
ARAGOG SEMANTIC SEARCH ENGINE
Beyond the Limits of Keyword Search

Madhur Garg, Jaspreet Singh, Jitesh Sachdeva, Harsh Mittal
Department of Computer Engineering, Netaji Subhas Institute of Technology, University of Delhi, Delhi, India

Sanjay K. Dhurandher
Department of Information Technology, Netaji Subhas Institute of Technology, University of Delhi, Delhi, India

Keywords: Semantic Web, Search, Semantic Search, Semantic Page Ranking, Ontology Ranking.

Abstract: The world is heading towards a phase of pure automation and artificial intelligence. In this context the
science of exploring the possibility of computers interpreting the meanings of sentences is a topic of great
interest. The search engines are in no way left behind from its impact. The prospects of having a semantic
search engine that could explore the proper context of an input query and produce relevant results is being
constantly looked for. In this backdrop we present our prototype – Aragog, which is even a step ahead than
the conventional idea of a semantic search engine. This not only makes the user free from the hassle of
browsing through hundreds of irrelevant results, but also generates results in an order that would match its
intended context, with a high probability. The engine has been designed and tested in its nascent stage and
the results have been found to be exemplary. Additionally, we have incorporated many other features such
as synonym handling and explicit result display that make it all the more tempting to emerge as the next
generation’s search engine.

1 INTRODUCTION

Since its very inception the notion of a search engine
has been to provide the web users with an interface
that could look for appropriate content on the web.
The AOL, Google and Yahoo! search engines have
all restricted this idea to keyword searching which in
the present scenario seems outdated and incomplete.
The present generation search engines present a
huge amount of search results to the user in response
to the query, most of which are at times highly
irrelevant, and the user has an ordeal in sifting
through these result sets to arrive at some page of his
interest.

The limitation of contemporary search engines
has forced researchers to look for new alternatives.
Semantic engines- which propose to derive
meanings out of sentences seem to fit in place to
alleviate out of this hitch. This can be better
understood in the light of some examples. For
instance, consider a query “Winner of maiden T20
cricket world cup”. Intuitively, the user is interested
in knowing the direct answer of the query which in

this case turns out to be India. However, our dry run
over some of the conventional search engines
yielded us results which cater to the official T20
world cup site, site links for watching T20 world
cup, web pages which are flooded with information
not worth the user requirement. This clearly
highlights the indispensability to look for better
alternatives.

A semantic search engine uses ontologies which
are a set of concepts mapped together and can be
referenced as such to derive semantic associations
among different words and concepts. The resources
on the web, i.e., the web pages, are crawled and
looked for annotations done on them, if any. These
annotations are then used to set the words to that
ontology with which they have been tagged. These
tags are used later on for page searching. The
matching and searching algorithms of Aragog have
been explained in later sections.

The remaining paper is organized as follows. In
Section 2, we discuss about the previous work done
in this area. Next we present our motivation towards
this work that has been taken up in Section 3.

21
Garg M., Singh J., Sachdeva J., Mittal H. and K. Dhurandher S. (2009).
ARAGOG SEMANTIC SEARCH ENGINE - Beyond the Limits of Keyword Search.
In Proceedings of the International Conference on Knowledge Engineering and Ontology Development, pages 21-27
DOI: 10.5220/0002290600210027
Copyright c© SciTePress

Section 4 talks about our proposed Semantic Search
Engine Aragog’s architecture. Section 5 explains the
algorithms and the heuristics used in the various
modules. Section 6 discusses the results of our
implementation of Aragog. Finally we conclude our
work and follow that up with the future work that
can be done on this engine to enhance its
capabilities.

2 PREVIOUS WORKS

The architecture for a semantic search engine was
proposed in (Qazi Mudassar Ilyas, et al., 2004).
However, this architecture proposes a two level
interaction with the user whereby the user needs to
separately mention both the search query and the
domain in which the searching shall be performed.

Another important work in this field is (Li Ding,
et al., 2004). It is a working implementation but it
does not incorporate searching according to
semantics. It restricts itself to keyword searching in
the semantic web documents.

(Lee & Tsai, 2001) define the Lee’s Model
which uses a matching algorithm to reflect the
semantic similarity of web page content but it is
unable to do the same completely. Thus, it is not
possible to satisfy user queries’ to an appreciable
extent.

This all reveals that semantic search engines are
still far away from reality and a better solution needs
to be found out.

3 MOTIVATION

Aragog has been conceived and developed with the
following motivations:

1) A Semantic Search Engine should minimize on

the number of user interaction levels for better
usability. For a particular query, the domain in
which the search is to be performed should be
deduced automatically. This will bring the
Semantic Search Engine at par with the existing
keyword based search engine.

2) Synonyms of the keywords should be considered
while deriving the semantics of query. Synonyms
should be handled in the sense that for a given
query, the results of all synonymous queries
should also be displayed.

3) Apart from web resources results, a semantic
search engine should also provide the user with

the exact answer of the query. This would make
it a search engine cum answering agent.

4) The query result display should enhance the user
experience. This should include ranking amongst
the domains and also, ranking within an
individual domain. Along with this, relevant text
from the web documents should also be
displayed to the user.

4 PROPOSED ARCHITECTURE
FOR ARAGOG

As discussed in the previous section, the motivation
for building Aragog has come from various
shortcomings and limitations with other existing
semantic search engines. The proposed architecture
of Aragog has been shown in Figure 1.

This architecture supports various features such
as ontology ranking, synonym handling, semantic
answer finder etc. The various modules are
described below:

Query Preprocessor: This is the module which
interacts directly with the user. The query
preprocessor is responsible for accepting a query
from the user. An acceptance list for this is
maintained in a relational database and contains
entries for tokens for which corresponding concepts
exist in the ontology collections. The user’s query
tokens are verified with the acceptance list and only
the tokens which are found in the acceptance list are
accepted. Remaining are rejected by the
preprocessor. This helps in rejecting helping verbs
such as ‘is’, ‘am’, ‘are’ etc. The acceptance list is
created/maintained/updated by the Ontology
Crawler Module discussed later.
This module also takes care of the scenario when a
user query contains similar meaning tokens. For
example if the query posed by a user is “maximum
highest score of Sachin Tendulkar in Test”. Here, the
concepts ‘maximum’ and ‘highest’ both correspond
to the same meaning. Hence, redundancy is there in
the tokens. The query preprocessor also removes the
similar meaning tokens to avoid complexity and
inefficiency that may occur at a later stage. This
module also provides features such as support for
double quotes in queries.

Ontology Ranker: This module is a major
improvement over the previously proposed versions.
An ontology ranker understands the user’s query’s
context and finds the ontologies which contain the
desired concepts. Apart from finding the relevant
ontologies, this module also ranks the ontologies for

KEOD 2009 - International Conference on Knowledge Engineering and Ontology Development

22

Figure 1: Architecture of Semantic Search Engine.

a given query’s context.
As explained before, the previous versions

expect the user to specify the ontology in which the
concepts are to be searched. This module removes
this second level interaction with user and hence,
increases the responsiveness.

For example, if the user enters the query as
“Tiger Woods”. This query has two contexts. One
refers to the golf ontology where Tiger Woods is a
concept referring to a golf player. The second
context refers to forest ontology where Tiger and
Woods are two separate concepts.

The Ontology Ranker module uses various
ontology ranking algorithms and heuristics to rank
the ontologies. These have been discussed in later
sections.

Inference Engine/Reasoner: The Reasoner’s task
is to infer new information from the given
information to help understand the concepts in a
better way. This is done by backward chaining to
improve on the efficiency front.

For example, if in an ontology for the food
Domain, we have a class hierarchy as Food --> Non-
Vegetarian Food --> Sea Food. According to the
transitive property of reasoning, it can be inferred
that Sea Food is a type of Food.

Semantic Web Crawler: The Semantic Web
Crawler crawls the web and searches for annotated
pages on the web. Annotated pages are the web
pages having concepts annotated on them. These
annotations are done by the web developer while
developing the pages using various tools available.
The web crawler then retrieves such pages and
passes these pages to the Annotation Metadata
Extractor Module.

Ontology Crawler: This component is
responsible for crawling web to find out Ontologies
to build Ontology Collection. Apart from finding
new Ontologies, this module performs the task of
updating existing ontologies on finding new
concepts.

Annotation Metadata Extractor Module: This
module retrieves annotated web pages from the

ARAGOG SEMANTIC SEARCH ENGINE - Beyond the Limits of Keyword Search

23

semantic web crawler. It extracts the annotated
metadata and concepts from the web page and
updates the Metadata Store with the concepts
extracted.

Annotated Web Page Metadata Store: This store
is built by the Web Crawler Module and Annotation
Metadata Extractor Module. This store contains the
metadata in a relational database and consists of an
index for all the annotated concepts in the webpage
along with the URLs. The metadata also contains the
information to be used by the Page Ranker Module.

Web Page Searcher: This module is responsible
for finding the web resources suitable for the
preprocessed query in a particular ontology context.

The searcher refers to the ontology and finds out
the relevant concepts to be searched in the metadata
store using the various Searcher Algorithms that
have been discussed later. These relevant concepts
are then searched in the Annotated Web Page
Metadata Store and the corresponding URLs are
retrieved.

Page Ranker: This module receives the list of
URLs for a given query and ranks these URLs using
various page rank algorithms discussed later. The
point to be noted here is that the Page Ranker ranks
only those URLs which correspond to a single
ontology domain. Thus, the sorting done here is
Intra-Ontology Sorting whereas the Ontology
Ranker Module does Inter-Ontology Sorting.

Answer Finder: In certain cases, apart from the
query result URLs, it is also helpful to get an answer
of the query posed. For example if a user enters a
query ‘Director of Movie Black’, then along with
the related web pages, it is really appreciated if the
exact answer i.e. Sanjay L. Bhansali is given to the
user. Answer Finder Module aims to provide this
functionality.

Semantic Document Loader: This module is a
normal document loader but with extra capability of
loading relevant text of a URL depending on the
query posed by the user. A local cache copy of each
web resource is maintained in the Annotated Web
page metadata store that is used by the semantic
document loader. For example if a user places the
query “Movies of Shahrukh Khan”, the conventional
search engine’s document loader will display those
section of the retrieved pages where either the
keyword ‘Shahrukh Khan’ or ‘movies’ appears, but
the Semantic Document Loader will display those
sections in the result which contain the name of the
movies of Shahrukh Khan.

In the next section, the various algorithms and
heuristics adopted for Aragog shall be discussed.

5 PROPOSED ALGORITHMS
AND TECHNIQUES FOR
VARIOUS MODULES

5.1 Ontology Ranker

As stated in previous section, this module ranks the
ontologies according to the query based on:
1) The Presence of Keywords in an Ontology:

Each word present in any of the ontologies has a
set of numbers associated with it, where each
number corresponds to an ontology. When the user
enters a query we compute the intersection of the
sets corresponding to each keyword of the query so
as to determine the ontology containing all the
words of the pre-processed query, which would
result in narrowing down the list of ontologies which
are required to be searched.
2) The Position of Keywords in an Ontology:

i) If the query consists of a single word, we
calculate the depth of the keyword in various
ontologies and the one having the keyword at
the minimum depth is given the highest
priority.

ii) If the query consists of multiple words, we
calculate the Lowest Common Ancestor of
the keywords (nodes represented by the
keywords). The lowest common ancestor thus
found must also be one of the keywords
entered. Then the ontology having those
keywords separated by minimum distance is
ranked first.

5.2 Synonym Handler

The synonyms for a word (class name, instance
name and property name) are inserted in the same
node itself with the help of aliasing. This greatly
reduces the time that would have been required in
referring to a thesaurus for each word entered in the
query.

5.3 Semantic Answer Finder

Here the ontology graph is traversed from the least
common ancestor of the various nodes to the
required instance and the property value of the
required property is returned.

5.4 Page Ranker

1) The ontology (graph) is traversed from the
property value of the required property (of the

KEOD 2009 - International Conference on Knowledge Engineering and Ontology Development

24

required instance) followed by the property
name to the least common ancestor of the
keywords. A separate set Si is constructed for
the ith node of the path, where i=0 corresponds
to the property value node.

2) For each set Si, a set of links Li is searched, such
that any of the words of Si, appear in the
annotation of those web pages.

3) If there were n nodes in the path, then two sets
of sets are computed. Set V contains n sets,
where the set Vi is computed from the
intersection of the all the sets Lj, where i ε [0,n]
and j ε [0,i], and set R contains n-1 sets, where
Rk is computed from the intersection of sets Lm,
where k ε [1,n] and m ε [1,k].

4) Since, the set V also incorporates the property
values, so the links in the sets of set V will be
preferred over the links in the sets of set R.

5) Each set Vi contains the set of links which
contains the answer of the query i.e. the
property value along with words from the 1st
node to the ith node. Thus, Vn will give the set of
links which are best suited for the query as it
would contain the property value and all the
keywords of the query (or their synonyms)
which were present in the ontology.

6) Therefore, priority will be given to the links of
the set Vi over the links of the set Vj, where i>j.

7) Similarly, the links in the set Ri will be preferred
over the links in the set Rj, where i>j.

6 IMPLEMENTATION OF
ARAGOG

A working implementation of Aragog has been
developed. In this work we have covered three
domains: Bollywood, Cricket and Food. The
Ontologies were created for these domains. As
OWL-DL is rapidly emerging as a standard to build
Ontologies, we have used it to follow the worldwide
standards. Protégé tool was used to design
Ontologies.

For handling Ontologies and performing
operations on them, we used Jena Ontology API .
Jena provides us with the Reasoner based on the DL
transitive rules. This Reasoner was used in our
Inference Engine module.

We chose C#.NET as our development language
and ASP.NET was chosen to build the web interface
of the Aragog. As Jena API was available in Java,
IKVM was used to convert the java source code into
a .NET DLL. This development work has been

carried on a Intel Dual Core 1.83GHz system having
3GB of DDR2 RAM and 320GB of SATA Hard
Disk.

The Aragog search results were compared with
Google for a set of queries. The results as presented
below clearly highlight how Aragog outperforms the
conventional keyword search engine.

Case 1: Imprecise Queries

Query 1: “Maiden T20 World Cup winner”
Ideal results: All web resources about India

preferably in cricket domain.

Aragog Results:

Domain: Cricket
Answer: India
Top result:
http://www.cricinfo.com/database/NATIONAL/I

ND/ (Figure 2)

Google Results:

Top Result:
http://cricket.yahoo.com/cricket/videos/fvideo/2

10609_SL_PAK_2inn_hl/3222 (Figure 3)

Figure 2: Screenshot of Aragog's top result for query 1.

Figure 3: Screenshot of Google's top result for query 1.

ARAGOG SEMANTIC SEARCH ENGINE - Beyond the Limits of Keyword Search

25

Comparison:
It is clearly discernible from the results that

Google results returned irrelevant pages which were
not desired by the user as shown in Figure 3. On the
other hand, Aragog returns a page on a cricket
related website about India, as shown in Figure 2,
which is first (inferred by ‘maiden’) T-20 world cup
winner. Thus, Aragog succeeded in interpreting the
correct meaning of the query and displaying the
most relevant domain results.

Case 2: Queries containing some keywords
spanning over multiple domains

Query 2: “Ingredients of 20-20”

Ideal Result: All pages containing any

information regarding the contents of 20-20 biscuits
(Brand: Parle-G)

Aragog Results:

Domain: Food
Answer: Wheat, Flour, Sugar, Butter, Milk
Top Result:
http://parleproducts.com/brands/biscuits_20-

20Cookies.asp (Figure 4)

Google Results:

Top Result:
http://www.mindbodyhealth.com/MbhVision20.

htm (Figure 5)

Figure 4: Screenshot of Aragog's top result for query 2.

Figure 5: Screenshot of Google's top result for query 2.

Comparison:

The difference in the quality of results is clearly
perceptible. Aragog returns the correct answer page,
as shown in Figure 4, whereas Google returns a web
page as shown in Figure 5, which is not even
remotely related to the food item in question.

Similarly, several other kinds of queries such as

those concerning synonyms, intra domain ranking,
inter domain ranking were also tested and the results
demonstrate how Aragog outperforms the traditional
keyword based search engine.

7 CONCLUSIONS

The idea of a novel semantic search engine has been
proposed as well as implemented in this paper. The
results have been found out to be refined, smarter
and accurate than the conventional keyword based
search engine. Aragog also lays the foundation of
semantic search with minimum user intervention.
Even the presentation of the results is such that the
most apt results are available at a mouse’s click.
Further, on implementation the proposed Aragog
was found to perform much better than the Google
search engine.

8 FUTURE WORK

Aragog leaves us with a few possible future
additions that can be made to broaden its searching
horizons. Currently, Aragog searches in 3 domains –
Bollywood, Cricket and Food. It can easily be
extended to incorporate many more domains by
adding respective ontologies to Ontology collection.

KEOD 2009 - International Conference on Knowledge Engineering and Ontology Development

26

Aragog can also be easily extended to cover
searching amongst videos. This can be done in two
ways:

1) Aragog can search through the descriptions
of videos available on the internet by simple
text search.

2) A speech to text module can also be added
to Aragog to allow it to get the contents of
the video in a text format which can then
easily be searched through to bring semantic
search to video contents, which has never
been done before.

REFERENCES

Mudassar Ilyas, Q., Yang Zong Kai, Adeel Talib, M.,
2004. A Conceptual Architecture for Semantic Search
Engine. In Multitopic Conference, 2004. Proceedings
of INMIC 2004. 8th International. IEEE Press.

Li Ding, Tim Finin, Anupam Joshi, Rong Pan, R. Scott
Cost, Yun Peng, Pavan Reddivari, Vishal Doshi, Joel
Sachs, 2004. Swoogle: A Search and Metadata
Engine. In Proceedings of the thirteenth ACM
international conference on Information and
knowledge management.ACM Press.

W.-P. Lee, T.-C. Tsai, 2003. An interactive agent-based
system for concept-based web search. In Expert
Systems with Applications. Elsevier.

ARAGOG SEMANTIC SEARCH ENGINE - Beyond the Limits of Keyword Search

27

