
TARANTULA
A Scalable and Extensible Web Spider

Anshul Saxena1, Keshav Dubey1, Sanjay K. Dhurandher2 and Issac Woungang3
1 Division of Computer Engineering, Netaji Subhas Institute of Technology, University of Delhi, Delhi, India

2 CAITFS, Division of Information Technology, Netaji Subhas Institute of Technology, University of Delhi, Delhi, India

3 Department of Computer Science, Ryerson University, Toronto, Canada

Keywords: Crawler, Compressed Tries, Crawling Strategies, Distributed Processing.

Abstract: Web crawlers today suffer from poor navigation techniques which reduce their scalability while crawling
the World Wide Web (WWW). In this paper we present a web crawler named Tarantula that is scalable and
fully configurable. The work on Tarantula project was started with the aim of making a simple, elegant and
yet an efficient Web Crawler offering better crawling strategies while walking through the WWW. This
paper also presents a comparison with the Heritrix (Mohr et al.) crawler. The structure of the crawler
facilitates new navigation techniques which can be used with existing techniques to give improved crawl
results. Tarantula has a pluggable, extensible architecture that further facilitates customization by the user.

1 INTRODUCTION

The World Wide Web (WWW) or the web can be
viewed as a huge distributed database across several
million of hosts over the Internet where data entities
are stored as web pages on web servers. The data on
the Web is varied, mostly unstructured and not
catalogued and their logical relationships are
represented by hyperlinks. According to Netcraft
survey in April 2009, the number of hostnames has
increased by ten times to 232,000,000 than what it
was in 1995. On the first look, implementation of a
web crawling system appears to be trivial. However,
due to the enormous size of the web, its high rate of
expansion, its variedness and non uniformity,
making a web crawler capable of following links and
downloading web pages as it moves from one
website to another is a complex task.

A good crawler system can be judged on the
basis of two important parameters. The first
parameter is the crawling strategy used by the
crawler. While there are many existing crawling
strategies (Hafri and Djeraba, 2004) each one with
its merits and demerits, choice of crawling strategy
used is a key factor in deciding the scalability of the
web crawler. The other important parameter is the
performance of the crawler within the allotted

resources. Limitations of primary and secondary
memory and network bandwidth are the key
bottlenecks in the performance of a crawler. Also,
the size of the Internet is in hundreds of Terabytes.
Hence, it is imperative to have a design that extends
to handle these factors effectively. This paper
focuses on the design and architectural details of
Tarantula that incorporates all the above mentioned
features.

The remaining paper is organized as follows. In
section 2, we discuss about the previous work done
in this area. Our motivation for this project is
presented in section 3. Section 4 describes briefly
the architecture of Tarantula. Section 5 explains the
algorithms and the hashing techniques used in the
various modules. We present our results in section 6
and then finally conclude this work in section 7 and
give the future work that can be carried out in this
dimension in section 8.

2 RELATED WORK

When the Internet first came into existence, there
were very few web pages on the web hence a web
crawler was not necessary at that time. But with the
internet revolution in the last decade, the number of

167
Saxena A., Dubey K., Dhurandher S. and Woungang I. (2009).
TARANTULA - A Scalable and Extensible Web Spider.
In Proceedings of the International Conference on Knowledge Management and Information Sharing, pages 167-172
DOI: 10.5220/0002302001670172
Copyright c© SciTePress

web pages online grew exponentially, and thus the
need for a search engine to index these pages
became indispensable. Web spiders were used by
these search engines to scale up the web and hence
they became popular. Since then, the web spiders
have been crawling the web on a regular basis.

A popular web crawler is the UbiCrawler (Boldi
et al., 2004). It is made up of several web agents that
scan their own share of the web by autonomously
coordinating their behaviour. Each agent performs
its task by running several threads, each dedicated to
scan a single host using a Breadth-First visit thus
ensuring that politeness is maintained as different
threads visit different hosts at the same time.
However, breadth-first navigation technique being a
top-down approach results in web crawler missing
out on possible detection of new URLs that can be
obtained from already discovered URLs. For
example, given a URL say
www.example.com/pics/page1.html, there might be
possible existence of URLs like
www.example.com/pics/ and www.example.com/
pics/page2.html, etc. Discovering such URLs from
the existing URLs increases the scalability of the
web crawler.

Heritrix is the web crawler developed by Internet
Archive's, an open-source corporation. Heritrix
provides a number of storing and scheduling
strategies to crawl the seed list. Each of its crawler
process can be assigned up to 64 sites to crawl, and
it is ensured that no site is assigned to more than one
crawler. The crawler process reads a list of seed
URLs for its assigned sites from disk into the
queues, and then uses asynchronous I/O to fetch
pages from these queues in parallel. After the page is
downloaded, the crawler performs link extraction on
it and if a link refers to the site of the page it was
contained in, it is added to the appropriate site
queue; otherwise it is logged to disk. Periodically, a
batch process performs merging of these logged
“cross-site” URLs into the site-specific seed sets and
thus filtering out duplicates in the process and the
process is repeated till exhaustion of URL in the list.

KSpider (Koht-arsa and Sanguanpong, 2002), is
a scalable, cluster based web spider. It uses a URL
compression scheme that stores the URLs in a
balanced AVL tree. The compressed URLs are
stored in memory rather than on hard disk because
storing the URLs in memory improves the
performance of the crawler. Common prefix among
URLs is used to reduce the size of the URLs by
storing the common prefixes once and reusing them
for many URLs. However, the structure of AVL

restricts the number of children to two and increases
the height of the tree even though it is balanced.

Tarantula capitalizes over KSpider by making
optimal use of the common prefixes among URLs
by using a slight modified version of compressed
tries. These data structure are broad and therefore
can have more than two children thereby decreasing
the height of the tree. Also, unlike KSpider,
Tarantula stores all the URLs belonging to the same
host in the same compressed trie. This is useful in
restricting the depth of crawling a hostname and also
provides easy mechanism for ensuring politeness of
the crawler system. Applying compression
algorithms to URLs and then expanding them again
leads to a lot of CPU usage and time expenditure. It
is therefore advantageous to compress the URLs
based on common prefixes. Though the compression
is not as high, the speed of the crawler is greatly
enhanced.

3 MOTIVATION

One of the initial motivations for this work was to
develop a crawling system which is able to scale a
greater degree of the web. The crawling system
should be able to process a large number of URLs
from far and wide thus trying to cover the entire
breadth of the Internet. This prompted us to come up
with unique crawling strategies, which when
combined with the page ranking and refreshing
crawling schemes, gives excellent results.

We also wanted that the design used data
structures that reduce the amount of I/O needed and
CPU processing performed to pursue the newly
extracted URLs for downloading the web pages.

 By looking at some URLs, it is possible to
detect the existence of newer URLs that might be
valid but have not yet been discovered by the
crawler possibly because of broken web links.
Therefore, mining on the URLs discovered was yet
another motivation behind development of Tarantula
web crawler.

KMIS 2009 - International Conference on Knowledge Management and Information Sharing

168

Figure 1: Tarantula Architecture.

4 ARCHITECTURE

The Figure 1 depicts the architecture of the proposed
Tarantula web crawler. The URL Storage and
scheduler module sends a list of URLs to the Data
Collector module for downloading the
corresponding web pages. It consists of URL Buffer
Queue which stores a queue of URLs that are to be
fetched by the crawler. One by one the Data
Downloader sub module fetches the web pages from
the Internet and sends the downloaded data to the
Data Processing module. During the process of
downloading the web page, the crawler system
maintains a DNS repository as well as a DNS cache
to speed up the download rate of the crawler by
avoiding latency caused by redundant DNS
resolving queries.

The web page downloaded by the Data Collector
module is sent to the Data Processing module. Here,
the web page is stored as a data stream variable and
is processed by the URL Extractor to retrieve fresh
web links from the web page and the Stats Collector
sub module processes it to collect statistical data
about the web page. Tarantula can be configured to
collect different types of statistical data from the
web pages. Once processed, the web page is handed
over to a free “save thread” from the thread pool that
store the web page at an appropriate location on the
hard disk. The list of freshly extracted URLs is then
sent to the URL Processing module.

The URL Processing module firstly consists of a
URL Normalizer sub module which converts the
URL into their canonical form. This is necessary to
avoid different URLs pointing to the same web page
from being scheduled for downloading. While there
is no universally accepted canonical form,
depending upon the focus of the crawler system,
appropriate normalization techniques can be applied.
The URL Filter reads the output from the URL
Normalizer and filters out unwanted or already
downloaded URLs. Here again different filters based
on keywords, file type, etc. can be used depending
upon the requirement. The filtered and normalized
URLs are now ready to be scheduled for
downloading. The URLs to be downloaded by
another crawler thread or by a crawler thread on
another terminal is decided by the Communicator
module. This module is responsible for unbiased
distribution of URLs to every crawler thread on
every terminal. Using a hash technique, the URL list
is distributed amongst crawler threads running on
different terminals on a high speed crawler LAN.
Those URLs that are to be scheduled for
downloading by the current crawler thread is then
sent to the URL Storage and Scheduling module.

The URL Storing and Scheduling module
consists of a URL Seen Test sub module which
checks if the URL has been fetched by the crawler
system or not. Those URLs that have been fetched in
the past and need no refreshment are removed while

TARANTULA - A Scalable and Extensible Web Spider

169

the rest are forwarded to the URL Packing module
where the URLs are stored in memory as
compressed tries (Maly, 1976). Compressed tries
apart from reducing the size of the URL offer other
advantages as discussed later. From the compressed
tries, the Scheduler sub module picks out the URLs
in the order in which they are to be downloaded by
the Data collector module.

This entire cycle is repeated by every crawler
thread on every terminal on the high speed LAN.

5 ALGORITHM

The algorithm conceived for the Tarantula makes it
the most unique feature of the entire
implementation. This spans over the new scheduling
methodologies and provides an innovative URL
compression technique.

5.1 Data Structure

The URLs filtered out from the URL Seen Test are
packed into a data structure of the type compressed
tries. The URLs are hashed on their host name as per
two equations: equation 1 and equation 2 as shown
below that distribute the URLs between different
crawler terminals, and between the different threads
of a terminal into corresponding compressed trie in
which the URL is to be packed in.

hash(URL) = (Σ Sum of ASCII values of even
characters of hostname) % Total number of Threads
per Crawler System

(1)

hash(URL) = (Σ Sum of ASCII values of odd
characters of hostname) % Total number of Threads
per Crawler System

(2)

Figure 2: Compressed Trie structure.

The compressed trie node as shown in Figure 2
consists of a variable storing a portion of the URL
and a list of characters storing the first character of
the portion of the URL represented by every child

node. The order of the characters in the list decides
the order of find of the URLs by the crawler thread.

Since the trie stores the URLs based on their
common parts, it offers high compressions for big
websites having long URLs with large common
parts. This data structure has the advantage that
URLs of the same host names are stored in the same
sub trie. Hence only one node (may be more) stores
the host name while all the URLs with the same host
name share the sub trie and as we go down the sub
trie, the URL represented by the current node is used
as prefix by the child node to represent a new URL.

The crawler follows a bottom up approach by
starting with the URL represented by the leaf node
and moves upwards to retrieve new URLs. It is also
possible for the crawler to retrieve URLs that have
not yet been seen by the crawler but are implicitly
understood. To see how, consider a sample trie as
shown in Figure 3.

Figure 3: Retrieval of new URLs.

If the crawler got a URL
www.example.com/video/clips/, it is stored in the
compressed tries as shown in Figure 3. The crawler
follows a bottom-up approach to retrieve the URLs
from the compressed tries. In this case, it starts with
the leaf node “clips/” and identifies the URL
www.example/com/video/clips/. After scheduling
this URL, it moves on to a node at a higher level
“video/” representing the URL
www.example.com/video/. Finally, we get
www.example.com/ as the last URL. Hence from
one URL, the crawler is implicitly able to find out
two new URLs which it has not seen before. Also, if
the crawler had discovered a new URL
www.example.com/pics1/Page1.html, then there
might be a possibility of existence of other URLs
such as www.example.com/pics1/Page2.html or
www.exampe.com/pics2/Page1.html. The bottom-up
approach imposed by the above data structure makes
it possible to mine the discovered URLs and help
discovering possible new URLs.

5.2 Scheduling Techniques

Two custom scheduling techniques have been
devised which are used in conjuncture with the URL

KMIS 2009 - International Conference on Knowledge Management and Information Sharing

170

prioritization and ranking schemes for better crawl
results. These have been discussed below.

5.2.1 Top Sliding Window Technique

Consider a compress trie consisting of URLs of n
different websites. The scheduler will maintain a
sliding window of size less than or equal to n. By
top sliding window we mean that the sliding window
will contain elements pointing to the left most leaf
node of all the child nodes of the compressed trie
which have node values as the hostnames of
different websites as shown in Figure 4.This will
guarantee that the URLs pointed to by elements in
the sliding window belong to different web servers.
Each compressed trie will have a different sized
sliding window and a URL in any sliding window
will have different host name from any other URL in
any sliding window. Thus the politeness of the
crawler is maintained.

Figure 4: Top Sliding Window Scheduling.

For simplicity, let us assume that level 1 nodes of a
compressed trie consists of www.example1.com,
www.example2.com, www. example3.com, and
www.example4.com as shown in Figure 5. Let us
also assume that all these URLs point to different
web servers and the crawler maintains a sliding
window of size 2. The compiler picks up the left
most leaf of the www.example1.com sub trie and the
www.example2.com sub trie in the first crawl
(represented as dotted border rectangle). In the
second crawl, the sliding window moves to the right
and contain URLs represented by the left most leaf
of www.example3.com and www.example4.com
(represented as single border rectangle).

Figure 5: Top Sliding Window Scheduling Example.

5.2.2 Leaf Sliding Window Technique

In this technique, we maintain a sliding window
containing pointers to all the leaf nodes of a trie as
shown in Figure 6. The size of the window is fixed
for all the compressed tries and it moves to and fro
from the left most leaf node to the right most leaf
node of the trie. The sliding windows are then
arranged in a column fashion to form a table of
URLs. Row wise scheduling of the URLs in the
table so formed is done by the URL Scheduler.

Figure 6: Leaf Sliding Window Scheduling.

In both the above crawling strategies, the number of
elements must be large enough to have sufficient
interval between the URLs with the same hostname.

6 EXPERIMENTAL RESULTS

The proposed web spider Tarantula is written
entirely in C#.net. The operating system of the
crawler machine was Windows XP Service Pack 2
(SP2). Only one machine was used. Its processor
was the AMD Turion™ 64 X2 TL-60 2.00GHz and
had a RAM of 1GB with 320GB SATA hard disk.
The Tarantula was run for four hours on a shared
internet connection of 2Mbps. The Heritrix crawler
with which the comparison was performed is
Internet Archive’s open source web crawler project.
The number of threads used in Tarantula and
Heritrix were 10. Heritrix was run under similar test
condition and the results have been compiled as

TARANTULA - A Scalable and Extensible Web Spider

171

follows:

Figure 7: Average Download Rate vs. Time.

Tarantula initially started slowly but picked up and
maintained a speed of about 2 documents per second
(doc/sec), while the Heritrix had an initial spike of
2.1 doc/sec but slowed down to nearly 1.5 doc/sec.
The Figure 7 shows the plot of average download
rate versus the time for Tarantula as well as Heritrix.

Figure 8: URLs Discovered vs. Time.

Figure 9: Bandwidth Utilization vs. Time.

The Figure 8 shows the number of URLs discovered
with time. From the graph, it is clear that the mining
of the URLs and the fast crawling rate have resulted
in exceptionally good results for the proposed
Tarantula crawler than the Heritrix crawler.

The Figure 9 shows the percentage bandwidth
utilization of Tarantula and Heritrix with time. With
high and low curves, the utilization of the bandwidth
by both the crawlers is nearly same.

7 CONCLUSIONS

In this paper, we have described the architecture and
implementation details of Tarantula web crawler,
and have presented some preliminary experimental
results for the same. We have been successful in
building such a system using efficient data structures
and scheduling algorithms. We have also used a
unique and particularly useful crawling strategy that
helps our crawler to make its requests politely
without compromising on the speed at which the
web pages are downloaded. Based upon the crawling
results, our crawling system proved to be much more
scalable and faster than the Heritrix web crawler.

8 FUTURE WORKS

Most of the web is hidden behind forms. To retrieve
these pages, the web crawler should be equipped to
handle deep web. Another way to handle this
problem is to divide the web into different categories
and design focused crawlers for each of these
categories. Tarantula is still a broad crawler which
does not perform either deep web crawling or
focused crawling. This technique may be considered
as a future enhancement to this work.

REFERENCES

Djeraba, C., Hafri, Y., 2004. Dominos: a New Web
Crawler's Design. In ECDL’04, 8th European
Conference on Research and Advanced Technologies
for Digital Libraries. Springer Press.

Mohr, G., Stack, M., Ranitovic, I., Avery, D. and
Kimpton, M., 2004. An Introduction to Heritrix An
open source archival quality web crawler. In
IWAW’04, 4th International Web Archiving Workshop.
Springer Press.

Boldi, P., Codenotti, B., Santini, M., Vigna, S., 2004.
UbiCrawler: A Scalable Fully Distributed Web
Crawler. In 8th Australian World Wide Web
Conference. John Wiley & Sons Publications.

Koht-arsa, K., Sanguanpong, S., 2002. High Performance
Large Scale Web Spider Architecture. In
International Symposium on Communications and
Information Technology. ANREG Publication.

Maly, K., 1976. Compressed Trie. ACM Publications.

KMIS 2009 - International Conference on Knowledge Management and Information Sharing

172

