
DNA AND NATURAL LANGUAGES
Text Mining

Gemma Bel-Enguix1, Veronica Dahl1,2 and M. Dolores Jiménez-López1

1Rovira i Virgili University, Tarragona
2Simon Fraser University, Burnaby

Keywords: Text mining, Constraint handling rules, Oligonucleotides, Natural language processing.

Abstract: We present, discuss and exemplify a fully implemented model of text mining that can be applied to spoken
languages as well as to molecular biology languages. This is based in the model presented in (Zahariev et al.,
2009) oriented to discovering DNA barcodes for sequences. The novelty of our methodology is the use of
Constraint Based Reasoning to detect string repetitions through unification, by introducing a new general rule
for matching. We claim that the same method can be succesfully applied to mining natural language texts.

1 INTRODUCTION

In this article we propose a model of text mining
through constraint based reasoning that has applica-
tion in two important types of natural languages: hu-
man languages per se, and the (also human albeit less
overtly so) languages of molecular biology.

The model is based in the proposal by (Zahariev
et al., 2009) who introduced an efficient new ap-
proach for the case of discovering DNA barcodes
for sequences. DNA sequences consist in sentences
formed from an alphabet of four ”words”, or oligonu-
cleotides: A,C,T and G. This algorithm, unlike previ-
ous methods, neither necessitates a preliminary align-
ment, which would reduce its efficiency for intron-
rich regions (i.e. regions which are not translated
into protein), nor to resort to a brute-force approach,
which would reduce efficiency as well, and even com-
promise feasibility. These methods, based on group
oligonucleotide sorting, have been successfully used
as part of a signature oligo microarray design process.

Therefore, the methodology is first conceived for
mining molecular biology texts, but as we shall argue,
in its high level incarnation here proposed, is also ad-
equate for dealing with human languages.

We formulate our methodology in Sicstus Pro-
logs Constraint Handling Rules, explaining it first by
means of an example. We then show how it extends
to ambiguous matching, and we test it as well for two
other string mining applications which are frequent
in DNA mining: finding a substrings frequency and
finding gapped patterns. We end with a brief discus-

sion of future work and extensions, in particular for
mining human language texts.

Our focus at this point is expressiveness and el-
egance of formulation rather than efficiency, but our
results are nevertheless surprisingly efficient consid-
ering the tasks at hand.

Section 2 briefly reviews the computational back-
ground needed to understand the implementation de-
tails of our model. Section 3 presents it through
a toy example. Section 4 develops fully work-
ing solutions, in terms of our model, to three im-
portant classes of problems in text mining. Sec-
tion 5 discusses the implications of Specialized Con-
cept Formation for human language texts, and sec-
tion 6 presents our conclusions. Complete run-
ning programs are given in the following web:
www.geocities.com/CHRPrograms/SCF.html

2 COMPUTATIONAL
PRELIMINARIES: CHR

As in (Dahl and Voll, 2004), we useConstraint Han-
dling Rules (CHR)as our implementation methodol-
ogy. CHR provide a simple bottom-up framework
which has proved useful for algorithms dealing with
constraints (Fruhwirth, 1993; Fruhwirth, 1998). Be-
cause logic terms are used, grammars can be de-
scribed in human-like terms and are powerfully ex-
tended through (hidden) logical inference. The format
of CHR rules is:

140
Bel-Enguix G., Dahl V. and Dolores Jimenez-lopez M. (2009).
DNA AND NATURAL LANGUAGES - Text Mining.
In Proceedings of the International Conference on Knowledge Discovery and Information Retrieval, pages 140-145
DOI: 10.5220/0002292201400145
Copyright c© SciTePress



Head ==>Guard|Body

Head and Body are conjunctions of atoms and
Guard is a test constructed from (Prolog) built-in or
system-defined predicates. The variables inGuard
and Body occur also inHead. If the Guard is the
constant “true” (i.e., no tests need succeed in order
for the rule to apply), then it is omitted together with
the vertical bar. Its logical meaning is the formula
(Guard → (Head→ Body)) and the meaning of a
program is given by conjunction. There are three
types of CHR rules:

• Propagation rules, which add new constraints
(body) to the constraint set.

• Simplification rules, which also add as new con-
straints those in the body, but remove as well the
ones in the head of the rule.

• Simpagation rules, which combine propagation
and simplification traits, and allow us to select
which of the constraints mentioned in the head of
the rule should remain and which should be re-
moved from the constraint set.

The rewrite symbols for the first two rules are respec-
tively: ==>, <=> and for simgation rules, the nota-
tion isHead1\Head2<=>body. Anything inHead1 re-
mains in the constraint set and anything inHead2 is
removed from the constraint set.

3 OUR METHODOLOGY,
EXPLAINED THROUGH AN
EXAMPLE

3.1 Mining Human Languages

Let us consider a short sample problem for explana-
tory purposes: that of finding a string of words of
any length which is common to three short sentences
given as input. For instance, for the input corpus:

The drought of March has pierced to the root.

Alice has had enough of hares of March.

Waters of March was written by Jobim.

the output should include “of March” as one of the
common sequences found, and we moreover want to
know the position where the sequence starts within
each sentence.

Our system’s utilities first compile the sentences
into Prolog definitions of each (named s1, s2, s3),
done in terms of atoms of the form w(i,j,W), where
i is the sentence number, j the word’s position in that
sentence, and W the word itself. The above given in-
put, for instance, compiles into:

(1) s1:- w(1,1,the), w(1,2,drought), w(1,3,of),w(1,4,march),

w(1,5,has), w(1,6,pierced), w(1,7,to), w(1,8,the),

w(1,9,root).

(2) s2:- w(2,1,alice), w(2,2,has), w(2,3,had),w(2,4,enough),

w(2,5,of), w(2,6,hares), w(2,7,of), w(2,8,march).

(3) s3:- w(3,1,waters), w(3,2,of), w(3,3,march), w(3,4,was),

w(3,5,written), w(3,6,by), w(3,7,jobim).

If we now initialize the system by calling all three
strings, i.e.:

(4) ?- s1, s2, s3.

we are in a position to extract substrings from
these sentences, through the following two propaga-
tion rules:

(5) w(Row,C,N), w(Row,C1,N1) ==> C1 is C+1 |

sub([N,N1],Row,C).

(6) w(Row,C,N), sub(S,Row,C1) ==> C1 is C+1 |

sub([N|S],Row,C).

Rule (5) detects two subsequent words in the same
sentence, or row, and records them through a new
constraint sub/3 in list form (in the first argument of
sub/2), keeping as well, in its second argument, a
record of the row (i.e., the sentence number) the sub-
string was found in, and in its third argument, the col-
umn it starts at within that row. Rule (6) similarly
identifies all other substrings in the input strings, by
adding one more word at a time to an already found
string.

Of course, for different problems we may special-
ize these rules further, so that they zoom onto some
sufficient subset of the set of all substrings, e.g. on all
those substrings of a given size.

We have now enough utilities for the first incar-
nation of our Power matching rule, which extracts a
substring S that is common to all three strings, and
records the position in each sentence where the sub-
string appears:

(7) sub(S,1,C1), sub(S,2,C2), sub(S,3,C3) ==>

common(S,[C1,C2,C3]).

This completes our formulation for this toy exam-
ple. Among the results the system outputs, we have:

common([of,march],[3,5,2])

Notice that in their declarative reading, our sys-
tem’s rules form a specialized concept, such as that of
a substring, or of a common string, and in their opera-
tional reading, they produce all instances of that con-
cept with respect to given input. Thus our methods
can be directly incorporated into the Cognitive Sci-
ences theory of Concept Formation, which also uses
CHR for its implementation (Dahl and Voll, 2004).

DNA AND NATURAL LANGUAGES - Text Mining

141



3.2 Mining Molecular Biology Text

The same methodology can be directly used for min-
ing sequences of nucleotides given as input, with-
out touching the system itself. All we need to do is
change the input so that the compiler will treat strings
of nucleotides rather than strings of words, e.g. from
the three sequences of nucleotides:

c a t g g c a a

t g g c a c t g

a c g t g g c a

the compiler will obtain:

(1’) s1:-w(1,1,c), w(1,2,a), w(1,3,t), w(1,4,g), w(1,5,g),

w(1,6,c), w(1,7,a), w(1,8,a).

(2’) s2:- w(2,1,t), w(2,2,g), w(2,3,g), w(2,4,c), w(2,5,a),

w(2,6,c), w(2,7,t), w(2,8,g).

(3’) s3:- w(3,1,a), w(3,2,c), w(3,3,g), w(3,4,t), w(3,5,g),

w(3,6,g), w(3,7,c), w(3,8,a).

The system is then run by calling all input strings,
as before, through rule(1), which will result in the out-
put:

common([t,g,g,c,a],[3,1,4])

being generated among others, indicating that t g g
c a is a common substring, and that its start posi-
tion in strings s1, s2 and s3 is respectively 3, 1 and
4. The complete output is shown in Appendix I at
http://www.geocities.com/ CHRPrograms/SCF.html.

So far we’ve only considered identical subse-
quences, i.e. there are no ambiguous elements in the
vocabulary. Our formulation however has been de-
signed to accommodate ambiguous input with mini-
mum extra apparatus and computational overhead, as
we discuss in section 4.1.

3.3 Efficiency Considerations

Our core rule for finding common substrings in a se-
quence of strings is computationally intensive in the
case of molecular biology applications because we
must actually examine each sequence entirely, draw-
ing subsequences of different lengths from each, be-
fore our core rule discovers through unification which
substrings are common to all strings given. Even in
these applications, however, there are subproblems
where the search space can be reduced, for instance
it is not uncommon to look for common substrings of
a given length, or of a maximum given length. Thus
our approach could be modified in these cases in order
to take advantage of the smaller search space (by only
looking for common substrings of length L where L
is known).

With human language texts, however, the search
space can be greatly reduced. For instance, imag-
ine that instead of having to find arbitrary substrings
of arbitrary lengths as we did above, we are given a
known sequence of words and all we have to do is
check whether they show up in every string. This
would be useful for instance inautomatic author-
ship attribution and genre classification(Stamatatos
et al., 2000) where the use of certain subphrases, word
frequencies, word length and sentence length can be
calculated for specific authors or genres and used to
prove or disprove authorship of texts. It could be use-
ful also to determine the age of a manuscript, e.g.
by chequing how frequently a series of words which
might be in disuse in our times appears in a text pre-
sumed to be of a certain age.

4 THREE SPECIAL CASES OF
STRING ANALYSIS

4.1 Ambiguous Matching

Whereas the basic nucleotide set consists of the nu-
cleotides A,C,T,G, ambiguity (where a given string’s
position can take one value or another) is typically ex-
pressed by using extra names for the ambiguous nu-
cleotides, so for instance a nucleotide denoted as R
can materialize as either A or G.

Ambiguous matching usually introduces consid-
erable extra work, both in terms of representing am-
biguous strings, and of processing them. Representa-
tion wise, it is combinatorially explosive to explicitly
construct all alternative strings, one with each possi-
ble value of the ambiguous nucleotides. The alterna-
tive of compacting the representations usually com-
plicates their processing, by having to unfold them at
runtime. Specific procedures might be needed as well
in order to, for instance, explicitly block any proposed
solutions in which the ambiguous nucleotides are not
compatible with their counterparts in other input se-
quences among the comparison set.

In contrast, all our formulation needs in order to
represent and process any ambiguous nucleotide is for
the compiler to materialize all its incarnations locally
when the ambiguous string is read in. For instance, a
nucleotide of type R appearing in the third sequence,
column 7, which following our notation will be in-
put as as n(3,7,r), compiles into the two nucleotides
n(3,7,a) and n(3,7,c). Non-ambiguous nucleotides in
the same sequence remain represented as before, so
that complexity-wise, the representation grows only
linearly with respect to the number of ambiguous nu-

KDIR 2009 - International Conference on Knowledge Discovery and Information Retrieval

142



cleotides. In order to process ambiguous strings, once
we have compiled them as just described, no further
modifications are needed to our system: it runs as is.
No specific blocking of potential solutions that are not
compatible is needed: our Power Matching rule en-
sures that they will simply not be generated, thus en-
suring both elegance and efficiency. The only modifi-
cation needed to transform our previous example into
one exhibiting an R ambiguity at position 7 of string
3 is the replacement of (3’) by:

s3:- n(3,1,a), n(3,2,c), n(3,3,g), n(3,4,t), n(3,5,g),

n(3,6,g),n(3,7,a), n(3,7,c), n(3,8,a).

This alghorithm is more efficient than the one pre-
sented in (Zahariev et al., 2009), because these meth-
ods are quite intricate programming-wise, and must
be complemented with further work in the case of
ambiguous matching, since sets of sequences where
at least one sequence contains at least one occurrence
of an ambiguous nucleotide cannot be sorted. Other
methods in the literature resort to probabilistic analy-
sis (Manning and Schutze, 1999; Mikheev, 2003).

In our methodology, the ambiguous case, which
posed considerable problems in the previous work, is
directly solved, as we have seen, as a side effect of the
formulation chosen. In addition, we share with (Za-
hariev et al., 2009) the desirable feature of needing
neither preliminary alignment nor probabilistic anal-
ysis. To the best of our knowledge, this is the first time
such an approach has been proposed and explored.

4.2 Finding a Substring’s Frequency

In cryptanalysis (Becket, 1988; Menezes et al., 1996),
frequency analysis has been defined as the study of
the frequency of letters or groups of letters in a cipher-
text. Frequency analysis is based on the fact that, in
any given stretch of written language, certain letters
and combinations of letters occur with varying fre-
quencies. It is clear that the methodology presented
here can be used as a tool to identify the common
combinations of letters and to assign them frequen-
cies. In this section we exemplify with DNA strings,
but as before, the same methodology is applicable to
linguistic texts.

In molecular biology, finding a substrings’ fre-
quency is an interesting task that can help, among
others, to find DNA words. Those sequences more
frequently repeated have a high probability of being
meaningful in the genetic code (Basu et al., 2003).

For approaching this problem, we now modify our
input to consist of just one sequence (which results in
binary atoms compiling from the input, since we no
longer need to record the sequence, or row, number),
we introduce a parameter N into the call, which now

becomes go(N), with N being the length of the sub-
sequences sought, and we calculate subsequences of
that length. The Power Matching rule now becomes,
for Max being the length of the substrings whose oc-
currences we want to count:

(8) n(C,N), sub(S,C1,L,Max) ==>

L < Max, L1 is L+1, C1 is C+1 |

sub([N|S],C,L1,Max).

(9) sub(S,C1,Max,Max), sub(S,C2,Max,Max) ==>

dif(C1,C2) |

repeated(S,[C1,C2]).

(10) sub(S,C1,Max,Max) \ repeated(S,Where) <=>

notin(C1,Where) |

repeated(S,[C1|Where]).

This rendition of the Power Matching schema il-
lustrates matching an unknown number of string oc-
currences. Rule (8) creates substrings of increasing
length up to the maximum, rule (9) detects two equal
such substrings, starting respectively in positions C1
and C2, and after checking that these two positions
are different, records the fact that the string S appears
in both those positions. Rule (10) finds one more oc-
currence of the same string, and updates the informa-
tion accordingly, adding the new position in the list of
positions where the string repeats.

Appendix II at http://www.geocities.com/
CHRPrograms/SCF.html shows the complete pro-
gram, including the definition of auxiliary predicates
called above, and also shows the results of searching
for repeated occurrences of strings of length 2, 3 and
4 within the input sequence c a t g g c a a t g g c a c t
g a c g t g g a c a .

Here again, adapting our system to human lan-
guage applications only involves a change of input:
the rest of the system remains as is.

4.3 Finding Gapped Patterns

Because of the existence of introns and junk, in
some molecular biology contexts it is reasonable
to search for patterns that repeat in different se-
quences, even though they may be interrupted
by an arbitrary number of words (Parida, 2007).
Several systems exist and are available online to
find these gapped patterns in molecular biology,
like MOTIF (http://motif.stanford.edu/) or TEIRE-
SIAS (http://www.research.ibm.com/bioinformatics/
home.html). Finding the maximal (gapped) patterns
in a text (phrases with discontinuities), combined with
the study of frecuencies, can easily help to text sum-
marization and text classification. Our methodology
can also be adapted to finding maximal gapped pat-

DNA AND NATURAL LANGUAGES - Text Mining

143



terns, by keeping not only the start point but also the
end point of the subsequences found, and using equa-
tions on them in this version of the matching rule (see
Appendix III at http://www.geocities.com/ CHRPro-
grams/SCF.html).

For instance, for the input:

s1:- w(1,1,the), w(1,2,big), w(1,3,wolf).

s2:- w(2,1,the), w(2,2,big), w(2,3,bad), w(2,4,wolf).

s3:- w(3,1,the), w(3,2,big), w(3,3,ugly), w(3,4,silly),

w(3,5,wolf).

our system produces as output:

pattern([[the,big],_B,[wolf]])

5 FURTHER IMPLICATIONS OF
OUR RESEARCH FOR MINING
HUMAN LANGUAGE TEXTS

Topics such as information retrieval, text summariza-
tion, text categorization, sentence extraction and even
frequency analysis in cryptography can benefit from
the methodology introduced in this paper. All these
issues rely in the identification of some significant
segments in a given text, with no previous informa-
tion about these strings. Our core rule for finding
common substrings in a sequence of strings, as our
examples have shown, is very versatile and thus emi-
nently suitable e.g. for the rapid prototyping and ex-
perimentation typically needed to test and fine tune
linguistic theory. Other uses in specific tasks include
the following.

The major task ininformation retrieval(Manning
et al., 2008) is to find relevant documents for a given
query. In order to find such documents it is important
to consider the presence of some relevant words re-
lated to the topic of the query. Taking into account this
fact, our methodology could look for the key words in
a given amount of texts, providing a set of documents
that contain common substrings that match the user’s
query.

Text summarization(Mani and Maybury, 1999)
addresses both the problem of selecting the most im-
portant portions of text and the problem of generat-
ing coherent summaries. The goal in a summariza-
tion system is to extract the most informative sen-
tences that summarize the whole document, so fea-
tures like the number of named entities in the sentence
or the rank of the sentence in the document are very
useful. Therefore, in text summarization we have to
identify the most important portions of the text which
will be topically most salient. The method presented
here could help in this task by first identifying max-
imal common patterns (maybe with discontinuities)

and then filtering the patterns in order to obtain the
main term that will help to summarize the text. For
example, if in our text we find sequences like “the big
wolf”, “the bad wolf”, “the ugly wolf”, after the filter-
ing process we could get just the sequence “the wolf”
that will give us the main topic of the text helping,
therefore, in the task of summarizing it.

Text categorizationor text classification(Forsyth,
1999) is the task of automatically sorting a set of doc-
uments into categories, classes or topics from a pre-
defined set. By using our methodology we are able
to identify the common strings in a given text and to
assign them a frequency. This idea could help in the
task of categorizing a text, because the most frequent
words identified in the text could determine the main
topic of the document and, therefore, give us a key for
choosing the category or class of the text.

Information distillation (Hakkani-Tur and Tur,
2007) aims to extract the most useful pieces of infor-
mation related to a given query from massive textual
document sources. One critical component for distil-
lation is detecting sentences to be extracted from each
relevant document. The goal of sentence extraction is
to tag each sentence as relevant or not given a set of
documents relevant to a distillation query. Again here,
our methodology could help in the task of extracting
relevant sentences.

A certain type of natural language disambiguation
allows us to identify patterns where a word or group
of words are interchangeable (Banko and Brill, 2001;
Ginter et al., 2004). This is very useful for second
language acquisition drills, in which a student is given
for instance the pattern “I will look ... up” and must
fill in the slot. The slot is ambiguous regarding which
word can fit in, except for the requirement that it be
the appropriate type of pronoun (i.e., either “you”,
“him”, “her”,...). We can exploit this symmetry by
adapting our program into such language acquisition
drills.

Similarly, we can extend the same program to ad-
mit extensible slots, as in “I will look John up”, “I will
look the boy up”, “I will look the man with the yellow
hat up”, and so on.

The topics listed above could be potential natural
language applications of our methodology. The sim-
plicity and high level of the method, the fact that it is
not necessary to know in advance what we are search-
ing for, and the way it works by being able to find pat-
terns with different length but with basically the same
main structure, makes of the model introduced here a
good candidate to simplify many of the tasks related
to the processing of natural language texts.

For pattern or word frequencies, simple programs
can be designed with a high performance. The code

KDIR 2009 - International Conference on Knowledge Discovery and Information Retrieval

144



introduced in section 4.2 and shown in Appendix II at
http://www.geocities.com/CHRPrograms/SCF.html,
is able to find repeated sequences in a string- whether
of DNA or of human language text- and their collo-
cation, from which the number of occurrences can be
deduced.

6 CONCLUDING REMARKS

This paper had a double goal: a) to improve some so-
lutions for DNA mining, using a high level program-
ming language, and b) to extend these solutions to text
mining. Therefore, we have shown how several prob-
lems that were hard to solve with other algorithms
become simple to tackle with our Parallel Matching
methodology. Later, we have tested the suitability of
these same techniques in natural language processing.
The first results, that we are just introducing here,
suggest this is a promising approach to text mining
and processing, with some important features:

• the programs do not need to know anything about
the data they must process or search;

• the use of statistics can be minimized in future ap-
plications based on this approach;

• no previous alignments are needed in future DNA
applications based on this approach;

• and simple programs can achieve high results.

As we have highlighted in the first section, our
focus at this point is expressiveness and elegance of
formulation rather than efficiency. With this initial in-
cursion into our methodology and its applications, we
hope to motivate further research on its suitability for
many other different kinds of problems in string anal-
ysis.

ACKNOWLEDGEMENTS

We are grateful to Agostino Dovier and Andre
Levesque for useful comments on a first draft of this
paper.

REFERENCES

Banko, M. and Brill, E. (2001). Scaling to very very large
corpora for natural language disambiguation. InACL
’01: Proceedings of the 39th Annual Meeting on As-
sociation for Computational Linguistics, pages 26–33.
Morristown, NJ, Association for Computational Lin-
guistics.

Basu, S., Burma, D., and Chaudhuri, P. (2003). Words in
dna sequences: Some case studies based on their fre-
quency statistics.Journal of Mathematical Biology.

Becket, B. (1988).Introduction to Cryptology. Blackwell.

Dahl, V. and Voll, K. (2004). Concept formation rules:
an executable cognitive model of knowledge construc-
tion. In proceedings ofFirst International Workshop
on Natural Language Understanding and Cognitive
Sciences. INSTICC Press.

Forsyth, R. (1999).New Directions in Text Categorization,
pages 151–185. Springer, Berlin.

Fruhwirth, T. (1993). User-defined constraint handling. In
ICLP 93, Budapest. MIT Press.

Fruhwirth, T. (1998). Theory and practice of constraint
handling rules.Journal of Logic Programming. Spe-
cial Issue on Constraint Logic Programming, (37(1-
3)):95–138.

Ginter, F., Boberg, J., Jarvinen, J., and Salakoski, T. (2004).
New techniques for disambiguation in natural lan-
guage and their application to biological text.Journal
of Machine Learning Research, (5):605–621.

Hakkani-Tur, D. and Tur, G. (2007). Statistical sentence
extraction for information distillation. InAcoustics,
Speech and Signal Processing. ICASSP 2007, IEEE
International Conference, volume vol. 4.

Mani, I. and Maybury, M. (1999).Advances in Automatic
Text Summarization. MIT Press, Cambridge.

Manning, C., Raghavan, P., and Schutze, H. (2008).Intro-
duction to Information Retrieval. Cambridge Univer-
sity Press.

Manning, C. and Schutze, H. (1999).Foundations of Statis-
tical Natural Language Processing. MIT Press, Cam-
bridge.

Menezes, A., Oorschot, P., and Vanstone, S. (1996).Hand-
book of Applied Cryptography. CRC Press.

Mikheev, A. (2003). Text Segmentation. Oxford, Oxford
University Publications.

Parida, L. (2007). Pattern Discovery in Bioinformatics:
Theory and Algorithms. Chapman & Hall/CRC.

Stamatatos, E., Fakotakis, N., and Kokkinakis, G. (2000).
Automatic text categorization in terms of genre and
author.Computational Linguistics, (26(4)):471–495.

Zahariev, M., Dahl, V., Chen, W., and Levesque, A. (2009).
Efficient algorithms for the discovery of dna oligonu-
cleotide barcodes for dna sequences and groups of se-
quences.

DNA AND NATURAL LANGUAGES - Text Mining

145


