the words in WS, be them
g1(w),g2(w),,gn(w);

3. for each pair of words wa,wb in cw and for each
couple of glosses, gi(wa) and g j(wb), define an
overlap as the longest sequence of common con-
secutive words: this overlap results in a score stat-
ing how much gi(wa) is the right definition for wa,
and g j(wb) is the right definition for wb;

4. to disambiguate the target word tw, select the
gloss in g1(tw),,gm(tw) with highest score.

KEOD 2009 - International Conference on Knowledge Engineering and Ontology Development

240

2.3 Ontology Matching

This section is based on (Euzenat and Shvaiko, 2007)
and uses the same terminology adopted there.

Definition 1. Matching Process. A matching
process can be seen as a function f which takes two
ontologies o and o′, a set of parameters p and a set of
oracles and resources r, and returns an alignment A
between o and o′.

Definition 2. Correspondence. A correspondence
(or mapping) between an entity e belonging to ontol-
ogy o and an entity e′ belonging to ontology o′ is a
5-tuple < id,e,e′,R,con f > where:

• id is a unique identifier of the correspondence;

• e and e′ are the entities (e.g. properties, classes,
individuals) of o and o′ respectively;

• R is a relation such as “equivalence”, “more gen-
eral”, “disjointness”, “overlapping”, holding be-
tween the entities e and e′.

• con f is a confidence measure (typically in the
[0,1] range) holding for the correspondence be-
tween the entities e and e′;

Definition 3. Alignment. An alignment of ontolo-
gies o and o′ is a set of correspondences between
entities of o and o′.

In our approach we only consider classes (c) as en-
tities and equivalence as relation, thus we can drop R
from the 5-tuple, as it is always “≡”. Our repair algo-
rithm does not exploit confidence and unique identi-
fiers, so we drop them too for sake of readability. For
the purposes of this paper, a correspondence is then a
couple < c,c′ >.

2.4 Alignment Repair

To the best of our knowledge, very few attempts to
solve the problem of repairing correspondences be-
tween ontologies exist (Haeri et al., 2006; Meilicke
et al., 2007; Meilicke et al., 2008a; Meilicke et al.,
2008b).

The intuition behind (Haeri et al., 2006) is that an
ontology alignment between o and o′ gives a measure
for similarity across the two ontologies, which can
be seen as an estimate for the distance between each
pair of points in two directed acyclic graphs g and
g′ embedded in a metric space. A set of techniques
for “alignment refinement” is based on the definition
of the partial order on the possible isomorphisms be-
tween g and g′ and on a ranking of the possible align-
ments between o and o′.

The approach followed in (Meilicke et al., 2007)
and (Meilicke et al., 2008a) is to interpret the prob-
lem of identifying wrong correspondences in an on-
tology alignment as a diagnosis task. The authors
formalise correspondences as “bridge rules” in dis-
tributed description logics and analyse the impact of
each correspondence on the ontologies it connects. A
correspondence that correctly states the semantic re-
lations between ontologies should not cause inconsis-
tencies in any of the ontologies. If it does, the method
computes sets of correspondences that jointly cause
a symptom and repairs each symptom by removing
correspondences from these sets.

In (Meilicke et al., 2008b) a supervised machine
learning technique is presented as a means to learn
disjointness axioms in lightweight ontologies, where
a stronger axiomatization is needed in order to apply
complex reasoning techniques to the debug of map-
pings.

To the best of our knowledge, WSD methodolo-
gies have not yet been exploited for boosting the map-
ping repair process and, among WSD techniques, the
Adapted Lesk algorithm, that characterizes our ap-
proach, has been taken into consideration neither for
ontology matching nor for mappings repair. The re-
cent survey on the exploitation of WordNet in ontol-
ogy matching (Lin and Sandkuhl, 2008) supports our
claim: it demonstrates that the use of WordNet has be-
come more and more widespread in ontology match-
ing methodologies, but it never mentions the Adapted
Lesk approach, though it is based on WordNet too.

3 ADAPTED LESK- AND UPPER
ONTOLOGY-BASED
CORRESPONDENCE REPAIR

Our approach to correspondence repair is based on the
Adapted Lesk algorithm shortly discussed in Section
2.2. It also exploits one upper ontology uo and the
WordNet thesaurus.

Suppose that we are given an alignment a between
o and o′, and we want to repair correspondences re-
lated to concept c1 ∈ o. We first generate two partial
alignments o-uo and o′-uo that will be used for pro-
viding a context to c1 and to the concepts related to c1
in the alignment a.

Based on that, three weighted context windows
CW1, CW2 and CW3 are created. They contain:

• CW1

1. all the concepts derived from all the correspon-
dences < c1,c2i > that belong to the alignment

A CORRESPONDENCE REPAIR ALGORITHM BASED ON WORD SENSE DISAMBIGUATION AND UPPER
ONTOLOGIES

241

a to be repaired (note that there may be more
c2i ∈ o′ such that < c1,c2i >∈ a);

2. all the concepts derived from all the correspon-
dences < c1,uoc j > that belong to the align-
ment o-uo (again, there may be more uoc j ∈ uo
such that < c1,uoc j >∈ o-uo).

– CW1 has weight 1: it contains those concepts
that are closer to c1 because either there is a
direct correspondence between c1 and them in
a, or there is a direct correspondence between
c1 and them in the o-uo alignment.

• CW2
1. all the concepts in uo belonging to correspon-

dences between concepts c2i in CW1 and uo;
2. all the concepts in uo directly related by means

of “subClassOf” relation or other kinds of user-
defined relation, to one uoc j ∈ uo belonging to
CW1.

– CW2 has weight 0.5: a step further has been
moved from c1

• CW3 all the concepts in uo directly related to one
uoc j ∈ uo belonging to CW2.

– CW3 has weight 0.25: it contains even more
distant concepts.

Figure 1 graphically shows the concepts in the
three context windows, their distance from c1, and
their weights.

The concept c1 is added to CW1, CW2 and CW3.
The following steps, based on Adapted Lesk, are

then taken for each CW:

1. retrieve all the WordNet synsets for c1

2. for each synset of c1, syn(c1)

(a) retrieve all its hypernyms (hype), hyponyms
(hypo), holonyms (holo) and meronyms (mero)

(b) build the list A of all these glosses, namely
allGlosses(syn(c1,hype,hypo,holo,mero))

3. for each concept c in CW such that c ∈ CW and
c 6= c1

(a) retrieve all its synsets and all the hype, hypo,
holo and mero of all synsets

(b) build the list B of all these glosses, namely
allGlosses(allsyn(c,hype,hypo,holo,mero))

4. for each element of the list A

(a) for each element of the list B
i. compare each couple of glosses and compute

the longest consecutive sequence of common
words

ii. save the obtained score in a (A) x (B) matrix

5. for each synset of c1 compute the maximum score
for each c (score(gmax(c)) by extracting the max-
imum value of each (A) x (B) matrix.

6. save the maximum score in the CW matrix, with
number of rows equal to the total number of
synsets for c1, and number of columns equal to
the total number of context words in CW.

Finally, for each synset of c1, sum by row the
scores obtained from the matrixes associated with
CW1, CW2, and CW3 by applying the weights cor-
responding to each context window. The following
formula is an example of the computation for synset
si of c1, with cw1i j, cw2i j and cw3i j as cells of the
three CW matrixes:

si =
N

∑
j=1

cw1i j ∗1+
M

∑
j=1

cw2i j ∗0.5+
K

∑
j=1

cw3i j ∗0.25

(1)
The “winner” gloss for c1, namely the gloss that

is more likely to correctly define c1, is the one associ-
ated with the maximum si.

The same process is repeated for each c2i ∈ o′ that
belongs to the set of correspondences < c1,c2i >∈ a,
and the “winner” gloss for c2i is found.

In the end, for each correspondence, a comparison
of the “winner” glosses is done and classified in one
of the following cases:

• the glosses are equal;

• one of the glosses is equal to that of a synset of
either c1 or c2;

• one of the glosses is equal to that of a hype or hypo
or holo or mero of the winner glosses of either c1
or c2;

• none of the glosses satisfies the above conditions.

The mapping < c1,c2 > is discarded if and only if it
falls under the last case otherwise it is kept.

3.1 A Practical Example

This section shows an example taken from one of
our tests, to repair all the correspondences for the
c1 concept Culture. The final alignment contains
only one correspondence for the Culture concept:
< Culture,Scul pture >. Looking at the common
radix of the two concepts (-ulture) there is a strong
evidence that every string-based ontology matching
method would have matched them, although they are
not equivalent concepts. The creation of the three fol-
lowing context windows (CWs) for Culture results in
the following:

KEOD 2009 - International Conference on Knowledge Engineering and Ontology Development

242

Figure 1: Weighted context windows.

• CW1 (culture, sculpture, vulture), the concepts of
the correspondence plus concepts of uo from c1-
uo mappings (namely vulture);

• CW2 (culture, sculpture, art, work, bird), c1 plus
uo concepts from c2i-uo mappings (namely sculp-
ture, art, work), plus uo concepts related to c1-uo
in uo (namely bird);

• CW3 (culture, art, work) c1 plus uo concepts re-
lated to c2i-uo in uo (namely art, work).

• The total number of synsets (Ss) for Culture is
7, with synset offset (the unique identifier for a
WordNet synset given its syntactic category, POS)
8287844, 5751794, 5984936, 920510, 14459824,
6194409, 917759.

• The number of hype, hypo, holo, mero for each of
them is: (1,7,0,1), (1,3,0,0), (1,1,0,0), (1,1,0,0),
(1,0,0,0), (1,3,0,0), (1,4,0,0) respectively.

• The number of Ss and related terms for the other
words in the three CWs are:

– for CW1: sculpture (2 S, 4 hype and 10 hypo),
vulture (2 S, 2 hype and 4 hypo);

– for CW2: sculpture (same as above), art (4 S,
4 hype and 43 hypo and 1 holo), work (7 S, 7
hype and 87 hypo), bird (5 S, 5 hype, 37 hypo
and 20 mero);

– for CW3: art (same as above), work (same as
above).

• If we apply Equation (1) on the matrixes associ-
ated with CW1, CW2 and CW3, whose values are

depicted in Table 1, the winner gloss for Culture
turns out to be the one associated with S offset
14459824, “a highly developed state of perfec-
tion; having a flawless or impeccable quality”.

The disambiguation procedure of the word Sculp-
ture is obtained considering all the correspondences
in which Sculpture is involved, in our example <
Art,Scul pture > and < Culture,Scul pture >. The
three CWs are:

• CW1 (sculpture, culture, art), all the concepts
from all the correspondences;

• CW2 (sculpture, artery, art, work, vulture), c2 plus
uo concepts from c1i-uo mappings (namely artery,
art, work, vulture), plus uo concepts related to c2-
uo in uo (namely sculpture, which is redundant
and has been deleted);

• CW3 (sculpture, blood, vessel, artifact, art, work,
bird) c2 plus uo concepts related to c1i-uo in uo
(namely blood, vessel, artifact, art, work, bird).

• The number of Ss for Sculpture is 2, with S offset
4157320, with 2 hype and 9 hypo, and 937656,
with 2 hype and 1 hypo. For the other CWs words
they are:

– for CW1: culture (7 S, 7 hype, 19 hypo and 1
mero), art (same as above);

– for CW2: artery (2 S, 2 hype, 76 hypo), art
(same as above), work (same as above), vulture
(same as above);

– for CW3: blood (5 S, 5 hype, 12 hypo), ves-
sel (3 S, 3 hype, 50 hypo,10 mero and 1 holo),

A CORRESPONDENCE REPAIR ALGORITHM BASED ON WORD SENSE DISAMBIGUATION AND UPPER
ONTOLOGIES

243

Table 1: Score matrixes for word Culture.

CW1 CW2 CW3
S offset sculpture vulture sculpture art work bird art work
8287844 1 0 1 1 2 1 1 2
5751794 1 0 1 2 1 1 2 1
5984936 1 0 1 1 1 0 1 1
920510 1 0 1 1 2 1 1 2

14459824 3 1 3 3 2 1 3 2
6194409 1 0 1 2 2 1 2 2
917759 1 1 1 2 3 1 2 3

Table 2: Score matrixes for word Sculpture.

CW1 CW2 CW3
S offset culture art artery art work vulture blood vessel artifact art work bird
4157320 1 5 1 5 2 1 1 1 1 5 2 2
937656 2 25 1 25 2 0 1 1 1 25 2 0

artifact (1 S, 1 hype and 45 hypo), art (same
as above), work (same as above), bird (same as
above).

• The final CW1, CW2 and CW3 matrixes are de-
picted in Table 2. According to them, the win-
ner gloss for Sculpture is the one associated with
S offset 937656, “creating figures or designs in
three dimensions”.

• Once found the winner glosses for Culture and
Sculpture respectively, the repair procedure com-
pares them and discards the correspondence as a
wrong one.

4 EXPERIMENTS AND RESULTS

In order to conduct our experiments we have re-
used a subset of the alignments obtained while run-
ning the tests described in (Mascardi et al., 2009).
Here, we only consider alignments obtained by ex-
ploiting SUMO-OWL and OpenCyc as upper ontolo-
gies, since DOLCE turned out to be too “upper” and
gave poor results. The alignments via uo have been
obtained using two different matching algorithms: NS
(No Structure), that matches an ontology o with the uo
comparing them directly, and WS (With Structure),
that also considers sub- and super-concepts of the uo
concept involved in the matching. To build the con-
text windows depicted in the previous section we also
re-used, for each test, the partial alignments o-uo and
o′-uo.

Our repairing algorithm is written in Java and uses
the Alignment API 3 to manage the alignments as well
as the OWL version of the uos. The Java library used
to manage WordNet 3.0 is also embedded in the API.

3http://alignapi.gforge.inria.fr/

The whole mappings repair procedure, with the inclu-
sion of the disambiguation step, based on the Adapted
Lesk algorithm, has been implemented from scratch
as no Java version of the Lesk algorithm seems to ex-
ist at the moment of writing.

Our complete mappings repair procedure imple-
mentation is as follows:

1. the SplitAlignment function is first called, it re-
ceives as input an alignment and splits it in all
the subsets of the alignment corresponding to the
mappings of concept c1 ∈ o with every concept c2i
from o′ as well as the subsets of the inverse align-
ment (all the mappings of concept c2 ∈ o′ with
every concept c1i from o)

2. the MakeContextWindows function is run on ev-
ery alignment subset in order to generate the three
context windows for each concept, which con-
tain all the context words listed in Section 3.
The algorithm pre-processes each context window
by deleting duplicate concepts and by removing
those concepts that do not belong to WordNet.
For composite concepts (concepts with more than
one term, e.g. ComputerHardware) a tokeniza-
tion procedure is carried on to split them into sim-
ple terms and for each term the three context win-
dows are built, each containing any other term of
the composite concept as a context word (refer-
ring to the above example the context windows
for the term Computer will also contain the word
Hardware and the same for the second term). If
the composite concept contains stop words4 we
remove them.

3. the AdaptedLesk function provides the disam-
biguation task shown in Section 3. Before com-
puting the maximum consecutive overlap each

4The list is available at http://ir.dcs.gla.ac.uk/resources/
linguistic utils/stop words.

KEOD 2009 - International Conference on Knowledge Engineering and Ontology Development

244

gloss has been treated with a stop words cleaning
and a word stemming procedure (the algorithm we
used to obtain a word stem from a term, namely
a process for removing the commoner morpho-
logical and inflexional endings from words, is
the Porter Stemmer, whose Java version is freely
available at Porter’s web page5). For this first
prototype the score computation is limited to the
longest overlap between two glosses. In case there
is more than one overlap, only the best is consid-
ered and the other ones are not taken into account
in the final score computation. The output win-
ner gloss is in form of the WordNet offset of the
synset containing the gloss as well as the label of
the concept and the score of the gloss.

4. the RepairMappings function takes the original
alignment as input and, for each mapping, makes
the checks on the semantic compatibility between
the winner glosses of the respective concepts as
stated in Section 3. If one or both concepts are
composite ones, a cross-checking is executed on
the set of all the winner glosses for each term.
The output of this final step is a repaired align-
ment, pruned of all those mappings for which the
concept glosses resulted incompatible.

In the evaluation phase of our mappings repair al-
gorithm we have calculated the precision of the re-
paired alignment against a reference alignment. The
results of the evaluation are depicted in Table 3. The
precision has been computed using the precEval func-
tion provided by the Alignment API. The P column
shows the precision of the tests without any repair-
ing procedure whereas the PR column represents the
precision obtained from the repaired alignment after
applying our approach. The names of the ontologies
used is shown in each test column header, except for
the extension that is always .owl.

As shown by the results most of the tests present a
higher precision after the application of the Adapted
Lesk repairing procedure. In particular, for both
SUMO and OpenCyc WS methods, the comparison
with old precision always results to be in favour of the
repaired alignment. For SUMO NS method one test
only gives a worse precision after the pruning process
while for OpenCyc NS 2 tests out of 10 give no gain
and 2 tests have a lower precision. The average gain in
precision after our repair process using OpenCyc WS
amounts at 20%, using OpenCyc NS is 3%, while for
SUMO WS is 15%, and for SUMO NS is 8%. The to-
tal average gain is 11,5%. The total average error es-
timation, meaning that the algorithm discards correct
correspondences (false negatives) amounts to 2%.

5http://tartarus.org/∼martin/PorterStemmer/

Table 3: Comparing Precision in Tests Results.

P PR
Test1 - Ka, Bibtex

SUMO, NS 0.67 0.83
SUMO, WS 0.38 0.46

OpenCyc, NS 0.71 0.83
OpenCyc, WS 0.56 0.83
Test2 - Biosphere, Top-bio

SUMO, NS 0.00 0.00
SUMO, WS 0.16 0.57

OpenCyc, NS 0.00 0.00
OpenCyc, WS 0.03 0.50
Test3 - Space, Geofile

SUMO, NS 0.45 0.64
SUMO, WS 0.14 0.34

OpenCyc, NS 0.55 0.62
OpenCyc, WS 0.21 0.48
Test4 - Restaurant, Food

SUMO, NS 0.34 0.40
SUMO, WS 0.25 0.31

OpenCyc, NS 0.42 0.36
OpenCyc, WS 0.29 0.34
Test5 - MPEG7Genres, Subject

SUMO, NS 0.42 0.54
SUMO, WS 0.28 0.50

OpenCyc, NS 0.47 0.48
OpenCyc, WS 0.20 0.44
Test6 - Travel, Vacation

SUMO, NS 0.31 0.30
SUMO, WS 0.28 0.29

OpenCyc, NS 0.15 0.22
OpenCyc, WS 0.13 0.24
Test7 - Resume, Agent

SUMO, NS 0.44 0.51
SUMO, WS 0.25 0.41

OpenCyc, NS 0.42 0.44
OpenCyc, WS 0.22 0.41
Test8 - Resume, HL7 RBAC

SUMO, NS 0.57 0.62
SUMO, WS 0.28 0.49

OpenCyc, NS 0.71 0.70
OpenCyc, WS 0.28 0.54
Test9 - Ecology, Top-bio

SUMO, NS 0.12 0.15
SUMO, WS 0.09 0.16

OpenCyc, NS 0.14 0.14
OpenCyc, WS 0.11 0.14
Test10 - Vertebrate, Top-bio

SUMO, NS 0.29 0.40
SUMO, WS 0.07 0.15

OpenCyc, NS 0.67 0.67
OpenCyc, WS 0.16 0.28

A comparative evaluation with the other ap-
proaches depicted in section 2.4 would be difficult:
methodologies are disparate, not every system is fully
automatic as our and experiments were conducted on
test sets that are not comparable6. Moreover, in (Haeri

6Our test ontologies consist of 112 concepts on average.
This dimension is greater than that of the benchmark on-
tologies used in the above studies, based on the OntoFarm

A CORRESPONDENCE REPAIR ALGORITHM BASED ON WORD SENSE DISAMBIGUATION AND UPPER
ONTOLOGIES

245

et al., 2006) no experiments are presented. Never-
theless, it’s worth mentioning that in (Meilicke et al.,
2007; Meilicke et al., 2008a) the average gain in pre-
cision is 16% but the error rate is omitted, while in
(Meilicke et al., 2008b) the average gain in precision
is 16% (with average error rate 1%) and 18% (with
average error rate 5%), using reference disjointness
and learned disjointness respectively.

5 CONCLUSIONS AND FUTURE
WORK

This paper focuses on a new automatic approach for
repairing ontology alignments based on WSD tech-
niques, in particular on the Adapted Lesk algorithm,
and on upper ontologies used to enrich the context
necessary to compute the meaning disambiguation of
concepts and thus process the repairing task.

Our future work will focus on the extension of the
context window for each concept of a mapping by ex-
ploiting the local context available in the input on-
tologies, such as for example sub- and super concepts
structure as well as other related concepts. Free text
comments attached to the concept can also contribute
to the context construction.

Another extension we wish to implement, in order
to lower the error rate, is the refinement of the scores
computation, considering all the possible overlaps be-
tween two glosses in the final score composition, as
well as introducing a threshold to filter more relevant
winner glosses.

A comparative evaluation between our approach
and the other existing completely automatic method-
ologies for mappings repair on the same test set is an-
other activity that we are going to accomplish.

We also wish to exploit other WSD techniques for
both mappings repair and ontology matching tasks.
The design and implementation of an ontology match-
ing procedure based on Adapted Lesk and the ex-
ploitation of local context as well as upper ontologies
is on its way.

ACKNOWLEDGEMENTS

The work of the first author was partly supported
by the KPLab project funded by EU 6th FP. The
work of the second author was partly supported by
the Italian research project Iniziativa Software CINI-
FinMeccanica.

Dataset, with 39 concepts on average.

REFERENCES

Agirre, E. and Edmonds, P. (2007). Word Sense Disam-
biguation - Algorithms and Applications. Springer.

Banerjee, S. and Pedersen, T. (2002). An adapted Lesk al-
gorithm for word sense disambiguation using Word-
Net. In Gelbukh, A. F., editor, CICLing 2002, volume
2276 of LNCS, pages 136–145. Springer.

Do, H. H., Melnik, S., and Rahm, E. (2002). Compar-
ison of schema matching evaluations. In Chaudhri,
A. B., Jeckle, M., Rahm, E., and Unland, R., editors,
NODe 2002, volume 2593 of LNCS, pages 221–237.
Springer.

Euzenat, J. and Shvaiko, P. (2007). Ontology Matching.
Springer.

Fellbaum, C., editor (1998). WordNet – An Electronic Lexi-
cal Database. The MIT Press.

Gangemi, A., Guarino, N., Masolo, C., Oltramari, A., and
Schneider, L. (2002). Sweetening ontologies with
DOLCE. In Gómez-Pérez, A. and Benjamins, V. R.,
editors, EKAW 2002, volume 2473 of LNCS, pages
166–181. Springer.

Haeri, S. H., Hariri, B. B., and Abolhassani, H. (2006).
Coincidence-based refinement of ontology matching.
In SCIS+ISIS 2006.

Lenat, D. and Guha, R. (1990). Building large knowledge-
based systems. Addison Wesley.

Lesk, M. (1986). Automatic sense disambiguation using
machine readable dictionaries: how to tell a pine cone
from an ice cream cone. In SIGDOC ’86, pages 24–
26. ACM.

Lin, F. and Sandkuhl, K. (2008). A survey of exploiting
wordnet in ontology matching. In Bramer, M., ed-
itor, IFIP AI, volume 276 of IFIP, pages 341–350.
Springer.

Mascardi, V., Locoro, A., and Rosso, P. (2009). Automatic
ontology matching via upper ontologies: A systematic
evaluation. IEEE Trans. Knowl. Data Eng., to appear.

Meilicke, C., Stuckenschmidt, H., and Tamilin, A. (2007).
Repairing ontology mappings. In AAAI 2007, pages
1408–1413. AAAI Press.

Meilicke, C., Stuckenschmidt, H., and Tamilin, A. (2008a).
Reasoning support for mapping revision. J. Logic and
Computation.

Meilicke, C., Völker, J., and Stuckenschmidt, H. (2008b).
Learning disjointness for debugging mappings be-
tween lightweight ontologies. In Gangemi, A. and
Euzenat, J., editors, EKAW, volume 5268 of LNCS,
pages 93–108. Springer.

Niles, I. and Pease, A. (2001). Towards a standard upper
ontology. In Welty, C. and Smith, B., editors, FOIS
2001, pages 2–9. ACM.

KEOD 2009 - International Conference on Knowledge Engineering and Ontology Development

246

