
ONTOLOGY DESIGN THROUGH MODULAR REPOSITORIES

Ali Hashemi and Michael Gruninger
Semantic Technologies Laboratory, University of Toronto, 5 King’s College Circle, Toronto, Canada

Keywords: Ontologies, Ontology design, Knowledge representation, Knowledge engineering.

Abstract: Many real world problems require a language at least as expressive as first order logic, yet there exist many
barriers to the generation of first-order ontologies. One of the biggest hurdles is the specification of axioms
that capture the intended semantics of a user’s concepts. This paper presents an ontology design algorithm
enabled by modular ontology repositories that consist of theories organized into disjoint hierarchies, each of
which is a set of nonconservative extensions. The ontology design algorithm provides axiomatizations of re-
lations by eliciting intended models from the users, identifying the strongest theories in the repository that
are satisfied by the intended models, and incorporating user feedback to verify the proposed set of axioms.
This approach emphasizes the communication of semantics rather than syntax via concrete examples, allow-
ing users to express intuitions about their domains without extensive background in the intricacies of formal
languages.

1 INTRODUCTION &
MOTIVATION

Many of the problems encountered in realistic appli-
cations require ontologies that are specified in a lan-
guage with at least first-order expressivity. Never-
theless, first-order logic poses significant hurdles for
many subject matter experts. Few have the adequate
training or familiarity in first-order logic to express
their ideas with facility in the language. The syn-
tax and grammar of most implementations of first-
order logic may often appear unintuitive and un-
wieldy. Compounding these barriers is also a paucity
of guidelines and tools to support the generation of
axioms; no best practices exist to help designers for-
mulate axioms. Moreover, once expressed, it may be
difficult to gauge the quality of the axioms.

Indeed, as Hou et al have noted, “research in clas-
sifying and representing axioms in a user-friendly
way has been relatively sparse in the knowledge-base
system community” (Hou et al., 2005). Several no-
table attempts have been made in this regard, both
attempting to develop patterns and templates for ax-
iom formulation based on existing ontologies (Hou
et al., 2005; Staab and Maedche, 2000). More re-
cent work has focused on identifying “design pat-
terns” which ontology designers may reuse (Presutti
and Gangemi, 2008). Yet these works focus on di-
rectly representing the axioms to user, for exam-

ple by translating logical axioms into English - i.e.
www.ontologydesignpatterns.org. This work differs
drastically as it focuses on communicating with the
ontology designer at the semantic level. In many
fields a domain expert might be more comfortable
specifying a relation via concrete positive and nega-
tive examples.

A versatile ontology design algorithm has been
developed which allows ontology designers to cir-
cumvent the problem of becoming intimately famil-
iar with a first order logic language, instead allowing
them to focus on the semantics of what they wish to
represent. We do so by requiring only two things: (i)
that a domain expert be able to “draw” at least one
representation of a model for relation to be defined;
(ii) the subject matter expert must be able to recognize
whether models of existing ontologies are acceptable
manifestations of their relation. This algorithm is en-
abled by incorporating two simple principles in the
design of an ontology repository, allowing the repos-
itory to function as a “map” of known theories. The
algorithm then traverses the repository to deliver the
most appropriate axioms to the ontology designers.

The algorithm rests on the relationship between
a theory and its model (in the Tarskian sense). The
word model as used throughout this paper, refers to
the set of objects in a domain of discourse which sat-
isfy the axioms. While in general, the correspondence
between a set of models and a set of axioms that are

192
Hashemi A. and Gruninger M. (2009).
ONTOLOGY DESIGN THROUGH MODULAR REPOSITORIES.
In Proceedings of the International Conference on Knowledge Engineering and Ontology Development, pages 192-199
DOI: 10.5220/0002299201920199
Copyright c© SciTePress

satisfied by them are many to many, we address this
problem by exploiting properties of the accompany-
ing repository. This paper will begin by briefly de-
scribing the essential components driving the algo-
rithm, followed by the strategy employed to capitalize
the relation between syntax and semantics. Next, the
basic principles of the supporting ontology repository
will be provided, followed by the ontology design al-
gorithm and a sketch of its correctness proof. A brief
use case will provide a concrete example of the algo-
rithm in action.

2 MODELS AND LOGICAL
STRUCTURE

We consider a formal ontology as in the sense pro-
vided in (Guarino, 1998). Namely, an ontology Ok, is
a set of logical formulae in some language L that aim
to capture the intended models of a particular concep-
tualization C. A model for the ontology is constructed
via an interpretation I, assigning each element of the
vocabulary V to the extensional structure of the con-
ceptualization S = {D,R} and thus to either elements
of the domain D or the conceptual relations R (Guar-
ino, 1998).

The approach taken here is to bypass the syn-
tax and grammar of any particular formal language,
and instead let users specify concepts extensionally.
Particularly, if we focus our attention on the models
of any theory, we notice that they contain particular
structures. Take for example a Hasse diagram, which
is often used to represent models for partially ordered
sets. In these diagrams, nodes are taken to be ele-
ments from the domain of discourse, D and edges the
less-than-or-equal-to (leq) relation (from R). These
models implicitly capture the axioms which gener-
ated them; specifically, the way in which the edges
and nodes are constructed reflect the associated poset
axioms. While the mapping of nodes to say numbers,
and edges to leq is achieved via a particular interpre-
tation, the resultant model structures exist indepen-
dently of the interpretation which assigned them to
that conceptualization. Let us call this abstracted di-
agram a particular model structure (in this paper, we
use the term logical structure interchangeably) for a
theory. If we change our domain of discourse, the
axioms for posets could equally well apply to a par-
ticular notion of time, or some versions of mereology.

We exploit exactly this notion of model structure
to bypass the syntax of a formal language such as first-
order logic and allow ontology designers to specify
a particular relation via communication at the model
representation level alone. Of course, there exists

in general a many-to-many mapping between mod-
els and theories. Figuring out how to properly make
the transition from a set of models to the appropriate
theory is more involved. Once we start collecting and
growing the acceptable models, the number of candi-
date theories is reduced. Moreover, by keeping track
of those models which we do not want, we identify
the unintended models. By collecting a coherent set
of models that we want, and a set of those we don’t
want, in the limit we might reach a one-to-one map-
ping between a theory and a set of models.

The above is the key to our algorithm - we try to
find the best match between a theory in a given reposi-
tory and the set of (in)admissable models as identified
by an ontology designer. Since the set of intended
models, IM is not always immediately available, we
elicit a subset from the user, UM. As noted above, it is
not enough to jump from UM to a theory, T . Further
interaction is required in which the system provides
models SM of existing ontologies and the user identi-
fies as either admissible or not. In this way we may
be more confident in going from a set of models to a
theory. There are a number of further nuances to this
approach which will be elaborated in the rest of the
paper.

3 REPOSITORY

Underlying the design algorithm of course is a modu-
lar ontology repository - this where candidate theories
are selected from (Luettich and Mossakowski, 2004).
Any repository satisfying the two basic principles dis-
cussed later in this section, allows a successful imple-
mentation of the algorithm (guarantees its correctness
proof). For ease of understanding and concreteness,
in this paper we present a particular repository design
using the Common Logic Interchange Format (CLIF)
(Delugach, 2007).

Any such repository should extend along two di-
mensions: one which we call Abstraction Layers and
the other Core Hierarchies. Abstraction layers serve
to significantly reduce conceptual clutter and help bet-
ter delineate the types of theories being discussed;
moreover they are essential in helping satisfy the sec-
ond repository design criterion. Core Hierarchies
gather theories as a map which the algorithm tra-
verses.

3.1 Abstraction Layers

The repository serves as a sort of inverted upper on-
tology, since users are plugging in not necessarily to
reuse concepts such as time and space, but to reuse

ONTOLOGY DESIGN THROUGH MODULAR REPOSITORIES

193

the model structures of their underlying logical theo-
ries. In our example repository, we decided that math-
ematical theories corresponded to the lowest level of
abstraction.

Theories formalizing the notions of orderings,
groups, fields, geometries characterize a large family
of logical and model structures that recur frequently
in many applications. These theories form our base
abstraction layer. Our next Abstraction Layer con-
sists of theories from the traditional domain of upper
ontologies - formalizing notions such as Space, Time,
Mereotopology etc. Note that many of these concepts
actually reuse logical structures from the base mathe-
matical layer. Moving upwards thusly, we add layers
which characterize more and more specialized con-
cepts (say agents, or processes etc.)

The layers are connected to one another either via
representation theorems or mapping axioms. Discus-
sion of these links are outside the scope of this paper.
For the purposes of the algorithm, it suffices to say
that a repository ought be organized via some sort of
abstraction layers, as each abstraction layer consists
of Core Hierarchies, which drive the design process.

3.2 Core Hierarchies

As noted above, each layer is populated by a num-
ber of Core Hierarchies. A Core Hierarchy is a col-
lection of modules (theories or set of axioms), which
non-conservatively extend a conceptual domain. For
example, the notion of a partial order may be non-
conservatively extended in numerous ways from poset
(one module) to lattice (another module) to Boolean
lattice (yet another module). Of course, a repository
may consist of more than one core hierarchy - thus our
Abstraction Layer for mathematical theories consist
of separate hierarchies for posets, geometries, groups,
symmetries, fields etc.

The stipulation here that any compliant repository
must satisfy is that no Core Hierarchies at the same
level of abstraction may share a non-conservative ex-
tension with one another. If there exists a mod-
ule within an abstraction layer which is a non-
conservative extension of two hierarchies, then it sug-
gests that the two hierarchies should in fact be com-
bined as one.

In comparing two theories or modules in a core
hierarchy from the repository, we may also say that
one is stronger than another as follows. Given module
A and B, if A is a non-conservative extension of B,
then A is stronger than B by virtue of the fact that
more theorems may be proven.

To recap, there were two requirements for any
repository (modularity is taken as a given). First,

modules should be linked in such a way as to form
a Core Hierarchy, with the caveat of no shared non-
conservative extensions at the same abstraction level.
Following from this restriction, is that the repository
should incorporate the notion of abstraction layer (the
specific ordering of layers is left to the repository de-
signer).

4 ALGORITHM

Now that the basic reference point from which theo-
ries will be selected has been exposited, we shall de-
scribe how such a repository may be leveraged. The
algorithm consists of two parts, (i) elicitation of user
models and (ii) the proposal of models for existing
ontologies (see Figure 1.

The first component locates the user somewhere in
the repository, providing “bounds” for theories which
characterize the user’s intended models. Models de-
rived from existing ontologies in the repository, cou-
pled with user responses, tighten this bound, eventu-
ally selecting the strongest (if any) theories from the
repository which capture the user’s intuition. The fol-
lowing sections will elaborate each component.

4.1 Elicitation of User Models

Acquiring user models necessitates that there exist a
suitable representation for models of the concept or
relation under consideration. Such a representation is
not always obvious or available. However, any repre-
sentation of a model is suitable so long as we are able
to unambiguously and repeatedly generate a complete
diagram (the set of all positive and negative literals)
from the depiction. Consider again a Hasse diagram -
there are certain conventions for interpreting the dia-
gram - namely that edges are transitive and ordered
spatially. So long as these conventions are explic-
itly communicated and understood, we may always
generate the same complete diagram from a particu-
lar Hasse diagram, as in Figure 5.

The elicitation of models need not be restricted to
Hasse diagrams, indeed changing the conventions of
graph depictions might allow one to specify a model
for a non-transitive relation. Alternatively, an audi-
tory or tactile model depiction may be more natu-
ral for certain domains. For our proof of concept,
we developed a simple piece of software allowing a
user to specify binary relations using graphs. Users
could also explicitly modify conventions for convert-
ing graphs into complete diagrams. Once a complete
diagram for a model is generated, we identify which
theories the model satisfies. In this way, we locate the

KEOD 2009 - International Conference on Knowledge Engineering and Ontology Development

194

Inputs:
• At least one user generated model that is inter-

pretable by the ontology design tool.

• Yes or no answers by the user to the models se-
lected by the design tool

Outputs: The set of strongest axioms with respect
to the repository that is consistent with the user’s un-
derstanding as determined by the sets of accepted and
rejected models.

1. Elicit-Models

2. Select-Models

Figure 1: The Algorithm Axiom-Generation.

initial candidate theories which may characterize the
user’s intended models.

4.2 Initializing in the Repository

To begin the algorithm, we require at least one (or
more) user model, which is independently tested
against theories in a single core hierarchy via a
breadth-first specialization search1. We begin with
the most general module, see if it is satisfied by the
model, then move on to its children. If a particular
theory is not satisfied, then it and all its children are
pruned from the search tree. Moreover, since the hier-
archies share no non-conservative extensions, we may
explore them independently. We make use of an au-
tomated theorem prover or a satisfiability checker to
verify that the provided models satisfy the theories.

We may then compare the theories which were
satisfied by each user model. If no core-hierarchy
had at least one theory which was satisfied by all
user models, then the algorithm terminates - either the
user is trying to formalize inconsistent models, or the
repository has insufficient breadth. On the other hand,
if there is at least one module in some core hierarchy
which is satisfied by all models, then we may proceed
to the second phase of the algorithm. We present here
the algorithm in parts; while the steps are distributed
through the text, they comprise a single algorithm.

The steps in Figure 2 first collect all the mod-
ules in hierarchy j satisfied by user model i in
Consistent UMi, j. We take its intersection and rid all
the parents to yield the strongest theories in hierar-

1We will use the following terminology: CHm, j denotes
module m in hierarchy j, UMi denotes user model i, AboveK
is the set of all modules connected to and directly above
theory K, and BelowK is the set of all modules connected to
and directly below theory K.

1. Let UM = UMi the set of all models generated by
user

2. Breadth-First Specialization Search: If CHm, j
is satisfied by UMi, then add CHm, j to
Consistent UMi, j.

3. Termination Condition:
(a) If for any UMi every Consistent UMi is empty,

then End Algorithm.
(b) If for any j, the intersection of all

Consistent UMi, j is empty, then End Al-
gorithm.

4. Initialize: Let Consistent j =⋂
j Consistent UMi, j

5. Rid Parents: For every element CHm, j ∈
Consistent j if its child is in Consistent j then re-
move CHm, j from Consistent j

Figure 2: The Algorithm Elicit-Models.

chy j that are consistent with all the user models in
Consistent j. This set serves as the lower bound of
candidate theories, the upper bound is simply the root
of the hierarchy. We have thus located the user in the
repository and passed the initiative to the software.

One problem with trying to derive an underlying
theory by examining extensional models is that the
models might exhibit accidental properties. For ex-
ample, if asked to draw a triangle, many will inad-
vertently draw an equilateral or isosceles triangle. To
account for this condition, we must explore more gen-
eral theories and see if a model of them is acceptable
to the user. If so, then the weaker theory is appropri-
ate.

4.3 Select Models

Once user models have been mapped to the hierar-
chy, there are two scenarios: either there is a unique
lower bound or there are multiple candidate theories.
If unique, the algorithm proceeds to the Generalize
step in Figure 4 below. If not, the algorithm takes the
join of the strongest theories, T0, selects a model for it
and presents it to the user. If the user finds the model
acceptable, we proceed again to Generalize. If not,
the algorithm constructs all possible chains from each
strongest theory to T0.

In this case, we know that the theories the user de-
sires are bounded by T0 above and Consistent j below.
We traverse each chain from the most general theo-
ries (top down) showing models for each module. If
accepted, we terminate exploration of that chain and

ONTOLOGY DESIGN THROUGH MODULAR REPOSITORIES

195

store Ttest in Proposed j. Otherwise, we iteratively re-
move the top element till there is only one element left
in the chain. At this point, we test if the union of the
selected models in each chain is consistent. If so, we
have developed the strongest axioms from this hierar-
chy for the user, otherwise the algorithm terminates.
We then move to the component of the algorithm for
combining results from the various hierarchies.

If the resultant theories are not mutually consis-
tent, the algorithm terminates. The reason for this
apparent inconsistency in the user responses may be
that the user is trying to define a relation over multiple
sorts simultaneously. Alternatively, they may desire a
theory not in the repository. Since these cases cannot
be disambiguated, the algorithm simply exits.

Figure 3: The relation between modules (theories) and their
associated sets of models. Moving rightwards, we have
non-conservative extensions.

In the case where Consistent j consisted of a
unique theory in a core hierarchy, then instead of the
chain method, we look directly at the theories above
and below the initialized theory. The hierarchy func-
tions as a “map” which the algorithm navigates, pro-
pelled by user responses to proposed models. Imagine
the user is situated at T0 with models “above” and “be-
low” as in Figure 3, then the following algorithm ap-
plies. To ensure that T0 is the desired theory, we must
exhaust the search space by constructing models for
those above and combinations of those below. As be-
fore, to account for inadvertent properties in the set of
user models, we need to test the weaker theories. We
may do this by negating T0 and constructing a model
for each TAi. If any of these models are accepted, we
know that a more general theory is required, and we
reset T0 to one of those above.

If we can no longer generalize, then we look to
prune those below T0. We may construct as many
models corresponding to those areas in MTo above. In
this case, we learn through rejection. If these mod-
els are accepted, then the proposed axioms do not
change. A rejection however, results in the addition
of ¬TBi to the proposed axioms. In this process, as

illustrated in the steps below, we may ensure that the
strongest axioms from core hierarchy j are selected.
These steps are reflected in Figure 4.

Up to the Combine Hierarchies steps, we have
selected the strongest theories for the user’s intended
models from a single hierarchy. Of course, it may
have been the case that the user models satisfied the-
ories in more than one hierarchy. The algorithm up to
this point repeats for each core hierarchy which had
at least one theory which were satisfied by all the user
models, now we must combine the results.

For each core hierarchy j, which provided full
cover the user models, we now have the set H0, j which
are the strongest theories. We recall that our initial
stipulation was that each Core Hierarchy not share
a non-conservative extension with another. Conse-
quently, we need only check if the union of all H0, j
is consistent. If so, we have determined the strongest
axioms that are consistent with all user models, all
those denoted accepted and inconsistent which those
marked reject. Otherwise, the algorithm terminates
due to possibly conflicting inputs by the user.

4.4 Theorem and Correctness Proof

Given user inputs and a modular repository, the cor-
rectness of the algorithm is characterized by the fol-
lowing theorem:

Theorem 1. The algorithm Axiom-Generation gen-
erates a set of the strongest theories H0 that satisfy
the following properties:

1. H0 is a composite of the theories from the ontology
repository

2. H0 is consistent with all user generated models.
3. H0 is consistent with all selected models that the

user denoted Accept
4. H0 is inconsistent with all selected models that the

user denoted Reject

The full correctness is too long for this paper, here
we only provide a sketch. We first need to prove four
lemmata, the first (lemma 1) showing that the algo-
rithm applies i.e. ensuring that there is at least one
theorem in some core hierarchy that satisfies all the
user models. If such a theory exists, then the algo-
rithm may continue, otherwise it terminates as shown
in Figure 2 above. Lemma 2 establishes that for
each core hierarchy, the algorithm initializes at the
strongest theories which are satisfied by all the user
models. Briefly, using lemma 1, we can show this is
achieved by the Rid Parents sub process.

Lemma 3 shows that for each investigable core hi-
erarchy, we may attain a set of theories H0, j which are

KEOD 2009 - International Conference on Knowledge Engineering and Ontology Development

196

1. For every hierarchy, where |Consistent j|> 0

2. If |Consistent j| > 1 and user rejects MTo (where
MTo is a model selected for T0 =

∨
(CHm, j ∈

Consistent j))

(a) Construct all chains, Chain(T0, A), where A ∈
Consistent j

(b) For each chain, create MTtop for Ttop (top of
chain k)

i. If MTtop is accepted, MTtop ∈ Accept j, end
chain, add Ttop to Propose j

ii. If MTtop is rejected, MTtop ∈ Re ject j, remove
top element of chain, Ttop is now new top ele-
ment of chain. If top=bottom, end chain, add
Ttop to Propose j

(c) If no more chains
i. If Propose j is not consistent End Algorithm

ii. If Propose j is consistent, check next hierar-
chy, otherwise, goto Combine Hierarchies

Generalize
3. Set T0 = Consistent j

4. For each Ap ∈ AboveTo, Construct MAp from
Ap

⋃
¬BelowAp

(a) If MAp is rejected, then remove Ap from
AboveTo and MAp ∈ Re ject j

(b) If MAp is accepted, then MAp ∈ Accept j and set
T0 = Ap, generate new AboveTo

Specialize
5. Construct MTo∗ from T0∗= T0

⋃
¬BelowTo

(a) If accepted, MTo∗ ∈ Accept j

(b) If rejected, MTo∗ ∈ Below j and Propose j =
BelowTo

6. For every Bp ∈ BelowT o Construct MBp∗ where
Bp∗= Bp

⋃
¬(BelowTo/Bp)

(a) If accepted, MBp∗ ∈ Accept j try next Bp

(b) If rejected, MBp∗ ∈ Re ject j, add ¬Bp to
Propose j

7. H0, j =
⋃

Propose j

8. Combine Hierarchies
(a) Let Combine =

⋃
j H0, j

(b) If Combine is consistent, then display: “The
strongest set of axioms from the repository
which correspond to your inputs are Combine”
End Algorithm

(c) Else there is no set of axioms in the repository.

Figure 4: The Algorithm Generalize-Models.

the strongest theories in that hierarchy that are consis-
tent with all the elements of Accept j and inconsistent
with all elements of Re ject j. Finally, lemma 4 ensures
that the set Combine is the union of the strongest theo-
ries from the repository that are consistent with every
Accept j and inconsistent with every Re ject j.

With these lemmata, we may prove the correctness
theorem, since by lemma 1 we know the algorithm
engages only if there is a hierarchy in the repository
which satisfies all the user models (hence satisfying
property 1 and 2). Lemma 2 shows that we can always
select the strongest theories in a core hierarchy, while
lemma 3 shows that these theories will be consistent
with Accept j and inconsistent with Re ject j. Finally,
lemma 4 shows that we may extend this result to all
Accept and Reject sets, otherwise the algorithm termi-
nates. Combining these results satisfies the final two
properties of the theorem.

5 USE CASE

In this section we will briefly show how this algo-
rithm would apply for a real world concept. We
take as given the existence of an ontology for par-
tially ordered sets organized as a core hierarchy. We
aim to add axioms to the flows relation from SUMO,
which aside from categorization axioms, only asserts
its anti-symmetry and transitivity (Nichols, 2004).

User models have been constructed by looking at
a map and selecting rivers as nodes and edges as the
flows relation. Figure 5 illustrates two such depictions
of models for flows. Each model is converted into a
complete diagram and tested against the poset hierar-
chy to see which theories are satisfied by them.

Axioms for posets, comparability graphs, down
forests and down trees are all satisfied by these mod-
els. However we initialize only at down tree since all
the other theories have children in Consistent j. Since
we have a unique theory as the current lower bound,
we do not invoke the chain investigation and instead
try to generalize and then specialize.

In this case, Abovedowntree = {Down Forest,
Bounded Meet Semi Lattice}. The algorithm selects a
model for each that is not a down tree. The first model
proposed is a series of down trees (a down forest). As
we are acting as the user in this case, our understand-
ing is that most uses of flow have every river or body
of water flowing into a unique body of water.2 Hence,
we reject this model.

The next model is that of a bounded meet semi lat-
tice that is not a down tree (i.e. a child may have more

2not necessarily so, but assumed for this use case

ONTOLOGY DESIGN THROUGH MODULAR REPOSITORIES

197

Figure 5: Hasse diagram conventions for two user models.
Nodes are names of rivers, edges are the flows relation.

than one parent). This seems acceptable since rivers
may bifurcate then join up again, so it is accepted.
The algorithm now has a new T0, namely, bounded
meet semi lattice. We create a new AboveT o = poset
in this case and again, we the present the user with a
model for a poset which is not a bounded meet semi
lattice. This model is rejected because it admits rivers
ultimately flowing into more than one body of water.

Figure 6: Several software proposed models: (a) uniquely a
bounded meet semi lattice; (b) down tree; (c) bounded meet
semi lattice that is not a down tree.

We now try to “Prune Specialize” by investigating
BelowTo = {Down Tree, Meet Semi Distributive Lat-
tice, Meet Pseudo-complemented Lattice, Meet Semi
Modular Lattice}. The first model presented is thus a
uniquely bounded meet semi lattice that does not ex-
hibit the properties of any of its children. This seems
plausible so we click accept. Next, the algorithm se-
lects a model which satisfies each element of BelowTo
exclusively. Every model seems like a potential mod-
els of rivers flowing into one another, so we accept
each and they are all added to Accept j. As there are
no other combinations to try, nor other core hierar-
chies to investigate, we have H0 = H0, j = Propose j =
{Bounded-Meet-Semi-Lattice} and Accept j is the set
of all the user models plus those we accepted, while

Re ject j is the set of all the rejected models. We note
that the axioms for bounded meet semi lattice were
satisfied by all the models in Accept j and not by those
in Re ject j. Thus we have provided axioms for flows
by reusing axioms for leq as constrained by the theory
for bounded meet semi lattices.

6 DISCUSSION

In this paper we have presented two basic design prin-
ciples for any ontology repository which enables an
ontology design algorithm. The algorithm uses the
repository as a “map” of theories through which it
navigates to identify the most appropriate character-
ization of the user’s intended models.

It relies on the structure of the repository and the
nature of non-conservative extensions. User models
initialize the algorithm within one or more core hier-
archies in a single abstraction layer. The algorithm
then tries to determine whether there were acciden-
tal properties in the user models by exploring weaker,
more general theories. It does so by proposing mod-
els which do not exhibit the stronger qualities. Once
these have been exhausted, the algorithm attempts to
identify the strongest possible theories, by exploring
the set of modules below the selected theory. The al-
gorithm uses falsification to drive its navigation of the
repository. It selects models based on the interesting
areas as shown in Figure 3. Each region in the “model
space” is an interesting one which is accounted for
and tested by the algorithm.

In its current guise, the algorithm only formalizes
one relation at a time. A Sandbox Tool has been de-
veloped for graphs, which allows users to depict mod-
els for binary relations while explicitly specifying the
translation conventions. Again, given adequate speci-
fication, a non-alpha numeric representation may be
converted into a complete diagram for a model, in
any sensory arrangement. The only restriction is that
such depictions must have a clear, unambiguous and
repeatable translation into complete diagrams. This
process is suited for relations with arity of 2-5 - any
higher and it becomes difficult to find a suitable repre-
sentation for the models. Some relations with higher
valence may be projected into a smaller dimension
given a contextual framing.

The precision and accuracy of the proposed ax-
ioms of the algorithm are dependent on the breadth
and depth of the reference repository. There may al-
ways be some additional axioms which the designer
wishes but are not present in the repository. While
the algorithm is necessarily silent about these axioms,
should they be formalized, the repository can grow to

KEOD 2009 - International Conference on Knowledge Engineering and Ontology Development

198

accommodate these novel learnings.
The algorithm relies on a theorem prover and/or

satisfiability checker to verify that a particular model
indeed satisfies the axioms of an ontology. It is im-
portant to realize that the algorithm is not dynami-
cally constructing new models of the axioms (which
in general is undecidable). Since the repository is a
(relatively) static entity and we know which theories
are above and below any other theory, we can con-
struct all the necessary models before engaging the
algorithm. We need only convert the diagrams into
the desired representation convention on the fly.

7 CONCLUSIONS

The work presented here only scratches the surface of
a novel way of axiom generation - that of conversing
at the semantic level. It greatly reduces the burden on
subject matter experts to intimately learn a formal lan-
guage. Moreover, it skirts many of the issues of Up-
per Ontologies by not taking positions on the nature
of “reality,” but by capturing the logical structures that
underlie many concepts. Consequently, user concepts
do not necessarily map into particular conceptualiza-
tions of space and time, but rather the more abstract
concepts of “properties of binary (or higher arity) re-
lations.”

Moreover, as interrelations between layers of ab-
stractions become formalized, more natural model
representations might also be used. For example
a molecular biologist might be able to draw mod-
els based on actual molecules instead of abstracted
graphs. Similar to how users can customize skins for
software graphical user interfaces, model representa-
tions may be skinned, so as to reflect a representation
more natural to a subject matter expert’s domain (i.e.
a molecular biologist might look at spatial configura-
tions of molecules.)

Closely related, are questions of representing high
arity relations, or models of infinite size. Contexts
and/or project may address the former, while ellipses
and/or navigable fractals may be promising depic-
tions. Explicit conventions would mitigate some of
these issues, but these ideas are preliminary at the mo-
ment.

Similarly, we currently axiomatize structures that
are isomorphic to the extensions of a single relation.
Extending this work to multiple relations presents an
interesting challenge. How does the interaction of re-
lations affect which models to propose?

Lastly, an extension to the repository would see
it retain the relation names when a user engages the
algorithm to axiomatize a relation. In this way, we

might be able to enrich the user browse experience by
presenting different, previously user defined notions
of say, time. One could then compare time as defined
by A vs. B and see whether either of those definitions
corresponds to the time they wish to axiomatize.

In this paper we have shown how the organiza-
tion of theories within an ontology repository can be
exploited to provide an axiomatization of a class of
models. Furthermore, such a repository structure pro-
vides the foundation for many other applications in
ontological engineering. One such example is an al-
gorithm for the generation of semantic mappings for
ontologies consistent with those in the repository - the
repository serves as a central family of interlingua on-
tologies through which alignment may be achieved.

REFERENCES

Delugach, H. (2007). Common logic (cl) - a framework for
a family of logic-based languages. Technical report,
Geneva.

Guarino, N. (1998). Formal ontologies and information sys-
tems. In Formal Ontology in Information Systems.
Proceedings of FOIS’98, pages 3–15. IOS Press.

Hou, C. J., Musen, M., and Noy, N. F. (May 2005). Ez-
pal: environment for composing constraint axioms
by instantiating templates. International Journal of
Human-Computer Studies, 62:578 596.

Luettich, K. and Mossakowski, T. (2004). Specification of
ontologies in casl. In Formal Ontology in Informa-
tion Systems Proceedings of the Third International
Conference (FOIS-2004), pages 140–150. IOS Press.

Nichols, D. (2004). Ontology of geography.
http://sigmakee.cvs.sourceforge.net/*checkout*/sigma-
kee/KBs/Geography.kif.

Presutti, V. and Gangemi, A. (2008). Content ontology de-
sign patterns as practical building blocks for web on-
tologies. In 27th International Conference on Con-
ceptual Modeling, pages 128–141. Springer.

Staab, S. and Maedche, A. (2000). Ontology engineer-
ing beyond the modeling of concepts and relations.
In 14th European Conference on Artificial Intelli-
gence; Workshop on Applications of Ontologies and
Problem-Solving Methods.

ONTOLOGY DESIGN THROUGH MODULAR REPOSITORIES

199

